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Abstract – We introduce two generative classifiers that
classify based on the pairwise similarities between samples
or on the Euclidean features describing the samples: the
regularized local similarity discriminant analysis classifier
for similarities and the local Bayesian discriminant anal-
ysis classifier for Euclidean features. Both new classifiers
provide low-variance probability estimates of class labels
from low-bias probabilistic models in their respective do-
mains. We combine these two novel classifiers in a naive
Bayes framework to form a classifier that fuses similarity
and feature information to produce accurate probability es-
timates for the class labels. Experimental results on several
benchmark datasets demonstrate that the two classifiers im-
prove upon the state-of-the-art in their respective domains,
and that the fused classifier adaptively uses the best infor-
mation for classification.

Keywords: similarity-based classification, regularized lo-
cal similarity discriminant analysis, local Bayesian discrim-
inant analysis, classifier fusion

1 Learning From Features and Simi-
larities

For standard metric classifiers, each training and test sam-
ple is characterized by numerical features represented by a
d-dimensional numerical vector in a Euclidean space [1].
In this paper, we refer to these classifiers as feature-based
classifiers. An alternative learning architecture is similarity-
based learning, in which classifiers learn from a set of pair-
wise training similarities, training class labels, and from
the similarities between a test sample and the training sam-
ples [12]; Euclidean features characterizing the samples are
not used. We refer to these classifiers as similarity-based
classifiers.

In this paper we consider the problem of classifying given
both pairwise similarities and Euclidean features. The goal
is to fuse the similarity information and Euclidean features
to produce accurate probability estimates of the class la-
bels. Probabilistic estimates are important in practice be-
cause there may be skewed class priors or asymmetric mis-
classification costs, or probabilities of each class may be
used as an input to the next component in the system or to

fuse with probabilistic information about the class label de-
rived from other sources.

One option for combining feature and similarity informa-
tion is to convert the similarity information into Euclidean
features and then use a feature-based classifier on the con-
catenation. Another option is to use a classifier for each
information type, then learn how to weight them to pro-
duce good results. However, this requires learning one fixed
set of weights for combining the classifiers, but the optimal
weighting might be very different for different test samples.
Another option is to fuse the similarity information and fea-
tures by using a k nearest-neighbor classifier that forms a
weighted vote of the k-nearest neighbors with respect to
each type of information. This has the advantage that the
two classifiers are adaptively weighted for each test sample.

Here, we investigate generative classifier solutions for
fusing similarities and features. Generative classifiers pro-
duce probabilistic outputs, and naturally adapt the weight
given to each component classifier according to each clas-
sifier’s confidence. In this paper we make three contri-
butions. First, we advance the state-of-the-art in feature-
based generative classifiers with a local Bayesian version of
quadratic discriminant analysis (QDA) we term local BDA.
We show that local BDA can reduce the high bias of QDA
more effectively than Gaussian mixture models. Second,
we advance the state-of-the-art in similarity-based genera-
tive classifiers with a regularized local similarity discrimi-
nant analysis (regularized local SDA) classifier that builds
on the recently-proposed local similarity discriminant anal-
ysis (SDA) classifier [3]. The regularized local SDA classi-
fier reduces the estimation variance of local SDA. Third, we
show that fusing the local BDA and local SDA posteriors in
a naive Bayes framework can reduce classification errors.

First, we review Bayesian QDA and propose the local
BDA classifier. Then in Section 3 we review approaches
to similarity-based classification and the local SDA classi-
fier. We propose regularized local SDA in Section 4. Then
we detail the proposed fusion of similarity and feature infor-
mation in Section 5. In Section 6 we demonstrate the effec-
tiveness of all three proposals on eleven real-world datasets.
We conclude with a summary of findings and some open
questions.



2 Local BDA
The most common approach to generative classification
given d-dimensional Euclidean features {xi} for i =
1, . . . , n is to assume that conditioned on the associated
class yi ∈ {1, 2, . . . , G}, the feature values have a Gaus-
sian distribution. The Gaussian model can be motivated
by the central limit theorem and by the maximum entropy
principle. The resulting quadratic discriminant analysis
(QDA) classifier has many variations, including pooling the
covariances between classes (LDA), modeling the class-
conditional distribution as a mixture of Gaussians (GMM),
and using nonlinear functions of the features (FDA); see [1]
for details.

The Gaussian model requires the estimation of its mean
and covariance, and to estimate a full Gaussian distribu-
tion the maximum likelihood estimation requires roughly
d2 training samples for d feature dimensions to avoid ill-
posed estimates. However, enough training samples may
not be available. The standard solution is to regularize the
parameter estimation, using for example regularized QDA
[4] or eigenvalue-decomposition discriminant analysis [5].
A related approach is Bayesian estimation, which averages
all the possible Gaussians weighted by their likelihood to
have generated the training samples and their prior proba-
bility. Bayesian estimation was first applied to QDA in the
1960’s [6,7], but those proposals did not yield better perfor-
mance than regularized QDA [8, 9]. Recently, Srivastava et
al. [10] proposed a data-dependent prior for Bayesian QDA
that uses a coarse estimate of the covariance to determine an
appropriate prior for the full covariance matrix. This prior
is the inverted Wishart distribution with scale parameter q
and matrix parameter Bg . The resulting BDA7 algorithm
was shown to perform better than other state-of-the-art QDA
methods, particularly for cases where n < d.

Using a single Gaussian to model a class-conditional dis-
tribution may be too restrictive a model. The standard solu-
tion is to learn a Gaussian mixture model (GMM) [1]. Alter-
natively, we propose that QDA can be made more flexible by
applying Bayesian QDA to a neighborhood of the k-nearest
neighbors of a given test sample from each class, which we
term local BDA. For our local BDA classifier, we fix the
inverted Wishart prior scalar parameter q = d + 3, which
makes the prior the standard inverted gamma distribution if
d = 1 [11]. To avoid any ill-posed numerical problems and
to avoid having to cross-validate any hyperparameters, we
fix the inverted Wishart prior’s matrix-parameter to be

Bg = 0.95qdiag
(

Σ̂ML,g

)
+ 0.05I,

where diag
(

Σ̂ML,g

)
is the diagonal of the maximum like-

lihood estimate of the local class g covariance matrix. For
very small k, the diagonal may be ill-posed, and so we reg-
ularize it with the identity matrix I; the choice of 5% reg-
ularization was chosen without experimentation to be small
enough that the emphasis is on the data-dependent diago-

nal, but large enough to ensure that the inverse of Bg is not
ill-posed.

Then, following from [10, Theorem 1], the estimated lo-
cal class-conditional likelihood for the gth class is given in
(1), where Γ(·) is the standard gamma function, I(·) is the
indicator function, and x̄g is the average of the k nearest
training feature vectors from class g.

3 Review of Similarity-based Classifi-
cation

In this section we review similarity-based classification and
the local SDA classifier. A more complete review can be
found in the recent survey paper [12]. Classifying based on
similarities between samples differs from standard feature-
based learning because similarity functions need not sat-
isfy the metric properties of minimality, symmetry, and the
triangle inequality. Similarities are more general than Eu-
clidean distance, and can capture peculiar aspects of the
pairwise relationship between samples that are difficult to
represent with feature vectors in metric spaces. For ex-
ample, researchers have gathered extensive evidence that
non-metric similarities are the rule rather than the exception
when people judge the similarity of concepts [13, 14]. Non-
metric similarities arise naturally in cognitive psychology,
genomics, proteomics, natural language processing, com-
merce, and computer vision. Examples of such similarities
are the tangent distance used in optical character recogni-
tion, the asymmetric color distortion function ∆E94 used
in color management, and the relative entropy between dis-
tributions. In Section 6, we discuss six more examples of
similarities that we use in the experiments.

One approach to similarity-based classification is to ap-
proximately embed the samples in a metric space and then
use the resulting Euclidean features with standard feature-
based classifiers. A related approach is to approximate the
n×n similarity matrix by a positive semidefinite (PSD) ma-
trix, and use that PSD matrix as a kernel in a kernel-based
learning method such as an SVM [12, 15, 16]. However,
these approaches artificially force a metric structure onto
the natively nonmetric similarity, at the risk of losing the
discriminative information provided by the similarity [13].
This issue is ameliorated if the PSD approximation is less
severe because it is done locally, for example by using a lo-
cal SVM [17] or using kernel ridge interpolation or kernel
ridge regression [12].

The standard k-NN classifier is a simple way to classify
the given similarities: a test sample x is classified as the
most frequent class within a neighborhood of its k most-
similar samples chosen from n training samples. Weight-
ing the nearest neighbors with weights that reward both the
diversity of the neighbors and their similarities to the test
sample has been shown to offer significant reductions in er-
ror [12].

Another approach to preserving the similarities is to use
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the n similarities to n training samples as features, and ap-
ply standard metric learning to that feature space. Training
generative classifiers on this space poses difficulties in pa-
rameter estimation due to the size of the space growing with
n, and researchers have shown on a small set of data that
regularized QDA performs about the same as 1-NN unless
there is high noise [2].

3.1 Review of Local SDA
Similarity discriminant analysis (SDA) is a recently pro-
posed generative framework for similarity-based classifica-
tion [18]. The local SDA classifier applies SDA locally to
the test sample, reducing the model bias inherent in the stan-
dard SDA approach [3]. Local SDA is competitive with
other state-of-the-art similarity-based classifiers [12]. First
we describe local SDA, then note why its estimation vari-
ance is high, and propose a regularization solution in Sec-
tion 4.

Let the test and training samples belong to an abstract
space of possible samplesB, such as the set of all web pages.
Let X ∈ B be a random test sample with random class label
Y ∈ G where G = {1, 2, . . . , G}, and let x ∈ B denote the
realization ofX . Consider a similarity function s : B×B →
Ω, where Ω ⊂ R is a finite discrete space. Let X ⊂ B be
the set of n training samples, and let N (x) ⊂ X be the
neighborhood of x, defined as the set of x’s k most similar
training samples.

The local SDA classifier follows from the standard Bayes
classifier by making the fundamental assumption that all the
information about x’s class label depends only on some sim-
ilarity information from the neighborhoodN (x). In this pa-
per, we use the similarities between x and each class’s local
centroid, which seems to be the most effective of several
variants previously considered [3, 19].

Given a test sample x, let the local centroid µh(x) for
class h be the local training sample with maximum sum-
similarity to its class,

µh(x) = arg max
a∈Nh(x)

∑
z∈Nh(x)

s(z, a),

where Nh(x) ⊂ N (x) is the subset of neighbors of x from
class h.

Local SDA assumes the local class-conditional probabil-
ity P (x|Y = g) is the product

∏
h P (s(x, µh(x))|Y = g),

and models each probability mass function (pmf) as an ex-
ponential:

P (s(x, µh(x))|Y = g) = γgh exp[λghs(x, µh(x))]. (2)

Then, the resulting minimum expected misclassification
cost rule is to classify a test sample x as the class ŷ that
solves:

arg min
f∈G

∑
g∈G

C(f, g)
∏
h∈G

γgh exp[λghs(x, µh(x))]P (g),

where C(f, g) is the cost of classifying as class f when the
true class is g, and P (g) is the a priori probability of class g.

The parameters {λgh} in (2) are determined by numerical
minimization under the method-of-moments constraint that
the expected value of the similarity be equal to the observed
average similarity:∑
s′∈Ω

s′P (s(x, µh(x)) = s′|Y = g)

=

∑
z∈Ng(x) s(z, µh(x))

|Ng(x)|
,

(3)

and the parameters {γgh} are determined by normalization.
The local SDA classifier has low model bias if used with

small neighborhoods, but fitting models to small neighbor-
hoods causes high variance of the probability estimates, and
this decreases the classifier’s performance. In particular, if a
neighborhoodN (x) contains only one training sample from
any class g, then each class-conditional pmf for that class
would be a Kronecker delta with all its probability concen-
trated on the self-similarity of the single neighborhood train-
ing sample. Unless the test sample happened to have that ex-
act similarity, the likelihood of the test sample’s similarities
would be zero for that class. This degeneracy propagates to
the product

∏
h P (s(x, µh(x))|Y = g), which is incorrectly

estimated as identically zero when the pmfs are Kronecker
delta functions concentrated on different values of the simi-
larity. Analogous difficulties can arise if there are only a few
neighbors from a class, or in general when the set of local
similarities is a small subset of Ω.

In practice this degeneracy problem occurs often. In fact,
consider the standard practice of cross-validating the neigh-
borhood size k. The degeneracy of the local model for small
k can overshadow the effectiveness of the local SDA classi-
fier, and the cross-validation procedure can produce a sub-
optimal value for k, leading to inflated error rates: the local
SDA classifier never has a full opportunity to succeed for
small neighborhood sizes.

In the original local SDA paper [3], the degeneracy prob-
lem was handled by reverting to a local nearest centroid
classifier [20] for all the classes if any class had exactly one



neighbor. This is suboptimal for multiple reasons: degen-
eracies can happen even if there is more than one neighbor;
for classification problems with many classes it is likely that
some class will only have one neighbor in a test sample’s
neighborhood; reverting to a local nearest centroid classi-
fier does not produce probability estimates; and reverting to
a local nearest centroid classifier creates a conceptual and
empirical discontinuity as the neighborhood size changes.

Another approach to cope with the local scarcity of sam-
ples from one or more classes is to increase the size of the
neighborhood k until satisfactory estimates of each class-
conditional pmf can be achieved. This approach increases
the model bias because a larger k must be used.

We argue that a more effective way to cope with this prob-
lem is to regularize the local SDA classifier. Next, we de-
scribe our regularization strategy.

4 Regularized Local SDA
We propose regularizing the local SDA classifier as a way
to solve the degenerate model problem described in Section
3.1 and reduce estimation variance. We considered three
methods for regularizing the local SDA classifier: (i) reg-
ularizing the parameters {λgh}, (ii) regularizing the mean
similarity constraint in formula (3), and (iii) regularizing
the class-conditional pmfs P (s(x, µh(x))|Y = g). Based
on preliminary experiments and analysis, we argue that this
third option affords the best bias-variance trade-off and is
most consistent with the intuition behind the SDA model.

Specifically, we propose to regularize the local class-
conditional pmfs themselves by linearly combining them
with the average of the local class-conditional pmfs com-
puted from the training set. This regularization should re-
duce estimation variance, but also reduces model bias by
enlarging the model space to include non-exponential dis-
tributions, because the average of exponentials is not expo-
nential.

Let z ∈ X be a training sample, and let N (z) ⊂ X be its
neighborhood consisting of its k most similar samples from
X . Let training sample z’s class h local centroid µh(z) be
computed from N (z), that is

µh(z) = arg max
a∈Nh(z)

∑
v∈Nh(z)

s(v, a).

Let Pz(s(v, µh(z))|Y = g) denote the class-g condi-
tional exponential pmf computed from z’s neighborhood
that solves the empirical mean constraint (3), that is∑
s′∈Ω

s′P (s(v, µh(z)) = s′|Y = g)

=

∑
v′∈Ng(z) s(v

′, µh(z))

|Ng(z)|
.

Then, to each training sample z there correspond G2

local class-conditional pmfs Pz(s(v, µh(z))|Y = g) for

g = 1, . . . , G and h = 1, . . . , G, and repeating the process
for each of the n training samples creates a set of n pmfs
{Pz(v, µh(z))|Y = g)} for each of the possible G2 choices
of g and h. We average the n training local class-conditional
pmfs for each choice of g and h:

Pave(sh|g)
4
=

1
|X |

∑
z∈X

Pz(s(v, µh(z))|Y = g). (4)

We will use the G2 pmfs given in (4) to regularize each
joint pmf to form the a posteriori probability for classi-

fication. For notational simplicity, denote by T (x)
4
=

{s(x, µ1(x)), . . . , s(x, µG(x))}, the set of similarities of
test sample x to the class centroids. Then the local SDA
class-conditional pmf is

P (T (x)|Y = g)
4
=

∏
h∈G

γgh exp[λghs(x, µh(x))],

and we define the regularization term to be

P̃ (T (x)|Y = g)
4
=

∏
h∈G

Pave(sh|g).

Then, the proposed regularized pmf is

P̂ (T (x), g) = (1− α)P (T (x)|Y = g)P (g) +
αP̃ (T (x)|Y = g)P̃ (g), (5)

where α = [0, 1] is the regularization parameter, and P (g)
and P̃ (g) are the g class prior probabilities estimated from
N (x) and from X respectively. The resulting regularized
local SDA classification rule is

arg min
f∈G

∑
g∈G

C(f, g)P̂ (T (x), g).

The proposed approach of regularizing the pmfs has sev-
eral desirable properties. First, any degenerate joint pmfs
that arise as solutions for a local pmf P (T (x)|Y = g) are
regularized by the smoother pmf P̃ (T (x)|Y = g). The reg-
ularizing marginal pmf Pave(sh|g) is itself smooth because
it is an average of many local exponential pmfs computed
from the training set, and any Kronecker delta functions that
arise as solutions for any particular Pz(s(v, µh(z))|Y = g)
are averaged with the rest of the local training pmfs.

A second desirable property of regularizing the local
class-conditional pmfs is the increased modeling flexibil-
ity. In general, each Pave(sh|g) is not exponential, but
rather a weighted sum of class-conditional exponential func-
tions over a discrete similarity domain. In fact, because the
SDA framework allows both positive and negative values for
{λgh}, the regularized posterior can flexibly model compli-
cated distributions.

A third desirable property of the proposed regularization
is that it regularizes using analogous quantities, retaining the
intuitive local quality of the models: the test sample’s local
pmf is regularized by other samples’ local pmfs.



5 Classifier Fusion
In this section we detail the proposed approach to fus-
ing similarity-based and feature-based generative classifiers.
Given a test sample, we denote its Euclidean features vector
by x and its local similarity statistics by T (x). We make
the fundamental assumption that the features and the simi-
larities are statistically independent. We do not expect this
independence assumption to be always true, but we hypoth-
esize it will be effective, in part because assuming the poste-
riors are independent removes the risk of overfitting associ-
ated with modeling dependencies. Using the independence
assumption, we write the fused minimum expected misclas-
sification rule as the product of probabilities defined in sim-
ilarity space and Euclidean space

arg min
f∈G

G∑
g=1

C(f, g)P̂ (T (x), g)P̂ (x|g, k)P̂ (g), (6)

where P̂ (T (x), g) is the regularized local SDA estimate (5),
P̂ (x|g, k) is the local BDA estimate in (1), and P̂ (g) is the
g-th class prior probability estimated from the Euclidean-
space neighborhood of size k.

The result is a fused regularized local SDA/local BDA
classifier that produces class probability estimates with low
model bias and low variance, remains well-posed even in
high-dimensional Euclidean spaces, and flexibly combines
similarities and Euclidean features.

6 Experiments
First, we describe experiments comparing the proposed lo-
cal BDA classifier to other feature-based classifiers in Sec-
tion 6.1. Then we detail experiments in Section 6.2 testing
the proposed regularized local SDA and the SDA/BDA fu-
sion.

6.1 Experiments with Local BDA
On benchmark Euclidean-features classification problems,
we compared the proposed local BDA classifier to a GMM,
k-NN, local nearest means [21], and a local SVM trained on
each test point’s k-NN termed SVM-KNN [17].

6.1.1 Feature-based Classifier Experiment Details
For all of the classifiers except the GMM, the only pa-

rameter cross-validated is a neighborhood size parameter
k, where k ∈ {1, 2, . . . , 20, 30, 40, . . . , 100}, unless there
were fewer neighbors of one class, in which case the max-
imum k was taken to be the maximum number of neigh-
bors in the smallest class. For local BDA and local nearest
means, the k nearest neighbors from each class are used to fit
that class’s model. For SVM-KNN, the k nearest neighbors
from the entire training set are used to train the SVMs [17].

For the GMM, the number of mixture components was
determined by cross-validation, where the maximum num-
ber of components was c = ming floor(ng/d), where ng is

Table 1: % Test Error for Classifiers Using Euclidean Fea-
tures

Dataset k-NN Local Local SVM GMM
Nearest BDA KNN
Means

Letter Rec. 5.20 4.43 3.23 3.93 12.20
Opt. Digits 3.23 2.73 2.78 2.67 9.29
Pen Digits 2.77 2.29 1.89 2.14 13.95
Image Seg. 12.76 13.67 10.95 11.52 16.86
Vowel 49.78 43.72 44.59 49.78 62.34

the number of training samples from class g, and each class
was modeled as a mixture with c components. The mix-
ture weights, means, and full covariances were estimated
using the EM algorithm. Occasionally, the EM algorithm
produces estimated Gaussians with ill-posed covariance ma-
trices; in these cases we regularized the covariance matrix
by adding the scaled identity matrix 10−6I .

All of the datasets come from the UCI Machine Learn-
ing Repository [22]. The datasets were standardized so that
each feature had zero-mean and unit standard deviation. The
normalizing means and standard deviations were calculated
on the training sets and then applied to the test sets. We
used a randomized 10-fold cross-validation: For each of
100 runs, the training dataset was randomly divided into a
set with 9/10 of the data, and a set with 1/10 of the data.
The 9/10 data set was used to build models for each of the
choices of the parameter k or number of mixture compo-
nents for the GMM, and each model was then tested on the
remaining 1/10 data set. For each parameter setting, the
cross-validation error is the average error on the 100 ran-
domly drawn 1/10 datasets.

6.1.2 Local BDA Results

Results are shown in Table 1. Local BDA performs better
than the GMM for all five datasets. Local BDA is the best
classifier in three of the five cases, and is close to the best
classifier for the remaining two datasets.

6.2 Similarity and Fusion Experiments
We used six similarity datasets that are available from the

Similarity-based Learning Repository1.
We compared to using only local SDA on the similari-

ties, using only regularized local SDA on the similarities,
the proposed fusion classifier (fusing regularized local SDA
and local BDA), using k-NN only on the similarities, using
k-NN only on the Euclidean features, and using a fused k-
NN rule where the class label is estimated by the combined

1idl.ee.washington.edu/similaritylearning



majority vote of the k nearest neighbors in terms of similar-
ity and the k nearest neighbors in the Euclidean space (some
samples received two votes).

6.2.1 Data with Separate Similarity and Features
The Internet Ads problem is to classify the images embed-
ded in web pages as advertisements or non-advertisements.
For this dataset, the similarity and the Euclidean features de-
scribe different aspects of the data. We pruned the original
dataset [22] of the samples that had missing features, leaving
2359 samples, each one consisting of three Euclidean fea-
tures and 1556 binary features (1=has that feature, 0=does
not have that feature). The binary features were used to
compute the Tversky linear contrast model similarity [23].

6.2.2 Data with Similarity and Derived Features
In previous research into similarity-based learning [12] it
has become clear that different perspectives on the same
similarity data can lead to very different classification per-
formance. In particular, treating the similarities to the n
training samples as Euclidean features sometimes works
quite well, and sometimes works very poorly [12]. We hy-
pothesize that fusing different perspectives of the similarity
data could lead to better classification, or automatically sort
out the best way to use the similarity data. To test this hy-
pothesis we took five datasets for which we only have sim-
ilarity data, and we computed an n-dimensional Euclidean
feature vector for a sample where the ith dimension is the
similarity between x and the ith training sample: s(x, xi).
Then we attempted to fuse this data using the proposed local
SDA/BDA classifier. Clearly the independence assumption
is violated here because the Euclidean features are derived
from the given similarities, which made this a particularly
intriguing experiment.

The Amazon problem is to classify books as fiction or
non-fiction, where the similarity between two books is the
symmetrization of the percentage of customers who bought
one book after viewing the other book. There are 96 sam-
ples in this dataset, 36 from class Non-fiction, and 60 from
class Fiction. This similarity function strongly violates the
triangle inequality. This dataset is also especially interest-
ing because this similarity strongly violates the minimality
property that says a sample should be maximally similar to
itself, because customers often buy a different book if they
first view a poorly-reviewed book.

The Aural Sonar problem is to distinguish 50 target sonar
signals from 50 clutter sonar signals. Listeners perceptu-
ally evaluated the similarity between two sonar signals on
a scale from 1 to 5. The pairwise similarities are the sum
of the evaluations from two listeners, resulting in a percep-
tual similarity from 2 to 10 [24]. This dataset is interesting
because often similarities stemming from human judgement
are non-metric.

The Patrol problem is to classify 241 people into one of 8
patrol units based on who people claimed was in their unit

when asked to name five people in their unit [25]. Like the
Amazon dataset, this is a sparse dataset, as most of the sim-
ilarities are zero.

The Protein problem is to classify 213 proteins into one of
four protein classes based on a sequence-alignment similar-
ity [26]. This problem is very well-suited to treating similar-
ities as features because many of the first class proteins are
consistently more similar to proteins from the second class.

The Voting problem is to classify 435 representatives into
two political parties based on their votes [22]. The cate-
gorical feature vector of yes/no/abstain votes was converted
into pairwise similarities using the value difference metric,
which is a (dis)similarity designed to be useful for classifi-
cation [27]. This similarity is almost metric.

6.2.3 Similarity Experiment Details
Each dataset was partitioned 20 times into disjoint bench-
mark partitions of 80% training samples and 20% test sam-
ples. For each of the 20 partitions of each dataset we chose
parameters using ten-fold cross-validation for each of the
classifiers. Cross-validation parameter sets were based on
recommendations in previously published papers and pop-
ular usage. The choice of neighborhood size was k ∈
{1, 2, 3, . . . , 16, 32, 64,min(n, 128)}, for all classifiers, ex-
cept for local BDA, for which the neighborhood was de-
fined by the k nearest neighbors from each class, and k
was limited by the size of the smallest class. The k for
each similarity-based classifier and its paired Euclidean-
based classifier was cross-validated. For regularized lo-
cal SDA, the choices for the convex regularizing parame-
ter were α ∈ {10−6, 10−3, 0.01, 0.1, 0.5, 0.9}, and the SDA
parameters {λgh}were computed with the Nelder-Mead op-
timizer2. We considered binary classification costs C(f, g),
thus adopting the standard maximum a posteriori rule to
classify each test sample.

6.2.4 Regularized Local SDA Results
Results comparing local SDA to the proposed regularized

local SDA are given in Table 2 for six similarity datasets.
The results show that the regularization helps for every one
of the six datasets.

6.2.5 Fusion Results
The fusion results are shown in Table 2. The hypothesis
that fusing different information in the form of similarities
and Euclidean features should lower classification error was
tested with the Internet Ads dataset. Here, the results show
that the proposed fused generative classifier decreased er-
ror by 27% compared to either classifier alone. In contrast,
fusing the two pieces of information with k-NN actually
increased error by 16% over using k-NN only on the Eu-
clidean features. In addition, the fused generative classifier
made only 1/3 the errors of the fused k-NN.

2We used the fminsearch() function in MATLAB



Our second hypothesis is that fusing different perspec-
tives on the similarity can increase classification perfor-
mance compared to any single perspective. This hypothesis
is more tenuous because of the obvious violation of the inde-
pendence assumption. In fact, fusing different perspectives
only reduces error on the Voting dataset, by 5% compared
to using regularized local SDA only.

However, in practice it is difficult to choose a classifier
to use a priori. Cross-validation rates cannot be effectively
compared across classifiers because of differences in model
flexibility and overfitting. Thus it would be useful if a fused
classifier always provided at least as good results as the best
single classifier, because one cannot know a priori which
will be the best classifier. In fact, for Amazon, Patrol, and
Voting the regularized local SDA is better, and for Aural
Sonar and Protein the local BDA is better. The fused local
SDA/BDA is as good or better than the best single classi-
fier for three of the five datasets (Amazon, Protein, Voting),
diminishes performance by a small amount for Aural Sonar
compared to using the best single classifier, and for Patrol it
is robust to the inclusion of the very poor Euclidean features.
In comparison, the fused k-NN is surprisingly never better
than the single best k-NN classifier, and actually seems to
lean towards the worse k-NN classifier rather than the bet-
ter.

An important difference between the fused k-NN classi-
fier and the fused generative classifier is the weighting of the
different information. With the fused k-NN classifier the
two information sources are always weighted equally. An
alternative would be to attempt to train a relative weight-
ing parameter. This risks overfitting and constrains the rela-
tive weighting to be fixed for the entire problem rather than
adjust based on a given test sample. If more information
sources are to be combined, the risks of overfitting and the
time and complexity of training also increase. In contrast,
the fused generative classifier combines the two information
sources depending on how confident they each are.

7 Conclusions and Open Questions
We proposed a classification framework for fusing simi-
larities and Euclidean features using generative classifiers.
We introduced three technical contributions: (i) local BDA,
a generative classifier for Euclidean features that advances
the state of the art in metric learning; (ii) regularized local
SDA, a generative similarity-based classifier that advances
the state of the art in similarity-based classification; (iii) a
naive Bayes framework for fusing local BDA and regular-
ized local SDA. Our experiments on six real-world bench-
mark datasets show that our approach successfully classifies
data where the similarities and the Euclidean features repre-
sent complementary information about a problem and where
the similarities and features represent two different perspec-
tive about the same data.

The SDA framework can seamlessly accommodate arbi-
trary similarities and dissimilarities and makes it straight-

forward to extend our proposed fusion framework to any
number of similarities. Several complementary Euclidean
feature representations of the data may also be fused to-
gether with multiple local BDA classifiers. While compar-
ing its effectiveness to other techniques such as multiple ker-
nel learning is an open area of research, the proposed fusion
approach can enable the development and extension of prac-
tical systems that integrate diverse components.
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