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ABSTRACT

We investigate reducing the dimensionality of image sets by
using principal component analysis on wavelet coefficients
to maximize edge energy in the reduced dimension images.
Large image sets, such as those produced with hyperspec-
tral imaging, are often projected into a lower dimensionality
space for image processing tasks. Spatial information is im-
portant for certain classification and detection tasks, but popu-
lar dimensionality reduction techniques do not take spatial in-
formation into account. Dimensionality reduction using prin-
cipal components analysis on wavelet coefficients is investi-
gated. Equivalences and differences to conventional principal
components analysis are shown, and an efficient workflow is
given. Experiments on AVIRIS images show that the wavelet
energy in any given subband of the reduced dimensionality
images can be increased with this method.

Index Terms— wavelet transforms, Karhunen-Loeve trans-
forms

We explore how wavelet filtering can be paired with lin-
ear dimensionality reduction to optimally capture edge infor-
mation. Experiments are presented for hyperspectral images,
which contain many image bands, each of which represent
reflectance information over a different spectral window. For
display, the dimensionality is usually reduced to three bands
which can be mapped to R, G, and B display channels. For
automated classification or detection algorithms, the dimen-
sionality is usually reduced because of the effects of the curse
of dimensionality, and because image bands are often corre-
lated.

Many hyperspectral classification methods ignore spatial
information and make decisions on a pixel-by-pixel basis, in-
cluding endmember unmixing [1]. However, spatial informa-
tion is important for certain classification and detection tasks.
Spatial context such as texture can help with accurate mate-
rial identification. Higher-level classification and detection
tasks benefit from incorporating spatial information [2]. We
hypothesize that incorporating spatial information into the di-
mensionality reduction step can benefit spatially-based clas-
sification algorithms compared to using a spatially invariant

dimensionality reduction.

1. WAVELET PCA

A standard method for reducing the dimensionality of hyper-
spectral images is principal components analysis (PCA), a
data adaptive orthonormal transform whose projections have
the property that for all values of N , the first N projections
have the most variance possible for an N -dimensional sub-
space. Fig. 1 (left) shows the steps to use PCA to reduce
the image dimensionality. PCA ignores spatial information;
it treats the set of spectral images as an unordered set of high-
dimensional pixels.

Wavelets are an efficient and practical way to represent
edges and image information at multiple spatial scales. Im-
age features at a given scale, such as houses or roads, can be
directly enhanced by filtering the wavelet coefficients. For
many tasks, wavelets may be a more useful image represen-
tation than pixels. Hence, we consider PCA dimensionality
reduction of wavelet coefficients in order to maximize edge
information in the reduced dimensionality set of images. Note
that the wavelet transform will take place spatially over each
image band, while the PCA transform will take place spec-
trally over the set of images. Thus, the two transforms op-
erate over different domains. Still, PCA over a complete set
of wavelet and approximation coefficients will result in ex-
actly the same eigenspectra as PCA over the pixels (see the
lemma).

However, PCA over a subset of wavelet coefficients can
be used to find eigenspectra that maximize the energy of that
subset of wavelet coefficients. For example, PCA on only
the vertical wavelet subbands will result in eigenspectra that
maximize vertical wavelet energy. More generally, we use
the term Wavelet PCA to refer to computing principal compo-
nents for a masked or modified set of wavelet coefficients to
find Wavelet PCA eigenspectra, and then projecting the orig-
inal image onto the Wavelet PCA eigenspectra basis. In this
way, features at a particular scale are indirectly emphasized
by the computed projection basis, enhancing the reduced di-
mensionality images without filtering artifacts.
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Fig. 1. Left: Workflow diagram for conventional PCA. Right: Workflow diagram for Wavelet PCA. The lemma in Section 1
establishes equivalences in the workflows.



Three different workflows are shown in Fig. 1. On the
left is conventional pixel PCA. On the far right is Wavelet
PCA where the eigenspectra are calculated using wavelet co-
efficients and the original wavelet image is projected onto the
Wavelet PCA eigenspectra, and an inverse 2D DWT is per-
formed to produce a final pixel image. In the middle, an alter-
nate and equivalent Wavelet PCA workflow is shown, where
the PCA is performed on pixels which have been wavelet fil-
tered. Then, the original pixel image is projected onto the
(identical) Wavelet PCA eigenspectra. The most efficient work-
flow is a fourth (equivalent) option: perform analysis in the
wavelet domain and projection in the pixel domain.

Lemma: Equivalences of Wavelet PCA
With regards to the workflows shown in Fig. 1, the following
are equivalent:

1. Conventional PCA and Wavelet PCA if no wavelet co-
efficients have been scaled.

2. Wavelet PCA where the eigenspectra are computed from
scaled (e.g. masked) wavelet coefficients, and Wavelet
PCA where the eigenspectra are computed from the pix-
els resulting from the inverse wavelet transform of the
modified wavelet coefficients.

3. Wavelet PCA where the principal component images
are computed by projecting the pixel image onto the
eigenspectra, and Wavelet PCA where the principal com-
ponent images are computed by projecting the wavelet
coefficients onto the eigenspectra then taking the in-
verse wavelet transform.

Proof of the lemma is in the appendix. More generally,
the proof (and lemma) hold for any orthonormal transform,
not just wavelet transforms.

2. RELATED WORK

Wavelet methods have been combined with PCA in several
papers. Feng et al. [3] compute eigenfaces from a mid-range
wavelet subband rather than using the full image. Their ap-
proach differs from this paper in that their results are pro-
jected feature vectors with maximum variance, rather than
projected images with maximum variance. Kaewpijit et al.
[4, 5] develop a hyperspectral classification method that uses
wavelet denoising of each pixel’s spectra, followed by down-
sampling to reduce the dimensionality of spectra, which forms
the input to a conventional PCA classifier. No spatial image
information is taken into account; all operations are done on
spectra, as in work by Bruce et al. [6].

3. EXPERIMENTS AND DISCUSSION

We experimented with hyperspectral imagery to explore the
question, “How much difference does incorporating the spa-

tial information into the dimensionality reduction make?” As
a metric, we compare the energy in different wavelet sub-
bands for conventional PCA and Wavelet PCA for the first
three projected images. Three projections were chosen be-
cause it is common to map the first three PCA projections to
red, green, and blue channels for visualization. The wavelet
filtering was a binary mask that selected all the wavelet coef-
ficients at a particular resolution and excluded wavelet coeffi-
cients that were affected by the image boundary.

Figure 2 shows a wavelet variance analysis of applying
this visualization method to four different AVIRIS hyperspec-
tral images from NASA. AVIRIS images have 224 nominal
bands, but only the 190 bands which did not contain signifi-
cant noise were used. In this paper, dj , with no superscript, is
the union of the horizontal, vertical and diagonal wavelet co-
efficients at level j. These coefficients are treated as a single
subband since the image is not assumed to be purposefully
oriented.

As expected, the proportion of the total wavelet variance
contained in a particular wavelet subband of the first projected
image is increased (compared to conventional PCA) when the
eigenspectra are computed only from wavelet coefficients in
that subband. However, the second and third projected images
usually show a decrease in wavelet variance for the selected
subband. Due to the much larger variance of the first pro-
jected image, the total variance of the first three projected im-
ages is consistently increased. This suggests that the Wavelet
PCA basis captures spatial information in the first projected
image that is instead captured in the second, third and subse-
quent projected images of conventional PCA. We hypothesize
that the greater compaction of wavelet energy in the first pro-
jected images will be helpful to image processing tasks that
are based on spatial information, such as detection, classifica-
tion, compression, and visualization.

4. APPENDIX

Proof of Lemma: We prove the lemma for one-dimensional
data; the arguments extend to higher dimensions, but at the
cost of readability. Let the data matrix A be an N × M
matrix representing N spectral bands for each of M pixels.
Let W be an M x M wavelet transformation matrix, and let
WT denote the transpose of the matrix W . The spatial dis-
crete wavelet transform (DWT) of A is given by (WAT )T =
AWT . Since W is orthonormal, WWT = WT W = I . Thus
the covariance matrix of the wavelet coefficients is CW =
(AWT )(AWT )T . Simplifying and using the orthonormality
property, CW = AWT WAT = AAT = C, where C is
the covariance calculated from the original pixel data. Thus,
working in either domain will yield the same eigenvectors
(eigenspectra) and eigenvalues, establishing the first item of
the lemma.

Wavelet filtering can be expressed as matrix multiplica-
tion by a diagonal matrix because each row of the matrix A



corresponds to the signal for one spectral band. Let If be
any diagonal matrix. The covariance matrix of the modified
wavelet coefficients is

CW =
[
(AWT )If

] [
(AWT )If

]T

= AWT If (If )T WAT .

Equivalently, performing an inverse DWT on the modified
wavelet coefficients yields a covariance matrix of spatially fil-
tered pixel coefficients:

C =
[
(AWT If )W

] [
(AWT If )W

]T

=
[
(AWT IfW )(WT (IT

f )WAT )
]

= AWT If (If )T WAT .

The identical covariance matrices will yield identical eigen-
vectors, proving item 2 of the lemma. Lastly, we establish
item 3 of the lemma. The ith principal component image
Pi = vT

i A is equivalent to projecting the wavelet coefficients
and applying the inverse DWT:

[
(vT

i AWT )W
]

= (vT
i A) = Pi.
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Fig. 2. Results of enhancing subband variance. Results for
the first projected image are shown in green, the second in
red, and the third in blue. Results for the Haar wavelet and
two Daubechies wavelets, Db4 and Db8 (with 4 and 8 vanish-
ing moments respectively) are shown. Wavelet coefficients
containing boundary effects were excluded from the variance
analysis.


