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Abstract

Although the Dirichlet distribution is widely used, the independence structure of
its components limits its accuracy as a model. The proposed shadow Dirichlet
distribution manipulates the support in order to model probability mass functions
(pmfs) with dependencies or constraints that often arise in real world problems,
such as regularized pmfs, monotonic pmfs, and pmfs with bounded variation. We
describe some properties of this new class of distributions, provide maximum en-
tropy constructions, give an expectation-maximization method for estimating the
mean parameter, and illustrate with real data.

1 Modeling Probabilities for Machine Learning

Modeling probability mass functions (pmfs) as random is useful in solving many real-world prob-
lems. A common random model for pmfs is the Dirichlet distribution [1]. The Dirichlet is conjugate
to the multinomial and hence mathematically convenient for Bayesian inference, and the number of
parameters is conveniently linear in the size of the sample space. However, the Dirichlet is a distri-
bution over the entire probability simplex, and for many problems this is simply the wrong domain
if there is application-specific prior knowledge that the pmfs come from a restricted subset of the
simplex.

For example, in natural language modeling, it is common to regularize a pmf over n-grams by some
generic language model distribution q0, that is, the pmf to be modeled is assumed to have the form
θ = λq + (1 − λ)q0 for some q in the simplex, λ ∈ (0, 1) and a fixed generic model q0 [2]. But
once q0 and λ are fixed, the pmf θ can only come from a subset of the simplex. Another natural
language processing example is modeling the probability of keywords in a dictionary where some
words are related, such as espresso and latte, and evidence for the one is to some extent
evidence for the other. This relationship can be captured with a bounded variation model that would
constrain the modeled probability of espresso to be within some ε of the modeled probability
of latte. We show that such bounds on the variation between pmf components also restrict the
domain of the pmf to a subset of the simplex. As a third example of restricting the domain, the
similarity discriminant analysis classifier estimates class-conditional pmfs that are constrained to be
monotonically increasing over an ordered sample space of discrete similarity values [3].

In this paper we propose a simple variant of the Dirichlet whose support is a subset of the simplex,
explore its properties, and show how to learn the model from data. We first discuss the alternative
solution of renormalizing the Dirichlet over the desired subset of the simplex, and other related work.
Then we propose the shadow Dirichlet distribution; explain how to construct a shadow Dirichlet
for three types of restricted domains: the regularized pmf case, bounded variation between pmf
components, and monotonic pmfs; and discuss the most general case. We show how to use the
expectation-maximization (EM) algorithm to estimate the shadow Dirichlet parameter α, and present
simulation results for the estimation.
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Dirichlet Shadow Dirichlet Renormalized Dirichlet

Figure 1: Dirichlet, shadow Dirichlet, and renormalized Dirichlet for α = [3.94 2.25 2.81].

2 Related Work

One solution to modeling pmfs on only a subset of the simplex is to simply restrict the support of
the Dirichlet to the desired support S̃, and renormalize the Dirichlet over S̃ (see Fig. 1 for an ex-
ample). This renormalized Dirichlet has the advantage that it is still a conjugate distribution for the
multinomial. Nallapati et al.considered the renormalized Dirichlet for language modeling, but found
it difficult to use because the density requires numerical integration to compute the normalizer [4]
. In addition, there is no closed form solution for the mean, covariance, or peak of the renormal-
ized Dirichlet, making it difficult to work with. Table 1 summarizes these properties. Additionally,
generating samples from the renormalized Dirichlet is inefficient: one draws samples from the stan-
dard Dirichlet, then rejects realizations that are outside S̃. For high-dimensional sample spaces, this
could greatly increase the time to generate samples.

Although the Dirichlet is a classic and popular distribution on the simplex, Aitchison warns it “is to-
tally inadequate for the description of the variability of compositional data,” because of its “implied
independence structure and so the Dirichlet class is unlikely to be of any great use for describ-
ing compositions whose components have even weak forms of dependence” [5]. Aitchison instead
championed a logistic normal distribution with more parameters to control covariance between com-
ponents.

A number of variants of the Dirichlet that can capture more dependence have been proposed and
analyzed. For example, the scaled Dirichlet enables a more flexible shape for the distribution [5],
but does not change the support. The original Dirichlet(α1, α2, . . . αd) can be derived as Yj/

∑
j Yj

where Yj ∼ Γ(αj , β), whereas the scaled Dirichlet is derived from Yj ∼ Γ(αj , βj), resulting in

density p(θ) = γ
∏
j

β
αj
j θ

αj−1
j

(
∑
i βiθi)

α1+···+αd , where β, α ∈ Rd+ are parameters, and γ is the normalizer.

Another variant is the generalized Dirichlet [6] which also has parameters β, α ∈ Rd+, and allows
greater control of the covariance structure, again without changing the support. As perhaps first
noted by Karl Pearson [7] and expounded upon by Aitchison [5], correlations of proportional data
can be very misleading. Many Dirichlet variants have been generalizations of the Connor-Mossiman
variant, Dirichlet process variants, other compound Dirichlet models, and hierarchical Dirichlet
models. Ongaro et al. [8] propose the flexible Dirichlet distribution by forming a re-parameterized
mixture of Dirichlet distributions. Rayens and Srinivasan [9] considered the dependence structure
for the general Dirichlet family called the generalized Liouville distributions. In contrast to prior
efforts, the shadow Dirichlet manipulates the support to achieve various kinds of dependence that
arise frequently in machine learning problems.

3 Shadow Dirichlet Distribution

We introduce a new distribution that we call the shadow Dirichlet distribution. Let S be the prob-
ability (d − 1)-simplex, and let Θ̃ ∈ S be a random pmf drawn from a Dirichlet distribution with
density pD and unnormalized parameter α ∈ Rd+. Then we say the random pmf Θ ∈ S is distributed
according to a shadow Dirichlet distribution if Θ = MΘ̃ for some fixed d × d left-stochastic (that
is, each column of M sums to 1) full-rank (and hence invertible) matrix M , and we call Θ̃ the gen-
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erating Dirichlet of Θ, or Θ’s Dirichlet shadow. Because M is a left-stochastic linear map between
finite-dimensional spaces, it is a continuous map from the convex and compact S to a convex and
compact subset of S that we denote SM .

The shadow Dirichlet has two parameters: the generating Dirichlet’s parameter α ∈ Rd+, and the
d× d matrix M . Both α and M can be estimated from data. However, as we show in the following
subsections, the matrix M can be profitably used as a design parameter that is chosen based on
application-specific knowledge or side-information to specify the restricted domain SM , and in that
way impose dependency between the components of the random pmfs.

The shadow Dirichlet density p(θ) is the normalized pushforward of the Dirichlet density, that is, it
is the composition of the Dirichlet density and M−1 with the Jacobian:

p(θ) =
1

B(α) |det(M)|
∏
j

(M−1θ)αj−1
j , (1)

where B(α) ,
∏
j Γ(αj)

Γ(α0) is the standard Dirichlet normalizer, and α0 =
∑d
j=1 αj is the standard

Dirichlet precision factor. Table 1 summarizes the basic properties of the shadow Dirichlet. Fig. 1
shows an example shadow Dirichlet distribution.

Generating samples from the shadow Dirichlet is trivial: generate samples from its generating
Dirichlet (for example, using stick-breaking or urn-drawing) and multiply each sample by M to
create the corresponding shadow Dirichlet sample.

Table 1: Table compares and summarizes the Dirichlet, renormalized Dirichlet, and shadow Dirich-
let distributions.

Shadow Renormalized
Dirichlet(α) Dirichlet (α, M ) Dirichlet (α, S̃)

Density p(θ) 1
B(α)

∏d
j=1 θ

αj−1

j
1

B(α)|det(M)|
∏d
j=1(M−1θ)

αj−1

j
1∫

S̃
∏d
j=1 q

αj−1
j dq

∏d
j=1 θ

αj−1

j

Mean α

α0
M

α

α0

∫
S̃ θp(θ)dθ

Covariance Cov(Θ) M Cov(Θ)MT ∫
S̃(θ − θ̄)(θ − θ̄)T p(θ)dθ

Mode (if α > 1) αj−1

α0−d
M

αj−1

α0−d
max
θ∈S̃

p(θ)

How to Sample stick-breaking, draw from Dirichlet(α), draw from Dirichlet(α),
urn-drawing multiply by M reject if not in S̃

ML Estimate iterative iterative unknown
(simple functions) (simple functions) complexity

ML Compound iterative iterative unknown
Estimate (simple functions) (numerical integration) complexity

3.1 Example: Regularized Pmfs

The shadow Dirichlet can be designed to specify a distribution over a set of regularized pmfs SM =
{θ
∣∣ θ = λθ̃ + (1− λ)θ̆, θ̃ ∈ S}, for specific values of λ and θ̆. In general, for a given λ and θ̆ ∈ S,

the following d × d matrix M will change the support to the desired subset SM by mapping the
extreme points of S to the extreme points of SM :

M = (1− λ)θ̆1T + λI, (2)
where I is the d × d identity matrix. In Section 4 we show that the M given in (2) is optimal in a
maximum entropy sense.
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3.2 Example: Bounded Variation Pmfs

We describe how to use the shadow Dirichlet to model a random pmf that has bounded variation
such that |θk − θl| ≤ εk,l for any k, ` ∈ {1, 2, . . . , d} and εk,l > 0. To construct specified bounds
on the variation, we first analyze the variation for a given M . For any d × d left stochastic matrix

M , θ = Mθ̃ =
[∑d

j=1M1j θ̃j . . .
∑d
j=1Mdj θ̃j

]T
, so the difference between any two entries is

|θk − θl| =

∣∣∣∣∣∣
∑
j

(Mkj −Mlj)θ̃j

∣∣∣∣∣∣ ≤
∑
j

|Mkj −Mlj | θ̃j . (3)

Thus, to obtain a distribution over pmfs with bounded |θk − θ`| ≤ εk,l for any k, ` components, it is
sufficient to choose components of the matrix M such that |Mkj −Mlj | ≤ εk,l for all j = 1, . . . , d
because θ̃ in (3) sums to 1.

One way to create such an M is using the regularization strategy described in Section 3.1. For this
case, the jth component of θ is θj =

(
Mθ̃
)
j

= λθ̃j + (1−λ)θ̆j , and thus the variation between the

ith and jth component of any pmf in SM is:

|θi − θj | =
∣∣∣λθ̃i + (1− λ)θ̆i − λθ̃j − (1− λ)θ̆j

∣∣∣ ≤ λ ∣∣∣θ̃i − θ̃j∣∣∣+ (1− λ)
∣∣∣θ̆i − θ̆j∣∣∣

≤ λ+ (1− λ) max
i,j

∣∣∣θ̆i − θ̆j∣∣∣ . (4)

Thus by choosing an appropriate λ and regularizing pmf θ̆, one can impose the bounded variation
given by (4). For example, set θ̆ to be the uniform pmf, and choose any λ ∈ (0, 1), then the matrix
M given by (2) will guarantee that the difference between any two entries of any pmf drawn from
the shadow Dirichlet (M,α) will be less than or equal to λ.

3.3 Example: Monotonic Pmfs

For pmfs over ordered components, it may be desirable to restrict the support of the random pmf
distribution to only monotonically increasing pmfs (or to only monotonically decreasing pmfs).

A d × d left-stochastic matrix M that will result in a shadow Dirichlet that generates only mono-
tonically increasing d × 1 pmfs has kth column [0 . . . 0 1/(d − k + 1) . . . 1/(d − k + 1)]T , we
call this the monotonic M . It is easy to see that with this M only monotonic θ’s can be produced,
because θ1 = 1

d θ̃1 which is less than or equal to θ2 = 1
d θ̃1 + 1

d−1 θ̃2 and so on. In Section 4 we show
that the monotonic M is optimal in a maximum entropy sense.

Note that to provide support over both monotonically increasing and decreasing pmfs with one
distribution is not achievable with a shadow Dirichlet, but could be achieved by a mixture of two
shadow Dirichlets.

3.4 What Restricted Subsets are Possible?

Above we have described solutions to construct M for three kinds of dependence that arise in
machine learning applications. Here we consider the more general question: What subsets of the
simplex can be the support of the shadow Dirichlet, and how to design a shadow Dirichlet for a par-
ticular support? For any matrix M , by the Krein-Milman theorem [10], SM = MS is the convex
hull of its extreme points. If M is injective, the extreme points of SM are easy to specify, as a d× d
matrix M will have d extreme points that occur for the d choices of θ that have only one nonzero
component, as the rest of the θ will create a non-trivial convex combination of the columns of M ,
and therefore cannot result in extreme points of SM by definition. That is, the extreme points of SM
are the d columns of M , and one can design any SM with d extreme points by setting the columns
of M to be those extreme pmfs.

However, if one wants the new support to be a polytope in the probability (d − 1)-simplex with
m > d extreme points, then one must use a fat M with d×m entries. Let Sm denote the probability
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(m − 1)-simplex, then the domain of the shadow Dirichlet will be MSm, which is the convex hull
of the m columns of M and forms a convex polytope in S with at most m vertices. In this case
M cannot be injective, and hence it is not bijective between Sm and MSm. However, a density on
MSm can be defined as:

p(θ) =
1

B(α)

∫
{θ̃
∣∣Mθ̃=θ}

∏
j

θ̃
αj−1
j dθ̃. (5)

On the other hand, if one wants the support to be a low-dimensional polytope subset of a higher-
dimensional probability simplex, then a thin d × m matrix M , where m < d, can be used to
implement this. If M is injective, then it has a left inverse M∗ that is a matrix of dimension m× d,
and the normalized pushforward of the original density can be used as a density on the imageMSm:

p(θ) =
1

B(α) |det(MTM)|1/2
∏
j

(M∗θ)αj−1
j ,

If M is not injective then one way to determine a density is to use (5).

4 Information-theoretic Properties

In this section we note two information-theoretic properties of the shadow Dirichlet. Let Θ be drawn
from shadow Dirichlet density pM , and let its generating Dirichlet Θ̃ be drawn from pD. Then the
differential entropy of the shadow Dirichlet is h(pM ) = log |det(M)| + h(pD), where h(pD) is
the differential entropy of its generating Dirichlet. In fact, the shadow Dirichlet always has less
entropy than its Dirichlet shadow because log |det(M)| ≤ 0, which can be shown as a corollary to
the following lemma (proof not included due to lack of space):

Lemma 4.1. Let {x1, . . . , xn} and {y1, . . . , yn} be column vectors in Rn. If each yj is a convex
combination of the xi’s, i.e. yj =

∑n
i=1 γjixi,

∑n
i=1 γji = 1, γjk ≥ 0, ∀j, k ∈ {1, . . . , n} then

|det[y1, . . . , yn]| ≤ |det[x1, . . . , xn]|.

It follows from Lemma 4.1 that the constructive solutions for M given in (2) and the monotonic M
are optimal in the sense of maximizing entropy:

Corollary 4.1. LetMreg be the set of left-stochastic matricesM that parameterize shadow Dirichlet
distributions with support in {θ

∣∣ θ = λθ̃ + (1 − λ)θ̆, θ̃ ∈ S}, for a specific choice of λ and θ̆.
Then the M given in (2) results in the shadow Dirichlet with maximum entropy, that is, (2) solves
arg maxM∈Mreg h(pM ).

Corollary 4.2. Let Mmono be the set of left-stochastic matrices M that parameterize shadow
Dirichlet distributions that generate only monotonic pmfs. Then the monotonic M given in Sec-
tion 3.3 results in the shadow Dirichlet with maximum entropy, that is, the monotonic M solves
arg maxM∈Mmono h(pM ).

5 Estimating the Distribution from Data

In this section, we discuss the estimation of α for the shadow Dirichlet and compound shadow
Dirichlet, and the estimation of M .

5.1 Estimating α for the Shadow Dirichlet

Let matrix M be specified (for example, as described in the subsections of Section 3), and let q be a
d×N matrix where the ith column qi is the ith sample pmf for i = 1 . . . N , and let (qi)j be the jth
component of the ith sample pmf for j = 1, . . . , d. Then finding the maximum likelihood estimate
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of α for the shadow Dirichlet is straightforward:

arg max
α∈Rk+

log
N∏
i=1

p(qi|α) ≡ arg max
α∈Rk+

log
[

1
B(α) |det(M)|

]N
+ log

∏
i

∏
j

(M−1qi)
αj−1
j


≡ arg max

α∈Rk+
log

 1
B(α)N

∏
i

∏
j

(q̃i)
αj−1
j

 , (6)

where q̃ = M−1q. Note (6) is the maximum likelihood estimation problem for the Dirichlet dis-
tribution given the matrix q̃, and can be solved using the standard methods for that problem (see
e.g. [11, 12]).

5.2 Estimating α for the Compound Shadow Dirichlet

For many machine learning applications the given data are modeled as samples from realizations
of a random pmf, and given these samples one must estimate the random pmf model’s parameters.
We refer to this case as the compound shadow Dirichlet, analogous to the compound Dirichlet (also
called the multivariate Pólya distribution). Assuming one has already specified M , we first discuss
method of moments estimation, and then describe an expectation-maximization (EM) method for
computing the maximum likelihood estimate ᾰ.

One can form an estimate of α by the method of moments. For the standard compound Dirichlet,
one treats the samples of the realizations as normalized empirical histograms, sets the normalized
α parameter equal to the empirical mean of the normalized histograms, and uses the empirical
variances to determine the precision α0. By definition, this estimate will be less likely than the
maximum likelihood estimate, but may be a practical short-cut in some cases. For the compound
shadow Dirichlet, we believe the method of moments estimator will be a poorer estimate in general.
The problem is that if one draws samples from a pmf θ from a restricted subset SM of the simplex,
then the normalized empirical histogram θ̆ of those samples may not be in SM . For example given
a monotonic pmf, the histogram of five samples drawn from it may not be monotonic. Then the
empirical mean of such normalized empirical histograms may not be in SM , and so setting the
shadow Dirichlet meanMα equal to the empirical mean may lead to an infeasible estimate (one that
is outside SM ). A heuristic solution is to project the empirical mean into SM first, for example, by
finding the nearest pmf in SM in squared error or relative entropy. As with the compound Dirichlet,
this may still be a useful approach in practice for some problems.

Next we state an EM method to find the maximum likelihood estimate ᾰ. Let s be a d ×N matrix
of sample histograms from different experiments, such that the ith column si is the ith histogram
for i = 1, . . . , N , and (si)j is the number of times we have observed the jth event from the ith
pmf vi. Then the maximum log-likelihood estimate of α solves arg max log p(s|α) for α ∈ Rk+.
If the random pmfs are drawn from a Dirichlet distribution, then finding this maximum likelihood
estimate requires an iterative procedure, and can be done in several ways including a gradient descent
(ascent) approach. However, if the random pmfs are drawn from a shadow Dirichlet distribution,
then a direct gradient descent approach is highly inconvenient as it requires taking derivatives of
numerical integrals. However, it is practical to apply the expectation-maximization (EM) algorithm
[13][14], as we describe in the rest of this section. Code to perform the EM estimation of α can be
downloaded from idl.ee.washington.edu/publications.php.

We assume that the experiments are independent and therefore p(s|α) = p({si}|α) =
∏
i p(si|α)

and hence arg maxα∈Rk+ log p(s|α) = arg maxα∈Rk+

∑
i log p(si|α).

To apply the EM method, we consider the complete data to be the sample histograms s and the
pmfs that generated them (s, v1, v2, . . . , vN ), whose expected log-likelihood will be maximized.
Specifically, because of the assumed independence of the {vi}, the EM method requires one to
repeatedly maximize the Q-function such that the estimate of α at the (m+ 1)th iteration is:

α(m+1) = arg max
α∈Rk+

N∑
i=1

Evi|si,α(m) [log p(vi|α)] . (7)
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Like the compound Dirichlet likelihood, the compound shadow Dirichlet likelihood is not neces-
sarily concave. However, note that the Q-function given in (7) is concave, because log p(vi|α) =
− log |det(M)| + log pD,α

(
M−1vi

)
, where pD,α is the Dirichlet distribution with parameter α,

and by a theorem of Ronning [11], log pD,α is a concave function, and adding a constant does not
change the concavity. The Q-function is a finite integration of such concave functions and hence
also concave [15].

We simplify (7) without destroying the concavity to yield the equivalent problem α(m+1) =
arg max g(α) for α ∈ Rk+, where g(α) = log Γ(α0) −

∑d
j=1 log Γ(αj) +

∑d
j=1 βjαj , and

βj = 1
N

∑N
i=1

tij
zi
, where tij and zi are integrals we compute with Monte Carlo integration:

tij =
∫
SM

log(M−1vi)jγi
d∏
k=1

(vi)
(si)k
k pM (vi |α(m))dvi

zi =
∫
SM

γi

d∏
k=1

(vi)jk(si)kpM (vi |α(m))dvi,

where γi is the normalization constant for the multinomial with histogram si.

We apply the Newton method [16] to maximize g(α), where the gradient∇g(α) has kth component
ψ0(α0) − ψ0(α1) + β1, where ψ0 denotes the digamma function. Let ψ1 denote the trigamma
function, then the Hessian matrix of g(α) is: H = ψ1(α0)11T − diag (ψ1(α1), . . . , ψ1(αd)) .

Note that because H has a very simple structure, the inversion of H required by the Newton
step is greatly simplified by using the Woodbury identity [17]: H−1 = −diag(ξ1, . . . , ξd) −

1
ξ0−

∑d
j=1 ξj

[ξiξj ]d×d, where ξ0 = 1
ψ1(α0) and ξj = 1

ψ1(αj)
, j = 1, . . . , d.

5.3 Estimating M for the Shadow Dirichlet

Thus far we have discussed how to construct M to achieve certain desired properties and how to
interpret a given M ’s effect on the support. In some cases it may be useful to estimate M directly
from data, for example, finding the maximum likelihoodM . In general, this is a non-convex problem
because the set of rank d− 1 matrices is not convex. However, we offer two approximations. First,
note that as in estimating the support of a uniform distribution, the maximum likelihood M will
correspond to a support that is no larger than needed to contain the convex hull of sample pmfs.
Second, the mean of the empirical pmfs will be in the support, and thus a heuristic is to set the kth
column ofM (which corresponds to the kth vertex of the support) to be a convex combination of the
kth vertex of the standard probability simplex and the empirical mean pmf. We provide code that
finds the d optimal such convex combinations such that a specificed percentage of the sample pmfs
are within the support, which reduces the non-convex problem of finding the maximum likelihood
d× d matrix M to a d-dimensional convex relaxation.

6 Demonstrations

It is reasonable to believe that if the shadow Dirichlet better matches the problem’s statistics, it will
perform better in practice, but an open question is how much better? To motivate the reader to
investigate this question further in applications, we provide two small demonstrations.

6.1 Verifying the EM Estimation

We used a broad suite of simulations to test and verify the EM estimation. Here we include a simple
visual confirmation that the EM estimation works: we drew 100 i.i.d. pmfs from a shadow Dirichlet
with monotonic M for d = 3 and α = [3.94 2.25 2.81] (used in [18]). From each of the 100 pmfs,
we drew 100 i.i.d. samples. Then we applied the EM algorithm to find the α for both the standard
compound Dirichlet, and the compound shadow Dirichlet with the correct M . Fig. 2 shows the true
distribution and the two estimated distributions.
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True Distribution Estimated Shadow Dirichlet Estimated Dirichlet
(Shadow Dirichlet)

Figure 2: Samples were drawn from the true distribution and the given EM method was applied to
form the estimated distributions.

6.2 Estimating Proportions from Sales

Manufacturers often have constrained manufacturing resources, such as equipment, inventory of raw
materials, and employee time, with which to produce multiple products. The manufacturer must
decide how to proportionally allocate such constrained resources across their product line based on
their estimate of proportional sales. Manufacturer Artifact Puzzles gave us their past retail sales
data for the 20 puzzles they sold during July 2009 through Dec 2009, which we used to predict
the proportion of sales expected for each puzzle. These estimates were then tested on the next five
months of sales data, for January 2010 through April 2010. The company also provided a similarity
between puzzles S, where S(A,B) is the proportion of times an order during the six training months
included both puzzle A and B if it included puzzle A. We compared treating each of the six training
months of sales data as a sample from a compound Dirichlet versus or a compound shadow Dirichlet.
For the shadow Dirichlet, we normalized each column of the similarity matrix S to sum to one so
that it was left-stochastic, and used that as the M matrix; this forces puzzles that are often bought
together to have closer estimated proportions. We estimated each α parameter by EM to maximize
the likelihood of the past sales data, and then estimated the future sales proportions to be the mean
of the estimated Dirichlet or shadow Dirichlet distribution. We also compared with treating all
six months of sales data as coming from one multinomial which we estimated as the maximum
likelihood multinomial, and to taking the mean of the six empirical pmfs.

Table 2: Squared errors between estimates and actual proportional sales.

Multinomial Mean Pmf Dirichlet Shadow Dirichlet
Jan. .0129 .0106 .0109 .0093
Feb. .0185 .0206 .0172 .0164
Mar. .0231 .0222 .0227 .0197
Apr. .0240 .0260 .0235 .0222

7 Summary

In this paper we have proposed a variant of the Dirichlet distribution that naturally captures some of
the dependent structure that arises often in machine learning applications. We have discussed some
of its theoretical properties, and shown how to specify the distribution for regularized pmfs, bounded
variation pmfs, monotonic pmfs, and for any desired convex polytopal domain. We have derived the
EM method and made available code to estimate both the shadow Dirichlet and compound shadow
Dirichlet from data. Experimental results demonstrate that the EM method can estimate the shadow
Dirichlet effectively, and that the shadow Dirichlet may provide worthwhile advantages in practice.
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