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Abstract

We propose a local, generative model for
similarity-based classification. The method is
applicable to the case that only pairwise sim-
ilarities between samples are available. The
classifier models the local class-conditional
distribution using a maximum entropy es-
timate and empirical moment constraints.
The resulting exponential class conditional-
distributions are combined with class prior
probabilities and misclassification costs to
form the local similarity discriminant anal-
ysis (local SDA) classifier. We compare the
performance of local SDA to a non-local ver-
sion, to the local nearest centroid classifier,
the nearest centroid classifier, k-NN, and to
the recently-developed potential support vec-
tor machine (PSVM). Results show that lo-
cal SDA is competitive with k-NN and the
computationally-demanding PSVM while of-
fering the advantages of a generative classi-
fier.

1. Similarity-based Classification

Similarity-based learning methods make inferences
based only on pairwise similarities or dissimilarities be-
tween a test sample and training samples and between
pairs of training samples [Bicego et al., 2006,Pekalska
et al., 2001, Jacobs et al., 2000, Hochreiter & Ober-
mayer, 2006]. The term similarity-based learning is
used whether the pairwise relationship is a similarity or
a dissimilarity. The similarity/dissimilarity function
is not constrained to satisfy the properties of a met-
ric. Similarity-based learning can be applied when the
test and training samples are not described as points
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in a metric space. This occurs when the samples are
described as feature vectors but the relevant relation-
ship between samples is a similarity or dissimilarity
function that does not obey the mathematical rules of
a metric. Another case is when the samples are not
described as feature vectors at all, but pairwise sim-
ilarity or dissimilarity information is available. Such
similarity-based learning problems arise naturally in
bioinformatics, information retrieval, natural language
processing, and with geospatial data. Similarity-based
learning is also a model for how humans learn, based
on psychological evidence that metrics do not account
for human judgements of similarity in complex situ-
ations [Tversky, 1977, Tversky & Gati, 1978, Gati &
Tversky, 1984].

A nearest-centroid classifier is a simple model-based
approach to similarity-based classification [Weinshall
et al., 1999], and parallels work by psychologists sug-
gesting that humans learn based on similarity to pro-
totypical samples [Rosch, 1973]. In recent work, we
generalized the nearest-centroid classifier by estimat-
ing a generating distribution for the similarity between
the test sample and the class centroids [Gupta et al.,
2007]. We termed this generative similarity-based clas-
sifier similarity discriminant analysis (SDA), because
like quadratic discriminant analysis (QDA), SDA esti-
mates class-conditional distributions that are the max-
imum entropy distributions given empirical statistics.
An advantage of such model-based classifiers is their
interpretability. However, classifying based on one
centroid for each class has too much model bias to be a
flexible general-purpose classifier. In the metric learn-
ing case, a common solution is to form a more flex-
ible Gaussian mixture model classifier [Hastie et al.,
2001]. A disadvantage to the mixture model approach
is that parameters must be estimated and the classi-
fier can have relatively high variance due to its sen-
sitivity to some of these parameters, in particular to
the estimated number of mixture components. Fur-
ther, to form a mixture model, clustering must be done
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in similarity-based space, which may be ill-posed if
the similarity or dissimilarity function does not satisfy
symmetry or other metric properties.

In this paper we propose a different approach to re-
duce the model bias: we apply SDA to a local neigh-
borhood about the test sample. The resulting local
SDA classifier trades-off model bias and estimation
variance depending on the neighborhood size, which
we cross-validate. Local classification algorithms have
traditionally been weighted voting methods, includ-
ing classifying with local linear regression, which can
be formulated as a weighted voting method [Hastie
et al., 2001]. In 2000, a local nearest-means classi-
fier was proposed [Mitani & Hamamoto, 2000,Mitani
& Hamamoto, 2006], although their definition of the
neighborhood was the union of the k nearest neigh-
bors from each class. More recently, it was proposed
to apply a support vector machine to the k nearest
neighbors of the test sample [Zhang et al., 2006].

Prior work in similarity-based classification is reviewed
in the next section. In Section 3 we introduce the local
SDA classifier. Experiments with real data and with
simulations in Section 4 compare local SDA’s effec-
tiveness against other similarity-based classifiers. The
paper closes with a summary and some open questions.

2. Prior Research in Similarity-based
Classification

A simple similarity-based classifier is the nearest
neighbor classifier, which classifies the test sample
as the class of the test sample’s most-similar neigh-
bor. Similarity-based nearest neighbor classifiers have
achieved very low error on MNIST by using a tan-
gent distortion [Simard et al., 1993], and a shape sim-
ilarity metric [Belongie et al., 2002]. Experiments us-
ing similarity-based nearest neighbor classifiers have
shown it to be an effective general-purpose approach
in practice [Cost & Salzberg, 1993] and [Pekalska et al.,
2001].

Another similarity-based classifier is the ‘nearest cen-
troid’ classifier, which can be considered a simple para-
metric model [Weinshall et al., 1999] Let s(x, z) be the
similarity between a sample x and a sample z, and let
there be a finite set of classes 1, 2, . . . , G. The nearest
centroid approach classifies x as the class

ŷ = arg max
h=1,...,G

s(x, µh) (1)

where µh is the representative centroid for the class
h. A standard definition for the centroid of a set of
training samples is the training sample that has the
maximum total similarity to all the training samples

of the same class [Weinshall et al., 1999,Jacobs et al.,
2000]:

µh = arg max
µ∈Xh

∑

z∈Xh

s(z, µ), (2)

where Xh is the set of training samples from class h.

A different approach to similarity-based classifica-
tion is to embed the training and test samples in
an Euclidean space using multi-dimensional scaling,
and then use standard statistical learning methods
in the Euclidean feature space. Or, the data can
be embedded in a pseudo-Euclidean space [Goldfarb,
1985,Pekalska et al., 2001]. One disadvantage to this
approach is that if the similarity function does not
satisfy the metric properties, then no embedding may
be appropriate; for example, forcing samples related
by an asymmetric similarity function to be classified
using Euclidean distance may be suboptimal. Also,
if the underlying similarity relationships are not well
represented by a metric distance, a low-error embed-
ding may be relatively high-dimensional, causing curse
of dimensionality problems for the subsequent clas-
sification. A second disadvantage is that classifying
each test sample requires re-computing the embedding
based on the test and training samples. This is a prob-
lem if all of the test data or training data are not avail-
able at one time.

Another general approach to similarity-based classifi-
cation is to treat the n×1 vector of similarities between
a test sample and the n training samples as a feature
vector [Graepel et al., 1999,Duin et al., 1999,Pekalska
et al., 2001]. Graepel et al. [Graepel et al., 1999] cre-
ated a separating hyperplane classifier using this ap-
proach. Duin et al. [Duin et al., 1999,Pekalska et al.,
2001] considered a regularized Fisher linear discrimi-
nant classifier for this n-dimensional space. A serious
disadvantage to this general approach is that the di-
mensionality of the classification problem is equal to
the number of training samples n, which may be arbi-
trarily high.

If the n × n pairwise similarity matrix between the
training samples is symmetric and positive definite, it
can be used as a kernel for a support vector machine.
A more general approach to support vector machines
given pairwise similarities is the potential support vec-
tor machine (PSVM), which can be used with any
similarity matrix [Hochreiter et al., 2003,Hochreiter &
Obermayer, 2006]. However, the PSVM also requires
enumerating n × n matrices, which is computation-
ally infeasible given large n. Additionally, the PSVM
requires the cross-validation of two parameters. An-
other support vector machine approach is the SVM-
KNN, which uses a similarity kernel but only applies
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the support vector machine to the k nearest neighbors
of the test sample, which may make SVM’s more com-
putationally feasible in certain large datasets [Zhang
et al., 2006].

3. Local SDA

We propose a new similarity-based classifier, local sim-
ilarity discriminant analysis (local SDA). Local SDA is
a log-linear generative classifier that models the prob-
ability distribution of the similarity between the test
sample and the class means of the test sample’s neigh-
borhood. In this section we explain how the local SDA
classifier follows from the optimal Bayes classifier by a
few simple assumptions. Let all test and training sam-
ples come from some abstract space of possible sam-
ples B, such as the set of all DNA sequences, or the set
of all French political blogs, or customers who call a
technical support hotline. The Bayes classifier assigns
a test sample x ∈ B to the class ŷ that minimizes the
expected misclassification cost [Hastie et al., 2001],

ŷ = arg min
f=1,...,G

G∑
g=1

C(f, g)P (Y = g|x), (3)

where C(f, g) is the cost of classifying the test sample
x as class f if the true class is g. In practice the
distribution P (Y = g|x) is generally unknown, and
thus the Bayes classifier of (3) is an unattainable ideal.

Suppose one can evaluate a relevant similarity func-
tion s : B × B → Ω, where Ω ⊂ R 1. For simplic-
ity, we assume that Ω is a finite discrete space, but it
is straightforward to generalize to continuous Ω. Let
X ∈ B be random test sample with random class label
Y , and let x ∈ B denote the realization of X. The
local SDA classifier model is that all of the relevant
information about classifying X depends only on the
k nearest (most similar) training samples to X, where
the neighborhood size k is learned by cross-validation.

The second assumption of the local SDA classifier
model is that the information about X’s class label de-
pends only on the similarity between X and its neigh-
borhoods’ class means. Let µg be the gth class centroid
defined by

µg = arg max
µ∈Xg

∑

z∈Xg

s(z, µ), (4)

where Xg is the subset of the k nearest neighbors that
are from class g (we will discuss the degenerate case
that Xg is the empty set later).

1Some similarity measures also depend on context; for
those measures s : B × B × C → Ω, where C is a space
representing the context.

Given the assumption that the relevant information
about X’s class label is {s(X, µg)} for g = 1, . . . , G
and given a particular test sample x, the classification
rule (3) can be re-stated: classify x as class ŷ that
solves

arg min
f=1,...,G

G∑
g=1

C(f, g)P (Y = g|s(x, µ1), . . . , s(x, µG))

Because only the minimizer is of interest, the poste-
rior P (Y = g|s(x, µ1), . . . , s(x, µG)) can be replaced
by P (s(x, µ1), . . . , s(x, µG)|Y = g)P (Y = g), which is
the probability of seeing a particular set of similarities
between the test sample x and the G local class cen-
troids {µ1, µ2, . . . , µG} given that x is a class g sample,
and the class priors P (Y = g) are now explicit.

We must estimate the class-conditional distribution
P (s(x, µ1), . . . , s(x, µG)|Y = g). To determine a
unique and reasonable estimate, we constrain the ex-
pectation of each s(X, µg) with respect to each of the
G unknown class-conditional distributions such that

EP (s(x,µ1),...,s(x,µG)|Y =g)[s(X, µh)] =
1
ng

∑

z∈Xg

s(z, µh),

(5)
for each g, h where ng is the number of training sam-
ples of class g. That is, (5) specifies G constraints on
each of the G unknown class-conditional distributions
P (s(x, µ1), . . . , s(x, µG)|Y = g), for a total of G × G
constraints. Given these constraints, there is some
compact and convex feasible set of G class-conditional
distributions. (A feasible solution will always exist be-
cause the constraints are a linear combination of the
data.)

Applying Jaynes’ principle of maximum entropy
[Jaynes, 1982], we estimate each class-conditional dis-
tribution as the maximum entropy distribution that
satisfies the G constraints specified by (5). Given a set
of constraints that could be satisfied by multiple (pos-
sibly infinite) distributions, the distribution that has
the maximum entropy is least assumptive in that it is
the distribution closest to the uniform distribution in
terms of relative entropy. Due to the convexity of the
entropy function, the maximum entropy distribution
is always unique if the constraints specify a convex
set of feasible distributions. The maximum entropy
estimation approach also links local SDA to QDA:
in metric-learning, the QDA classifier classifies based
on Gaussian class-conditional distributions, which can
be derived as the maximum entropy solutions given
the empirical training sample covariance matrix and
mean vector. For general results about maximum en-
tropy solutions see, for example, [Cover & Thomas,
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1991,Van Campenhout & Cover, 1981, Friedlander &
Gupta, 2006].

Given a set of moment constraints such as given in (5),
it is easy to show that the maximum entropy solution
has an exponential form,

P̂ (s(x, µ1), . . . , s(x, µG)|Y = g) = γge
(PG

h=1 λghs(x,µh)),
(6)

where {γg, λg1, λg2, . . . , λgG} are a unique set of scalars
that ensures that the constraints specified by (5)
are satisfied and that estimated distribution is non-
negative and normalized.

The maximum entropy estimate given in (6) can be
re-written as a product of exponential distributions,

P̂ (s(x, µ1), . . . , s(x, µG)|Y = g)

=
G∏

h=1

γgheλghs(x,µh)

4
=

G∏

h=1

P̂ (s(x, µh)|Y = g). (7)

where
∏

h γgh = γg, and we have defined the exponen-
tial distributions P̂ (s(x, µh)|Y = g) in (7). Note that
each distribution P̂ ((s(x, µh)|Y = g) is also the maxi-
mum entropy distribution that satisfies the constraint

EP (s(x,µh)|Y =g)[s(X,µh)] =
1
ng

∑

z∈Xg

s(z, µh). (8)

Thus, the joint maximum entropy estimate
P̂ (s(x, µ1), . . . , s(x, µG)|Y = g) is the product of
maximum-entropy marginal distributions, which
implies that s(x, µg) is conditionally independent of
s(x, µh) given x’s class label for all g, h ∈ {1, . . . , G}.
Substituting the estimated probability distribution
from (6) into (3) yields the local SDA classification
rule: classify x as the class ŷ which solves

arg max
f=1,...,G

G∑
g=1

C(f, g)

(
G∏

h=1

γgheλghs(x,µh)

)
P̂ (g)

(9)
where the parameters {λgh, γgh}must satisfy the G×G
constraints specified by (5) and the normalization con-
straint. The class priors P̂ (g) are estimated from the
k nearest-neighbors; we use a Bayesian estimate, also
known as Laplace correction [Jaynes, 2003]. One can
solve for the parameters {λgh, γgh} directly (as we
do for our experiments) or use a standard optimiza-
tion method to find the maximum entropy distribution
given the moment and normalization constraints.

If the number of neighbors k ≤ 3, then the local SDA
model is difficult to estimate; in this case the local SDA

classifier reverts to the local nearest centroid. This
strategy enables local SDA to gracefully handle small
k. If there are no neighbors from the gth class in the
neighborhood of the test sample X such that Xg is the
empty set, then the probability that X is from class g
is considered to be zero, and class g is not included in
the rule (9).

4. Experiments

We compare the local SDA classifier to a global SDA
(using all training samples to estimate the class-
conditional distributions), to the nearest centroid and
to a local-version of the nearest centroid classifier, to
k-NN, and to the PSVM [Hochreiter & Obermayer,
2006].

4.1. Simulations: Multimodal Perturbed
Centroids

To further analyze and compare similarity-based clas-
sifiers, we consider a two-class simulation, where each
class is composed of two prototypical samples and per-
turbations of those prototypical samples. To generate
pairwise similarities, each sample is drawn randomly
from B = {0, 1}d. In the first set of results, the pair-
wise similarity s(x, z) between samples x, z ∈ B is the
counting similarity, which is the number of features in
agreement between x and z.

Each class is characterized by 2 prototypical sam-
ples, c11, c12 for class one, and c21, c22 for class
two. Each time the simulation is run, the centroids
c11, c12, c21, c22 are drawn independently and identi-
cally using a uniform distribution over B.

Every sample drawn from each class is a perturbed ver-
sion of one of the two class prototypes, where the class
labels are drawn independently and identically with
probability 1/2. A training or test sample z drawn
from class one is randomly selected to be z = c11

or z = c12 with probability 1/2, and then for each
i = 1, . . . , n, z’s ith feature is flipped (0 changed to
1 or 1 changed to 0) with probability 1/3. Thus on
average, a randomly drawn sample based from class
1 will have n/3 features that are different from one
of the class prototype’s features. Likewise, a training
or test sample v drawn from class two starts out as
v = c21 or v = c22 with probability 1/2, but then for
each i = 1, . . . , n, v’s ith feature is flipped (0 changed
to 1 or 1 changed to 0) with probability 1/30.

The number of features n ranges from n = 2 to n = 200
in the simulation, but the number of training samples
is kept constant at 100, so that n = 200 is a sparsely
populated feature space. For each run of the sim-
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Table 1. Perturbed centroid simulations: percentage of misclassification error on test set.

% Perturbed Centroids Simulation Misclassification Error (neighborhood size)
# Features Local SDA Local Nearest Centroid SDA Nearest Centroid k-NN PSVM
2 26.41 26.41 47.52 38.98 26.41 27.16
4 13.80 13.68 34.77 34.84 13.26 17.18
8 9.23 9.25 29.32 26.77 9.29 12.62
12 5.61 6.47 31.20 27.05 6.25 8.72
25 3.11 4.37 28.75 25.90 4.03 4.08
40 2.88 4.25 30.84 28.23 3.94 2.21
50 2.94 4.89 27.77 30.12 4.35 1.77
75 2.04 3.21 26.38 27.74 2.75 0.95
100 2.21 3.03 25.39 24.58 2.60 1.52
125 2.46 2.96 25.51 24.83 2.68 1.59
150 1.55 1.80 25.00 26.55 1.76 1.00
175 1.93 2.38 25.32 21.40 2.02 1.29
200 1.44 1.61 23.87 19.28 1.49 1.10

ulation and for each number of features considered,
the neighborhood size k is determined by leave-one-
out cross-validation on the training set. The optimum
k is then used to classify 1000 test samples with lo-
cal SDA. The same procedure is used to optimize k
for the k-nearest neighbor classifier and for the local
nearest centroid classifier. Each simulation was run
twenty times, and the mean error rates for the result-
ing 20, 000 test samples are given in Table 3.

The results show that local SDA is consistently the
best model-based classifier, and for most numbers
of features performs slightly better than k-NN. The
PSVM does slightly worse than the local classifiers for
12 features and less, but is the best classifier for 40 di-
mensions and higher. For local SDA and local nearest
centroid, the larger number of features are challeng-
ing for this problem because they choose one of the
training samples as a class prototype. Because n/3
and n/30 features are on average flipped from the true
class 1 and class 2 centroids respectively, as the num-
ber of features n increases the training samples become
worse choices for the class centroids. Still, the local
model-based methods perform relatively well even for
200 features.

Figure 1 shows an example of the performance over
the neighborhood size for local SDA and local nearest
centroid for 8 features.

4.2. Protein Data

Many bioinformatics prediction problems are formu-
lated in terms of pairwise similarities or dissimilarities.
For this example dataset, pairwise dissimilarity values
were calculated using a sequence alignment program,
which counted the number of amino acids that differ
between two sequences [Hoffmann & Buhmann, 1997].
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Figure 1. Plot of leave-one-out misclassification error ver-
sus the neighborhood size for the perturbed centroids sim-
ulation with 12 features.

The sample space B is not enumerated, so classification
must be done based only on the pairwise dissimilarity
values. As in [Hochreiter & Obermayer, 2006], we used
the 213 proteins with class labels, “HA” (72 samples),
“HB” (72 samples), “M” (39 samples) , and “G” (30
samples). The set of possible similarities Ω is needed
to solve for the SDA parameters λ and γ, but was not
directly available, so Ω was approximated as the set
of empirical similarities that occurred in the training
samples’ similarity matrix. The neighborhood sizes for
the local classifiers were obtained by cross-validation
on each training set using the set of candidate neigh-
borhood sizes {1, 2, . . . 100 . . . , 100, 110, 120, . . . , 200}
Table 2 shows the percentage of leave-one-out misclas-
sification error for the different similarity-based clas-
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sifiers, excluding the PSVM which is specified as a bi-
nary classifer. Guessing that all samples were from
the most prevalent class would yield a 66.2% error
rate. The simple one-centroid per class model of SDA
achieves half that error, and works better than the
more flexible local nearest centroid classifier. Local
SDA, local nearest centroid and k-NN all have the
same free parameter, the neighborhood size k, and lo-
cal SDA is seen to be best suited to this problem.

4.3. Voting

The UCI voting dataset [Newman et al., 1998] records
the voting record of 435 members of the US House of
Representatives on 16 bills. The binary classification
problem is to predict each member’s political party af-
filiation given the voting records. Each of the 16 votes
is either a yes, a no, or “neither,” so there are 16 fea-
tures which can each take on 3 possible values. This
classification problem can be treated as a similarity-
based classification problem by applying a similarity
function to the trinary feature space. We consider
two different similarity functions: the counting simi-
larity between two US representatives is the number of
times they voted identically; and the second similar-
ity considered is the value difference metric (VDM),
which is a dissimilarity measure for similarity-based
classification that has been shown to be very effec-
tive with nearest-neighbor classifiers [Stanfill & Waltz,
1986,Cost & Salzberg, 1993].

The leave-one-out cross-validation error for the dif-
ferent similarity-based classifiers is compared in Ta-
ble 3, as well as the performance of naive Bayes ap-
plied to the feature space (no similarity used). The
neighborhood sizes for the local classifiers were cross-
validated using the set of candidate neighborhood sizes
{1, 2, . . . , 100}. The PSVM parameters were cross-
validated using the sets of candidate parameters C =
{1, 51, 101, . . . 941} and ε = {0.1, 0.2, . . . 1}.
The PSVM, with its two degrees of freedom, does
slightly better than the other classifiers on this prob-
lem. All of the classifiers do better with the VDM
similarity than with the counting similarity. The local
classifiers perform similarly and choose similarly sized
neighborhoods.

5. Consistency

Generative classifiers with a finite number of model
parameters, such as QDA or SDA, will not asymptoti-
cally converge to the Bayes classifier due to the model
bias. In this section we show that, like k-NN, the lo-
cal SDA classifier is consistent such that its expected

classification error EX [L] converges to the Bayes error
rate L∗ under the usual asymptotic assumptions that
the number of training samples n → ∞, the neigh-
borhood size k → ∞, but that the neighborhood size
grows relatively slowly such that k/n →∞.

Let the similarity function s : B×B → Ω, where Ω ⊂ R
is discrete and let the largest element of Ω be termed
smax. Let X be a test sample and let the training sam-
ples {X1, X2, . . . , Xn} be drawn identically and inde-
pendently. Re-order the training samples according to
decreasing similarity and label them {Z1, Z2, . . . Zn}
such that Zk is the kth most similar neighbor of X.

The consistency theorem will use the following lemma:

Lemma 1: Suppose s(x,Z) = smax if and only if
x = Z and P (s(x,Z) = smax) > 0 where Z is a ran-
dom training sample. Then P (s(x,Zk) = smax) → 1
as k, n →∞ and k/n → 0.

Proof: The proof is by contradiction and is similar to
the proof of Lemma 5.1 in [Devroye et al., 1996]. Note
that s(x,Zk) 6= smax if and only if

1
n

n∑

i=1

I{s(x,Zi)=smax} <
k

n
, (10)

because if there are less than k training samples whose
similarity to x is smax, the similarity of the kth train-
ing sample to x cannot be smax. The left-hand side of
(10) converges to P (s(x,Z) = smax) as n → ∞ with
probability one by the strong law of large numbers,
and by assumption P (s(x,Z) = smax) > 0. How-
ever, the right-hand side of (10) converges to 0 by as-
sumption. Thus, assuming s(x,Zk) 6= smax leads to a
contradiction in the limit. Therefore, it must be that
s(x,Zk) = smax.

Theorem: Assume the conditions of Lemma 1.
Define L to be the probability of error for test
sample X given the training sample and label pairs
{(X1, Y1), (X2, Y2), . . . , (Xn, Yn)}, and let L∗ be the
Bayes error. If k, n → ∞ and k/n → 0, then for the
local SDA classifier EX [L] → L∗.

Proof: By Lemma 1, s(x,Zi) = smax for i ≤ k in the
limit as n →∞, and thus in the limit the centroid µh

of the subset of the k neighbors that are from class h
must satisfy s(x, µh) = smax for every class h. Then
the constraint (8) on the expected value of the class-
conditional similarity is

EP (s(x,µh)|Y =g)[s(X,µh)] = smax, (11)

which is solved by the pmf P (s(x, µh)|Y = g) = 1 if
s(x, µh) = smax, and zero otherwise. Thus the local
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Table 2. Protein classification problem: percentage of leave-one-out misclassification error on 213 samples for the four-class
classification problem. Neighborhood sizes are shown in parentheses.

% Protein Misclassification Error (neighborhood size)
Local SDA Local Nearest Centroid SDA Nearest Centroid k-NN
8.92 (120) 37.09 (140) 29.58 41.78 20.66 (79)

Table 3. Voting classification problem: percentage of leave-one-out misclassification error on 435 samples with counting
similarity. Neighborhood sizes are shown in parentheses.

% Voting Misclassification Error (neighborhood size)
Local SDA Local Nearest SDA Nearest k-NN PSVM Naive Bayes

Centroid Centroid
Counting
Similarity 6.67 (4) 6.90 (3) 11.72 12.18 6.90 (4) 4.37 10.11
VDM
Similarity 5.75 (3) 5.75 (3) 10.57 9.66 4.37 (4) 4.37 10.11

SDA classifier (9) becomes

ŷ = arg max
g=1,...G

P̂ (Y = g).

The estimated probability of each class P̂ (Y = g) is
calculated for the neighborhood using a Bayesian or
maximum likelihood estimate, and for either estimate
P̂ (Y = g) → P (Y = g) as k → ∞ with probability
one by the strong law of large numbers. Thus the
local SDA classifier converges to the Bayes classifier,
and the local SDA average error EX [L] → L∗.

6. Discussion

We have proposed a flexible, generative similarity-
based classifier. Because local SDA produces proba-
bility values, it could be combined with metric statis-
tical learning algorithms using probability rules, which
may be helpful in the practical case that samples
are described both by categorical features or simi-
larities, and by numerical features. The experiments
show that local SDA consistently performs better than
other model-based classifiers and performs competi-
tively with k-NN. The PSVM can achieve lower error
rates, particularly when the number of training sam-
ples is small compared to an underlying feature dimen-
sion. However, the PSVM may not be as well-suited
for mixed-feature problems, asymmetric misclassifica-
tion costs, multiclass problems, and problems where
the number of training samples n is too large to com-
pute with the n× n similarity matrix.

An additional advantage of model-based approaches is
that they provide intuitive information about the lo-
cal similarity characteristics of the data. A local class
centroid can be viewed as a representative prototype
for the class in the neighborhood of a test sample and

the class-conditional probabilities provide an estimate
of the local distribution of the similarities to the local
centroid. There are many open questions in applying
classifiers locally. In particular, it would be interesting
to compare the local SDA performance to a mixture of
SDA model components. How to best train a mixture
of SDA model components is an open question.
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