
Nonparametric Supervised Learning by Linear
Interpolation with Maximum Entropy

Maya R. Gupta, Robert M. Gray, and Richard A. Olshen, Fellow, IEEE

Abstract—Nonparametric neighborhood methods for learning entail estimation of class conditional probabilities based on relative

frequencies of samples that are “near-neighbors” of a test point. We propose and explore the behavior of a learning algorithm that

uses linear interpolation and the principle of maximum entropy (LIME). We consider some theoretical properties of the LIME

algorithm: LIME weights have exponential form; the estimates are consistent; and the estimates are robust to additive noise. In

relation to bias reduction, we show that near-neighbors contain a test point in their convex hull asymptotically. The common linear

interpolation solution used for regression on grids or look-up-tables is shown to solve a related maximum entropy problem. LIME

simulation results support use of the method, and performance on a pipeline integrity classification problem demonstrates that the

proposed algorithm has practical value.

Index Terms—Nonparametric statistics, probabilistic algorithms, pattern recognition, maximum entropy, linear interpolation.
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1 THE SUPERVISED LEARNING PROBLEM

WE observe a labeled set or sequence of correlated pairs

fðXi; YiÞ; i ¼ 1; . . . ; ng, where the Yi are scalar labels

of the d-dimensional real vectors Xi. Typically, each random

object in the sequence is assumed to be drawn indepen-

dently according to a common distribution PX or PXY . We

assume that PX is absolutely continuous with respect to

Lebesgue measure and, hence, has a well-defined density

function f . Suppose then that another sample vector X ¼ x
is drawn from PX ; several questions might be asked:

. What is the best estimate f̂fðxÞ of the true but

unknown probability density function at x, fðxÞ?
(Density estimation.)

. What is the minimum mean-squared estimate ŶY ðxÞ
of some correlated random variable Y ? Equivalently,

what is the best estimate of the conditional expecta-

tion ÊEðY jX ¼ xÞ? (Regression or estimation.)
. What is the maximum a posteriori guess of the value of

Y , or, equivalently, argmaxy P̂PY jXðyjxÞ? (Statistical

classification or detection.)

The second and third questions above extend easily to

general cost functions to define minimum average Bayes risk

regression and classification. In all three cases, the estimates

implicitly depend on the training set. The statistical literature
on all three problems is extensive and, often, the problems are
treated together because of their similarities.

A standard approach makes use of a “kernel,” wherein a
real-valued (often nonnegative) function KðuÞ is defined on
Rd, constrained to have unit integral. With the traditional
kernel approach, there is a scaleh > 0 (the “bandwidth”) with
the resulting modified kernels KhðuÞ ¼ Kðu=hÞ=hd. Depen-
dence on n is suppressed in the notation unless required for
clarity. There results an estimate of the density,

f̂fðxÞ ¼ 1

n

Xn
i¼1

Khðx�XiÞ; ð1Þ

and of the regression function

ŶY ðxÞ ¼
1
n

Pn
i¼1 Khðx�XiÞYi

f̂fðxÞ
; ð2Þ

and a classifier

arg max
y

1

n

Xn
i¼1

Khðx�XiÞ1ðYi ¼ yÞ; ð3Þ

where 1ðF Þ is the indicator function that is 1 if F is true and 0
otherwise. Regression and classification are often termed
“supervised statistical learning” or “pattern recognition” [1].
Here, we assume simply that the training vectors are random
vectors in d-dimensional Euclidean space with well-behaved
distributions and that PY is absolutely continuous in the
regression problem and discrete in the classification problem.

There are many variations and extensions of kernel
methods, a common one being to adapt the kernel locally,
either to the observation x or to the training vectors Xi. One
common method is to fix the radiusRor volumeV of a sphere
around the pointxand only include in the sums those training
vectors Xi that fall inside the sphere. This ensures that only
points close to x influence the estimate. In this case, the
scaling h is usually chosen to be proportional to ðk=ðnV ÞÞ1=d,

766 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 5, MAY 2006

. M.R. Gupta is with the Department of Electrical Engineering, University
of Washington, Box 352500, Seattle, WA 98195.
E-mail: gupta@ee.washington.edu.

. R.M. Gray is with the Information Systems Lab, Department of Electrical
Engineering, Stanford University, 261 Packard Building, 350 Serra Mall,
Stanford, CA 94305. E-mail: rmgray@stanford.edu.

. R.A. Olshen is with the Department of Health, Research, and Policy, and is
also with the Departments of Electrical Engineering and Statistics,
Stanford University, Sequoia Hall, 390 Serra Mall, Stanford, CA 94305.
E-mail: olshen@stanford.edu.

Manuscript received 28 Feb. 2005; revised 6 Sept. 2005; accepted 7 Sept. 2005;
published online 13 Mar. 2006.
Recommended for acceptance by Y. Amit.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0105-0205.

0162-8828/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society



where k is the number of neighbors in the volume V . The
radius of the sphere can be adapted to the observed point x.
This approach is still basically a fixed kernel method, but the
kernel is truncated so as to consider only training vectors
within a fixed distance of the observation.

Loftsgaarden and Quesenberry [2] introduced an alter-
native approach to density estimation based on the nearest-
neighbor approach of Fix and Hodges [3]. They fixed the
number k of nearest neighbors to be used in the estimate. In
the fixed k case, the volumeV is the volume of the sphere with
x at the center and radiusRðxÞ equal to the distance from x to
its kth nearest neighbor in the training set. This yields a
density estimator of the form

f̂fðxÞ ¼ 1

nRðxÞd
Xn
i¼1

K
x�Xi

RðxÞ

� �
; ð4Þ

which is the general multivariate k-nearest neighbor (kNN)
density estimate studied by Mack and Rosenblatt [4], who
generalized the Loftsgaarden and Quesenberry example
which implicitly used a uniform kernel KðxÞ ¼ 1ðjjxjj � 1Þ.
Unfortunately, even ifK integrates to 1, the estimator given in
(4) does not integrate to 1; rather, the integral increases
without bound as the distance from x to the origin increases.

These kNN approaches can be considered as variable
kernel or adaptive kernel methods as defined in (6.78) of
Scott [5]:

f̂fðxÞ ¼ 1

nhdx

Xn
i¼1

K
x�Xi

hx

� �
; ð5Þ

where the “adaptive” bandwidth or scaling function or
smoothing function hx depends on the observed vector x
(and the training sequence). For the Loftsgaarden and
Quesenberry method, hx is simply the distance from the
observation to the kth nearest neighbor. Another ap-
proach to kNN for regression is the weighted generalized
nearest neighbors approach of Stone [6], who assumed a
weighting sequence w ¼ wnðxÞ ¼ fwniðxÞ; i ¼ 1; . . . ; ng for
which

Pn
i¼1 wniðxÞ ¼ 1 and formed an estimate

ŶY ðxÞ ¼
Xn
i¼1

wniðxÞYi: ð6Þ

If the weighting function assigns zero weight to any
training vectors farther away than the kth nearest neighbor,
then this is another way of defining a nonuniformly
weighted kNN estimate. Stone provides general conditions
under which such weighted-average estimators give uni-
versally consistent estimates. The kernel approach and the
weighted approach are immediately seen to be equivalent
in the case where the weights are related to the kernels by

wniðxÞ ¼
K x�Xi

RðxÞ

� �
Pn

j¼1 K
x�Xj

RðxÞ

� � ; ð7Þ

which yields a valid weight function in the sense that the
weight function sums to 1. The discrete weighting w and the
continuous argument kernel related together in this way
entail estimators of a density function and regression
function and, also, a classifier.

There is a large literature using assumptions made either
on the kernels or on the weighting functions and demon-
strating a variety of properties of such estimators under
those assumptions. Properties of particular importance
include universal consistency, robustness to noise, and the
bias and variance of the estimators.

It is standard in kernel design to make the kernel
symmetric so that the first moment of the kernel is zero,Z

Rd
uKðuÞdu ¼ 0; ð8Þ

and the second moment is finite. We propose adaptive
kernels that do not have zero first moment and we will argue
that the asymmetric kernel considered provides a simple,
easily computable, and effective estimator. Simulations and
heuristics support the claim that such asymmetric kernels
may be superior to symmetric kernels in kNN applications.

We propose an estimator that is based on linear interpola-

tion and maximum entropy (LIME) and is a generalized

weighted nearest neighbor method as described in Stone [6].

Stone’s arguments provide a means of demonstrating the

estimator’s basic universal consistency properties for regres-

sion. Recent extensions [7] of Kullback’s minimum discrimi-

nation information approach [8] provide a way of showing

that the LIME weights can be expressed in terms of an

adaptive kernel. The LIME technique can be used for density

estimation and takes on the form of the Mack-Rosenblatt

estimator,except that the kernel does notsatisfy their zero first

moment constraint. We present a heuristic argument to show

that, in fact, this lack of symmetry may significantly lessen the

serious drawback observed by Mack and Rosenblatt that

kNN estimates are doomed to severe problems of bias when

the observation is drawn from the tails of the distribution.
The paper provides several basic results regarding the

behavior of the LIME weights under simplified assump-
tions, along with simulation results exemplifying the
behavior, and applications to real data. The paper con-
cludes with a discussion of the method and the technical
issues arising in extensions of the theoretical properties.

2 LINEAR INTERPOLATION WITH MAXIMUM

ENTROPY

Let T ¼ fXi; i ¼ 1; . . . ; ng denote training vectors Xi 2 Rd

and let x 2 Rd. The observation x can be thought of as a
sample vector of a random vector X drawn independently
from the same distribution as used to generate the training
vectorsXi. We preserve for now the lowercase notation for x
as a specific realized sample vector, but, later, some of the
theoretical results will be concerned with averages over the
random observation vectorX. In this section, we describe an
algorithm for producing an n-dimensional weight vector w ¼
fwiðxÞ; i ¼ 1; . . . ; ng from T and x that can be used for
regression and classification and we show that the weight
vector can be expressed as an adaptive kernel so that it can
also be used for density estimation. The algorithm is based on
linear interpolation and maximizing entropy; the resulting
weights will be referred to as the LIME weights. The
remainder of the paper is devoted to developing several
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basic properties of the LIME weights and demonstrating the
LIME algorithm’s performance.

Three additional definitions are required. First, we assume

a distortion measure Dðu; vÞ, a nonnegative function of two

d-dimensional real vectors for whichDðu; vÞ ¼ 0 if and only if

u ¼ v. We further assume that the distortion measure is a

difference distortion measure and adopt the usual notational

convention that Dðu� vÞ ¼ Dðu; vÞ and we assume that D is

convex. This is sufficient for the algorithm to be well-defined,

but we focus on the common case of squared error,Dðu; vÞ ¼
ju� vj2 ¼

Pd
i¼1 jui � vij

2; in our examples. Second, the

Shannon entropy of w is defined in the usual way byHðwÞ ¼
�
Pn

i¼1 wi lnwi: Third, define a neighborhood Jn ¼ JnðxÞ �
f1; . . . ; ng as a subset of the indices of the training vectors. The

most important example for the present work is the

neighborhood of the k nearest neighbors to x in the training

set Jn ¼ fj : Dðx;XjÞ � Dkðx; fX1; . . . ; XngÞg, where Dkðx;
fX1; . . . ; XngÞ denotes the distance from x to its kth-nearest

neighbor in the training set with respect to distortion D. An

alternative choice is to specify a radius R and include all

training vectors within distance R of x: Jn ¼ fj : Dðx;XjÞ
� Rg. In both cases, the idea is to base the estimator on local

training vectors, but the specifics of how “local” is defined are

not important for defining the LIME estimator. Training

vectors whose index is not in the neighborhood Jn are given

zero weight. The training vectors can be reindexed in order of

nearness to x for convenience.

2.1 Lime Weights

The LIME weight vector w is defined in terms of a

parameter �. Let W be the collection of all probability

mass functions w, that is, all n-tuples for which wi � 0 if

i 2 Jn and wi ¼ 0 otherwise and
P

i2Jn wi ¼ 1. Then, the

LIME weights w� solve

argmin
w

D
X
i2Jn

wiXi � x
 !

� �HðwÞ
 !

: ð9Þ

A minimizerw� for (9) exists and is unique if the functionD is

a continuous convex function ofw. Henceforth, we make that

assumption. For example, any lp norm or convex function

thereof will work. For convex distortion functions D, the

LIME objective function (9) is a sum of convex functions and

thus convex, so that w� can be found using standard convex

optimization methods. In our numerical results, mean-

squared error (squared l2 distance) is used for D and the

optimization of (9) is done with a fast primal-dual log-barrier

interior-point method from Saunders [9].
To illustrate LIME’s behavior, consider some extreme

cases. First, if � is nearly zero, then the estimator
concentrates on minimizing the distortion. If the observa-
tion is contained in the convex hull of its neighbors, then the
distortion can usually be forced to zero if � is sufficiently
small, and the distortion can be forced to zero for all cases if
the distortion function D is an exact penalty distortion such as
an lp norm [7]. Given � small enough to achieve zero
distortion, the LIME objective will be minimized by the
choice of weights that have maximum entropy of all weight
vectors that yield zero distortion.

Under commonly adopted asymptotic assumptions on k

and n, with probability one, the observation x will lie in the

convex hull of its k nearest neighbors (see Theorem 3). If the

observationxdoesnot liewithintheconvexhullof itsknearest

neighbors, then small � will yield w� such that
P

i2Jn w
�
i Xi

approximates x.
For illustration, in Fig. 1, four different LIME weights are

shown for a test point x = 0 and different sets of five

training samples. For these examples, � is set relatively

small at � ¼ :0001.
Consider the opposite extreme with � set very large.

Then, the emphasis is on making the weights as uniform as

possible with less concern for approximating x. In fact, for a

fixed set of neighbors Jn, the LIME weights will converge to

the uniform weights:

Lemma 1 (LIME weights converge to uniform). Let ui ¼
1=k for all i 2 Jn. Then,

lim
�!1
kw� � uk1 ! 0: ð10Þ

The choice of � may follow the Shannon source coding

approach where a designer picks � to reflect subjective

judgment or the choice of � may be dependent on the

scaling of the feature space compared to entropy or may

reflect the amount of noise in the training vectors or labels.

A common approach in statistical applications of regression

and classification is to train parameters such as � using

cross-validation, choosing the � that is optimal in the sense

of yielding the smallest empirical cross-validated distortion.
As another extreme case, suppose that Jn is chosen to

contain only a single nearest neighbor, so that the weighting

vector becomes a scalar constant. In this case, the entropy

will be zero and the weight on the one nearest-neighbor will

be w1 ¼ 1 to satisfy the normalization constraint. Hence,

LIME includes the standard 1-nearest neighbor as a special

case (and, with it, the Cover and Hart’s guarantee of

asymptotic classification performance within twice the

Bayes optimal [10] and the Cover guarantee of asymptotic

estimation performance within twice the Bayes risk [11]).
The LIME minimization can be restated in a form

incorporating a well-known problem of Kullback [8], which,

in turn, resembles (as Kullback notes on p. 37) Shannon’s

rate for a source relative to a fidelity criterion [12] and

Jaynes’s maximum entropy estimates [13]. Suppose that w�

are the LIME weights and define x̂x ¼
P

i2Jn w
�
i Xi. Let C be

the convex hull of the training set: the set of all vectors ~xx

such that ~xx ¼
P

i2Jn wiXi for some w 2 W, and let Wðx̂xÞ be

the subset of W for which
P

i2Jn wiXi ¼ x̂x. Then, let

�ð�; xÞ ¼ Dðx̂x� xÞ � �Hðw�Þ
� Dðx̂x� xÞ � � max

w2Wðx̂xÞ
HðwÞ

� inf
~xx2C

Dð~xx� xÞ � � max
w2Wð~xxÞ

HðwÞ
� �

:

ð11Þ

The supremum of HðwÞ is a maximum because H is

concave and continuous in w. Conversely, suppose that x̂x

and some ŵw yield a value of Dðx̂x� xÞ � �HðŵwÞ within � > 0

of the minimum value, then
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inf
~xx2C

Dð~xx� xÞ � � max
w2Wð~xxÞ

HðwÞ
� �

þ� �Dðx̂x� xÞ��HðŵwÞ

��ð�; xÞ;
ð12Þ

which proves the following lemma:

Lemma 2. Given a continuous, convex distortion D, the LIME

weights w are the solution to

min
~xx2C

Dð~xx� xÞ � � max
w2Wð~xxÞ

HðwÞ
� �

; ð13Þ

where C is the convex hull of the training set. The minimizing

reproduction x̂x and the LIME weights w� are related by

x̂x ¼
P

i2Jn w
�
i Xi.

The interpretation here is that, for x, every possible

approximation ~xx in the convex hull of the training set yields

both a reproduction distortion Dðx̂x� xÞ, which we want to

be small and a maximum entropy maxw2Wð~xxÞHðwÞ, which

we want to be large. The parameter � specifies the desired

tradeoff between these two quantities.

2.2 LIME Weighting Is Exponential

The maximum entropy solution is a variation of a discrete

case of Kullback’s minimum discrimination information

formulation with a uniform prior (see Kullback [8]). Below,

we present a simple proof that the weights will have

exponential form based on the divergence inequality of

information theory (cf. [14]); see [7] for more results on this

class of extensions of the Kullback approach. Since max-

imum entropy solutions and maximum-likelihood solutions

often coincide [15], [14], maximum-likelihood solutions

may also be exponential, such as testing hypotheses about

means in the context of empirical likelihood [16].
From Lemma 2, the LIME weights maximize HðwÞ

subject to the constraints
P

i2Jn wiXi ¼ x̂x for some x̂x 2 C
and w 2 W. This is equivalent to minimizingX
i2Jn

wiðlnwi � a0ðXi � xÞ � cÞ ¼
X
i2Jn

wi ln wi=e
�a0ðXi�xÞ�c

� �
;

ð14Þ
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Fig. 1. LIME weights form an adaptive kernel. In these examples, the test point is at 0 and � is small, emphasizing minimum distortion D.
(a) Neighborhood training samples at -1, .1, .3, .7, and 1. (b) Neighborhood training samples at -1, -.5, 0, .5, and 1. (c) Neighborhood training
samples at -.1, .6, .7, .8, and .9. (d) Neighborhood training samples at .3, .4, .9, .95, and 1.



where a is a d-dimensional Lagrange multiplier corre-
sponding to the mean constraint and c is a Lagrange
multiplier corresponding to the weight normalization
constraint. The inclusion of x in (14) is for convenience,
so that we can “centralize” the training vectors around the
observation vector. Moreover, the inclusion of x reflects
the fact that

P
i2Jn wiðXi � xÞ ¼ x̂x� x.

The divergence inequality states that for two pmfsw and q,

the relative entropy of Kullback-Leibler divergence satisfies

the inequality
P

i2Jn wi lnwi=qi � 0 with equality if and only if

w ¼ q. Equation (14) has the form of a divergence if the

denominator of c sums to 1; that is, if qi ¼ e�a
0ðXi�xÞ�c which

implies that
P

i2Jn e
�a0ðXi�xÞ�c ¼ 1. Thus, the quantity to be

minimized given in (14) is bounded to be greater than or equal

to 0. By expansion,X
i2Jn

wi lnwi � wi ln e�a
0ðXi�xÞ�c

� �
� 0: ð15Þ

Imitating Kullback, we define

MðaÞ ¼
X
i2Jn

e�a
0ðXi�xÞ ¼ ec: ð16Þ

Recognizing MðaÞ and the entropy term HðwÞ in (15) and
rearranging its terms, one sees that

HðwÞ �
X
i2Jn

wia
0ðXi � xÞ þ lnMðaÞ; ð17Þ

with equality if and only if wi ¼ qi such that wi ¼ e�a
0ðXi�xÞ=

MðaÞ: This yields the LIME weightsw�i if the vector a satisfies

x̂x ¼
X
i2Jn

w�i Xi ¼
X
i2Jn

e�a
0ðXi�xÞ

MðaÞ Xi; ð18Þ

which is accomplished by choosing each component al so that

@

@al
lnMðaÞ ¼

@
@al
MðaÞ
MðaÞ

¼ �
X
i2Jn
ðXi � xÞl

e�a
0ðXi�xÞ

MðaÞ

¼ �ðx̂x� xÞl:

ð19Þ

In summary, the LIME weights can be expressed as an
exponential pmf proportional to e�a

0ðXi�xÞ, where the weight-
ing vector a depends on the entire training set and the
observed vector x. Thus far, the development is a minor
variation on Kullback. Taking advantage of the exponential
form of the weights yields the following characterization of
the LIME weights:

Lemma 3. The LIME weights are given by

w�i ¼
e�a

0ðXi�xÞ

MðaÞ ; ð20Þ

whereMðaÞ ¼
P

i2Jn e
�a0ðXi�xÞ and @ lnMðaÞ=@al ¼ ðx̂x� xÞl.

The weight solution of (20) resembles the form of an

adaptive kernel and a product multivariate kernel (see, e.g.,

Scott [5], Sections 5.3 and 6.6). The LIME kernel adapts to the

entire training set and the observation x jointly, not to the

individual training vectorsXi as in the first case considered in

Section 6.6.1 of Scott. The form is not strictly a product kernel,

however, because the normalization in the denominator

cannot be written as a product. The overall multivariate

kernel does not have precisely the form of an adaptive kernel,

as in (6.78) of Scott, but the individual terms in the product do

have the form of adaptive scalar kernels since the vector a

depends on the observation x. In particular, the weight w�i
does not assume the traditional formKhxðuÞ ¼ Kðu=hxÞ=nhdx,

where K has unit integral. Although neither category of

product kernel nor adaptive multivariate kernel as usually

defined is an exact fit, LIME can be thought of as a close

relation to both kernels. Depending on the choice of the

neighborhood Jn chosen for the nonzero weights, the

algorithm can be considered as a member of the generalized

kernel or a generalized nearest-neighbor method with an

adaptive kernel. As noted in Scott, even the usual adaptive

kernelKhx does not integrate to 1 even thoughK does. Thus,

the LIME implicit adaptive kernel is no worse in this regard

than the traditional case. Both can be forced to have unit

integral by confining their support to a bounded region and

normalizing them suitably. The primary difference between

the LIME kernel and traditional kNN and adaptive kernels is

that it is not symmetric and does not have a zero first moment

as is usually assumed for asymptotic analysis [4], [5]. An

asymmetric kernel has the potential to ease a famous problem

of bias popularly considered to be a major drawback of kNN

methods. This potential is supported by simulations pre-

sented here and we are in the process of developing an

asymptotic analysis of bias using LIME, but the intuition

behind the claim is easily stated. In asymptotic bias analysis

for kNN estimators as in [4], the large bias term occurs in the

tails of the distribution due to a power of the density being

estimated occurring in the denominator of a second moment

term of the kernel. The zero first moment term implies there is

no linear term in the expansion to compensate for the

quadratic term. In the tail region, however, the density will

be asymmetric about the observation. A symmetric kernel

will weight samples on all sides of a test point neighborhood

equally, underweighting the probabilistically sparse training

vectors in the distribution tail, causing bias. The asymmetric

LIME kernel yields lower weights where there are more

sample points and higher weights where there are fewer

sample points. This asymmetry results in a nonzero linear

term in the asymptotic expansion which can ameliorate the

effect of the quadratic term and which is not possible with a

symmetric kernel.

2.3 LIME Weights Vanish Asymptotically

We close this section with a useful asymptotic boundedness
property of LIME weights. Suppose that an increasing set of
training data results in a sequence of LIME weight vectorsw�n
for n ¼ 1; 2; . . . . The following lemma states that the
maximum value of the weight vector tends to 0 as n!1.
The result holds pointwise and does not require assumptions
on the distribution of the training set.
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Lemma 4. Given a training sequence Xi ¼ xi for i ¼ 1; 2; . . . ,
let w�n denote the LIME weights for X1; . . . ; Xn. Then,
limn!1 kwnk1 ¼ 0.

3 SIMULATIONS

To explore the differences between the LIME algorithm
and other neighborhood methods, a simulation example is
used that combines the ideas of Kohonen et al. [17], [18]
and of Hastie et al. [1, pp. 384-385]. Different runs show
the effects of varying the neighborhood size k, the effect
of increasing the number of iid training dimensions, the
effect of varying �, and a comparison of the empirical
bias and variance of the classifiers. Comparisons are
made with other neighborhood methods and the Bayes
classifier (which uses knowledge of the class conditional
densities to achieve the minimal Bayes risk). For the
d-dimensional simulation, we draw d-dimensional random
feature vectors X � fðxÞ ¼ :5f0ðxÞ þ :5f1ðxÞ, where fgðxÞ
is the conditional pdf given that the class label Y ¼ g and
Y is equally likely to be 0 or 1.

Class 1 is a mixture of two Gaussians, f0 ¼ :5N
ð0;�Þ þ :5Nð0; 9�Þ, where the covariance matrix � is the
d� d identity matrix. Class 2 is distributed as f1 ¼ Nð0; 4�Þ:
Thus, the feature vectorsX are drawn from a mixture of three
Gaussians all centered at the origin forming a spherical
cloud. The points from Class 2 are surrounded inside and
outside by points from Class 1 and, hence, a variation on this
simulation [1, pp. 384-385] is called the “skin of the orange”
test. The class conditional distributions are shown for one
feature dimension in Fig. 2a and, for the two feature
dimension simulation, the Bayes decision boundaries are
shown in Fig. 2b. There are many nonparametric neighbor-
hood classifiers (see [19], [1], [20], [21] for reviews and

discussion). LIME is compared to the basic kNN classifier,
the popular tricube kernel [1, p. 168], and local linear
regression [1, pp. 168-172]. The simple kNN technique
achieves competitive performance over a wide range of
classification problems, even when compared to state-of-the-
art classifiers [1], [22]. The tricube kernel is representative of
the general class of positive, symmetric, smoothing kernels.

As with LIME, the local linear regression weights are
adaptive and asymmetric, but local linear regression differs
from LIME in that it uses the neighborhood training labels Yi
to define the kernel. As with Stone [6], the local linear
regression estimate for a test point X fits a hyperplane with
the least-squared error to a neighborhood of observations Jn,
so that the hyperplane parameters âa and b̂b solve

argmin
a;b

X
i2Jn
ðYi � ða0Xi þ bÞÞ2: ð21Þ

Then, an estimate of the label corresponding to X is
ŶY ¼ âa0X þ b̂b. Similarly, local linear regression can be used
for two-class classification in which, for 0-1 loss classifica-
tion, ŶY ¼ arg ming minðg� a0X þ bÞ2, where g is a class label.
For these simulations, we consider a two-class classification
where Yi; Y 2 f0; 1g.

Local linear regression can be expressed as an adaptive
nonparametric estimation method with weights on the
neighborhood training samples that satisfy 10w ¼ 1, but
there is no constraint that w 2 ½0; 1	k.

Local linearregressionandLIMEtakedifferentapproaches
to reducing the estimation bias. As analyzed in [21], local
linear regression performs “automatic kernel carpentry” by
fitting a hyperplane to the training samples, and this
eliminates the first-order bias (assuming the regression target
can be expanded in a Taylor series). Similarly, local polynomial
regression fits higher-order polynomials and, thus, enables
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Fig. 2. (a) Class conditional pdfs for the simulation run with one feature dimension. (b) The Bayes decision regions for the simulation run with two

feature dimensions.



elimination of higher-order bias terms. LIME does not depend
on the training observations Yi, instead reducing the bias by
driving downDð

P
i2Jn wiXi � xÞ.

3.1 Simulation Varying the Neighborhood Size k

As per the simulation architecture previously described, we
randomly generated 2,000 training points and 10,000 test
points in a twenty-dimensional feature space. The algo-
rithms are compared for increasing size of neighborhood k.
The LIME algorithm has two parameters, � and the
neighborhod size k. For this simulation, the LIME estimates
are calculated with � set to a default value of 10�9: an extreme
value so that the LIME weights are (to numerical accuracy
used) the weights that maximize the entropy given that they
solve arg minw

P
i2Jn wiXi �X. This is not the optimal value

of � for this data set, but, by using a default � value none of
the algorithms needs to be trained for this comparison,
shown in Fig. 3.

For a neighborhood size of k ¼ 1, all the algorithms put all
the weight on the nearest-neighbor and perform equally well.
As neighbors are added to kNN and tricube, their perfor-
mance quickly deteriorates. Adding neighbors generally
brings down the variance of estimates, but the bias of these
estimates increases for larger neighborhood size in this
simulation. The effect can be seen even in the one-dimen-
sional feature space shown in Fig. 2. Consider the test point
x ¼ 2, which is outside the Bayes decision boundary and,
thus, the Bayes estimate for this point is Class 2. Given only a
few training samples, the probability distribution of training
samples around x suggests that x’s near-neighbors are more
likely to be on x’s left rather than its right, because the density
of training samples is greater to the left of x. However, points
to the left of x are more likely to be from Class 1 and, thus, x’s
nearest neighbors are more likely to be from Class 1, causing
symmetric neighborhood classifiers to mislabel x as Class 1.
LIME mitigates this bias problem by weighting the near
neighbors based on their joint spatial relationship. For
equidistant training samples, LIME assigns more weight
where the samples are sparse, and less weight where the
samples are dense, in order to minimize Dð

P
i2Jn wiXi � xÞ.

In higher-dimensional feature spaces, the training feature

vectors are sparse and bias problems near decisions bound-

aries are increasingly of concern.

3.2 Simulation with Varying Feature Space
Dimension

Next, we compare the performance of the algorithms with

trained parameters. We randomly generated 2,000 training

points for 1, 2, 5, 8, 10, 15, and twenty-dimensional feature

spaces. Each algorithm’s parameters were trained by leave-

one-out cross-validation on the training set; the number of

neighbors k was varied by steps of one, while the LIME

parameter � was trained in multiplicative steps of 2. The

trained algorithms were compared on 10,000 test points. The

error rates are recorded in Fig. 4. The results show that the

difference in performance between local linear regression

weights and LIME weights is small for low-dimensional

feature spaces, but that LIME outperforms the other

algorithms as the number of feature dimensions grows. Since

each feature dimension provides additional information

about Y , the Bayes error decreases with increasing feature

dimensions. LIME’s error also decreases with increasing

feature dimensions. For 10 feature dimensions and up, the

other algorithms’ error rates increase, showing that the extra

information from the additional feature dimensions confuses

these algorithms, rather than helping them.

3.3 Simulation with Varying �

Fig. 5 shows simulation results for LIME with � varying from

2�15 to 212 for 2,000 test points estimated using 2,000 training

points with a neighborhood size ofk ¼ 127, as cross-validated

in the preceding section.
As expected, the graphs show that the distortion D grows

as � grows, and that the entropy of the LIME weights also

grows as� grows. The error rate, as shown in Fig. 5a, is lowest

for some tradeoff between the two objectives; here, for � ¼ 1.

For very large �, the weights approach uniformity, thus, for

very large �, LIME’s behavior is similar to that of kNN.
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Fig. 3. Simulation varying the neighborhood size k for 20 feature

dimensions and 2,000 training points.

Fig. 4. Simulation for increasing number of feature dimensions, with

n ¼ 2; 000 training samples.



3.4 Simulation to Compare Classification Bias and
Variance

We start with 1,000 test points in 20 feature dimensions. Then,

we draw 100 independent sets of 2,000 training points and

form 100 estimates for each of the 1,000 test points. The

parameters k ¼ 127 and� ¼ 1 are used for all 100 training sets

and for all algorithms compared here. Shown in Fig. 6 are the

resulting histograms of classfication bias (left figures) and

classification variance (right figures) of the 100 estimates for

each of the 1,000 test points.
For the two-class classification problem, with Y 2 f0; 1g,

we define biasðxÞ to be the bias of the classification

corresponding to test feature vector x, defined as the

expectation over the joint probability distribution of the

training data,

biasðxÞ ¼ EfXi;Yig ŶY ðxÞ � Y
� �

: ð22Þ

The classification variance varðxÞ corresponding to test

feature vector x is defined as an expectation over the joint

probability distribution of the training data,

varðxÞ ¼ EfXi;Yig ŶY ðxÞ �E½ŶY ðxÞ	
� 	� �2

: ð23Þ

An alternative bias definition for two-class classification

problems is given by Friedman [23], who defines bias and

variance for two-class problems in terms of the estimated

conditional probability: P ðŶY ðxÞ ¼ 1jxÞ. However, as Fried-

man analyzes [23], the link between the conditional

probability bias and the classification error is nonlinear.

Thus, we have chosen to demonstrate classification bias and

classification variance directly instead.
Error in classification is either due to bias of the

classification (22), to the variance of the classification (23),

or to the irreducible variability of the test label Y itself. For

example, the optimal Bayes classifier has zero variance (the

Bayes classifier does not change with different training
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Fig. 5. LIME simulation results for varying � on 2,000 test points in 20 dimensions with 127 neighbors. (a) Classification error rate. (b) Entropy of the
LIME weights averaged over the test set. (c) Mean squared error between the test point X and its LIME weighted neighbors averaged over the test set.



sets); the Bayes error rate is due entirely to the randomness
of the test observation Y .

The total error over all 100,000 test points in this
simulation was 53,799 errors for kNN, 25,296 errors for
local linear, and 16,791 errors for LIME. Did the LIME
reduction in error come generally from a reduction in bias

or from a reduction in variance? As is seen in the
histograms displayed in the right column of Fig. 6, the
variance of the LIME estimates was, in fact, generally larger
than the kNN or local linear variance. Thus, the error
reduction for LIME must have come from reduced bias. The
left column of Fig. 6 confirms this: The LIME estimation bias
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Fig. 6. Left column: Histograms of the empirical biases of the classification of 1,000 test points, where the empirical bias is an average over 100 different

training sets. Right column: Histogram of the empirical variance of the classification of 1,000 test points, where the empirical variance is an average

over 100 different training sets. Right top: LIME variance. Right middle: kNN variance. Right bottom: Local linear variance.



has predominantly small magnitude, whereas the kNN and
local linear biases have peaks at -1 and 1, respectively.

4 ANALYSIS OF THE INTEGRITY OF PIPELINES

Recently developed optical inspection tools provide images

from the inside of natural gas pipelines to monitor pipeline

integrity. Experts can classify the images with labels such as

“normal,” “weld,” or “corrosion blisters.” Two example

images are shown in Fig. 7. In [24], the feasibility of an

automatic classification system was studied using pipeline

images from Norsk Electro Optikk (NEO). Twenty-two

features were developed to differentiate 12 classes of events.

Misclassification costs were estimated by engineers at NEO

and varied greatly between pairs of classes.
Classification results on a expert-labeled set of 228 images

are shown in Table 1 for linear discriminant analysis (LDA)

[1], regularized quadratic discriminant analysis (QDA) [1],

LIME, and Friedman’s boosted decision tree algorithm

MART1 [1]. LDA and QDA were chosen for their robustness

to the application’s small sample size given the twenty-two-

dimensional feature size. Each of the 22 features was

developed to help differentiate between two confusable

classes and, thus, it was expected that a decision tree method

would work well.

For each sample x, any classifier parameters were

estimated based on the other 227 sample points and the

estimated class of x was determined using these para-

meters. Notably, the expected LIME cost was more than 20

percent lower than the expected cost with the MART

decision tree. These results show LIME to be a competitive

classifier in a practical situation.

5 CONSISTENCY

A guarantee that an algorithm will achieve optimal risk

asymptotically is useful in practice and validates the

inductive method philosophically [25], [26]. Learning

algorithms that fit a model of the class densities or that

model the decision boundaries, are often not flexible enough

to approach optimal rates with an increasing number of

training samples. A method for supervised learning is Lr

consistent if when ðX;Y Þ, ðX1; Y1Þ; ðX2; Y2Þ; . . . ; ðXn; YnÞ are

iid, Y is real-valued, r > 1, and E½jY jr	 <1, then ŶY ðXÞ !
E½Y jX	 in Lr. A method is said to be universally consistent if

it is consistent regardless of the distribution of X. Many

nonparametric supervised learning algorithms are consis-

tent; see [19] for a review of consistency properties of
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1. MART was implemented using code available at http://www-
stat.stanford.edu/~jhf/.

Fig. 7. (a) A normal image and (b) osmosis blister image from the inside of a natural gas pipeline. Photos courtesy of NEO.

TABLE 1
Mean Expected Cost for Each Given Class



various algorithms. Algorithms of interest in this paper are

nonadaptive in that they are of the form

ŶY ðXÞ ¼
Xn
i¼1

wniðX;X1; . . . ; XnÞ Yi;

that is, the weights wniðXÞ ¼ wniðX;X1; . . . ; XnÞ do not

depend on Y1; . . . ; Yn.
In this section, the result is formally stated that the LIME

algorithm with any lp distance function D is Bayes risk

consistent for bounded feature spaces under standard

asymptotic assumptions, k!1, n!1, and k=n! 0.

The proof of this theorem is given in [7]. This special case

of bounded features corresponds to practical situations and

highlights the key ideas of the algorithm without the clutter

of detailed technical arguments. Extensions of the consis-

tency result to unbounded features is difficult and some of

the technical details are not yet resolved. The extension is

further discussed in the final section of the Appendix.

Theorem 1 (LIME consistency). Suppose w�n is the pmf that

solves a lp LIME minimization problem for X and its

kðnÞ nearest-neighbors, where the nearest-neighbors are ordered

in terms of lp distance. Suppose all training and test feature

vectors are random variables drawn iid according to a

distribution with bounded support. Then, the sequence of

weights w�n is universally consistent as kðnÞ ! 1, n!1,

and kðnÞ=n! 0.

Stone’s consistency is a statement about convergence of

the estimated mean over the space of test vectors X.

However, one can apply dominated convergence and

Fubini’s theorem to see that Stone’s consistency also implies

convergence of the estimated mean when conditioned on

X ¼ x for a set of x with probability one.

5.1 Robustness to Noise

Real measurements are rarely noise-free. The following

lemma states that if the training observations are corrupted

by iid zero-mean additive noise, the expected LIME estimate

will be unaffected, and, further, that the noisy estimate will

converge without bias to the clean LIME estimate as the

number of neighborhood training samples k!1.

Lemma 5. Suppose that each Y1; Y2; . . . is observed with additive

noise. Thus, ~YY i ¼ Yi þ "i, where "; "1; "2; . . . are iid. Assume

that f"; "ig is independent of fðX;Y Þ; ðXi; YiÞg and that, for

some p > 1; E½j"jp	 <1. Then, LIME regression estimates

computed from fðXi; ~YY iÞ; i ¼ 1; 2; . . .g are consistent provided

jjXjj is finite.

6 LINEAR INTERPOLATION ON GRIDS

Consider the case in which the known sample points lie on a

regular d-dimensional grid and the test pointx is interior to the

grid. It is common to interpolate such test points by obtaining

weights by performing linear interpolation dimension-by-

dimension and then applying the obtained weights linearly to

the associated output variable to form an estimate. This

technique is used in color management to interpolate three-

dimensional look-up-tables [27]. More generally, the Matlab

function interpn [28] performs this successive linear inter-

polation in each dimension and code is available in Numerical

Recipes in C [29]. Let the training vectors fx1; x2; . . .x2dg be

the vertices of the d-dimensional unit hypercube. Consider a

test point x 2 ½0; 1	d; the ith weight of the successive linear

interpolation weights for x can be written:

w�i ¼
Yd
m¼1

j1� xi � xjð Þm; ð24Þ

for i ¼ 1; . . . ; 2d, where ðxÞm is the mth component of the

vector x.

Notably, this common form of linear interpolation for

grids is the weighting of the grid points that has the

maximum entropy out of all solutions that satisfy the linear

interpolation equations.

Theorem 2. The successive linear interpolation weights (24)

solve

argmax
v
HðvÞ ð25Þ

subject to

X2d
i¼1

vi ¼ 1;
X2d
i¼1

vixi ¼ x; v � 0: ð26Þ

7 CONVEX HULLS OF k-NEAREST NEIGHBORS

As shown in the simulations, the LIME estimates can achieve

lower bias than other neighborhood methods. A heuristic

argument for the bias reduction is that the linear interpola-

tion equations are approximately satisfied and, thus, the bias

is greatly reduced. This argument is strengthened by the

following result: that X is in the convex hull of its k-nearest

neighbors out of a total of n training sample vectors.

Theorem 3 shows that, in large enough samples, this

condition not only is satisfied, but remains satisfied over

the indefinite horizon as n!1.

Theorem 3. Let fX;Xig be iid and take values in Rd, for some

d <1. Suppose their common distribution is absolutely

continuous with Lebesgue density f . Let suppðfÞ denote the

support of f , and suppðfÞo its interior. Assume that

�ðsuppðfÞnsuppðfÞoÞ ¼ 0, where � denotes Lebesgue measure.

Assume further that there is a numerical sequence an !1 for

which anðlognÞ=n! 0, and set k ¼ kðnÞ ¼ an logn. Let

X1;n; X2;n; . . .Xk;n be the kðnÞ nearest neighbors of X among

X1; X2; . . .Xn. (Note that the existence of f means that almost

surely eachXi is uniquely defined.) LetCðk; nÞ be the convex hull

of X1;n; X2;n; . . . ; Xk;n. Then,

P
[1
N¼1

\1
n¼N
½X 2 Cðk; nÞ	

 !
¼ 1:
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8 DISCUSSION

LIME uses the linear interpolation equations to avoid bias and
the maximum entropy principle to weight all near neighbors
as uniformly as possible to keep estimation variance low.
LIME regularizes the weights, but differs from methods that
trade off between empirical accuracy and complexity [30],
[31], [32]. Instead, the LIME weights are designed to trade off
between distortion in the feature space (not in the observation
space) and diversity in the use of the training data.

The algorithm presented here is a “vanilla” version.
Refinements in terms of neighborhood selection, fast
neighbor search, feature scaling, distortion functions,
reduced weighting over distance, and hybrid estimation
techniques might all lead to better performance.

In this paper, we have presented several theoretical
properties for LIME under simple assumptions. Open
questions include the analysis of rates of convergence for
the LIME weight, theoretical determination of the para-
meter �, and theoretical determination of kðnÞ when using
the k nearest neighbors as a neighborhood. Optimal values
of kðnÞ would depend upon the smoothness of the under-
lying probability density and on the smoothness of the
function being estimated. We believe that the approaches of
Stone [33] adapted to the nearest neighbor probability
structure [34] would be a foundation for such results.

APPENDIX

Proof (Lemma 1 LIME Weights Converge to Uniform). The
proof of Lemma 1 follows easily from an auxillary result
characterizing the objective in the limit of large �:

Lemma 6. Let ui ¼ 1=kðnÞ for all n and for all i ¼ 1; . . . ; kðnÞ
and ui ¼ 0 otherwise. Let F ðw; �Þ ¼ DðwÞ � �HðwÞ, where
DðwÞ denotes Dð

Pk
i¼1 wiXi �XÞ.

lim
�!1

infw F ðw; �Þ � F ðu; �Þ
�

¼ 0: ð27Þ

Proof (Lemma 6). By definition, infw F ðw; �Þ � F ðu; �Þ. Then,
since � � 0, F ðu; �Þ=�� infw F ðw; �Þ=� � 0 and, thus,

lim inf
�!1

F ðu; �Þ
�

� inf
w

F ðw; �Þ
�

� �
� 0: ð28Þ

Coupling

DðuÞ
�
�HðuÞ � inf

w

DðwÞ
�
�HðwÞ

� �

� DðuÞ
�
�HðuÞ þ sup

w
HðwÞ;

with

lim
�!1

DðuÞ
�
þ sup

w
HðwÞ �HðuÞ

� �
¼ sup

w
HðwÞ �HðuÞ

� �
¼ 0;

establishes that

lim sup
�!1

F ðu; �Þ
�

� inf
w

F ðw; �Þ
�

� �
� 0: ð29Þ

Combining (28) and (29) yields the lemma. tu

From Lemma 6, it can be concluded that for the LIME
weights w� ¼ argminw F ðw; �Þ,

lim
�!1

Hðw�Þ �HðuÞð Þ ¼ 0

or, equivalently,

lim
�!1

Hðw�Þ ¼ HðuÞ ¼ log k: ð30Þ

A result from information theory [12, pp. 102-103] relates
the l1 distance and the relative entropy I of two pmfs p
and q, kp� qk1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2IðpkqÞ

p
. Then,

lim
�!1
kw� � uk1 � lim

�!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dðw�kuÞ

p
¼ lim

�!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðlog k�Hðw�ÞÞ

p
¼ 0;

where the last line follows from (30). tu
Proof (Lemma 4 Asymptotic Vanishing Weights). We

show that, for any � > 0, there is some n0 such that, for
every n > n0, kw�nk1 < �. The proof is by contradiction.
Consider any weight sequence an such that kank1 � � > 0
infinitely often, and define the setA such that n 2 A if and
only if kank1 � �. Let the uniform weight sequence over
the near neighbors be ui;n ¼ 1=kðnÞ. In this section, we use
the notation DðwnÞ to mean Dð

Pn
i¼1 wi;nXi �XÞ. The

LIME weight sequence minimizesDðwnÞ � �HðwnÞ for all
n. We show that there exists some n0 such that

DðunÞ � �HðunÞ < DðanÞ � �HðanÞ ð31Þ

for all n such that n > n0 and n 2 A. Thus, no sequence
an with maximum component kank1 � � infinitely often
can be the LIME weight sequence.

To show (31), we suppose pessimistically thatDðanÞ ¼ 0
and then show that HðunÞ �HðanÞ grows without bound
for n 2 A and that DðunÞ ! 0. Then, for fixed � > 0 and
� > 0, there exists some n0 such that DðunÞ < �ðHðunÞ �
HðanÞÞ for all n > n0 and n 2 A. Thus, (31) holds and no
sequence an can be the LIME weight sequence.

First, we show that HðunÞ �HðanÞ grows without
bound for n!1, n 2 A. By Fano’s Inequality [14,
pp. 38-40],

HðanÞ � � ln
1

�

� �
� ð1� �Þ ln 1� �

kðnÞ � 1

� �
; ð32Þ

for n 2 A. Then,

HðunÞ �HðanÞ � lnðkðnÞÞ þ � lnð�Þ þ ð1� �Þ ln 1� �
kðnÞ � 1

� �
;

for n 2 A, which (after expanding) is dominated by the
� lnðkðnÞ � 1Þ term for a given � as kðnÞ; n!1. Thus,
HðunÞ �HðanÞ grows without bound for n 2 A as kðnÞ !
1 and n!1.

Also,

DðunÞ ¼
1

kðnÞ k
X
i2Jn

Xi �Xk

� 1

kðnÞ
X
i2Jn
kXi �Xk

� kXkðnÞ �Xk;
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where the last line holds by the ordering of the near

neighbors and because there are kðnÞ near neighbors

(that is, the cardinality of the set i 2 Jn is kðnÞ). The

conditions for Lemma 5.1 from [19, p. 63] hold, so that

kXkðnÞ �Xk ! 0 and, thus, DðunÞ ! 0. tu
Proof (Lemma 5 Robustness to Noise). Write w�n for the

LIME weights for a random test point X. We have shown

that w�n are consistent under conditions that apply to this

lemma. Write

~̂YY~YY ¼
Xn
i¼1

w�i;n
~YY i

¼
Xn
i¼1

w�i;nYi þ
Xn
i¼1

w�i;n"i:

The first term tends to E½Y jX	 because w�n are a consistent

sequence of weights. If we replace ðXi; YiÞ pairs by ðXi; "iÞ
pairs, then, because w�n are consistent weights,

P
w�i;n"i !

E½"jX	 as n increases without bound. Because " and X are

independent, E½"jX	 is almost surely E½"	 ¼ 0. So,Pn
i¼1 w

�
i;n

~YY i tends in Lp to E½Y jX	. tu
Proof (Theorem 2 Successive Linear Interpolation Max-

imizes Entropy). To solve (25), there are 2d weights that

must be determined, but only dþ 1 linear interpolation

equations given as constraints. Since x is by construction

contained in the convex hull of the vertices of the unit

hypercube, there exists a continuous and convex set of

solutions to the linear interpolation equations given as

constraints:

w : w 2 W;
X2d
i¼1

wixi ¼ x
( )

; ð33Þ

where W is the set of all pmfs with 2d components.
It is easy to show by induction over dimensionality that

the successive linear interpolation weightsw� given in (24)
are, in fact, one solution to the linear interpolation
equations. It remains to be shown that of the set of feasible
pmfs, the successive linear interpolation weightsw� are the
solution with maximum entropy.

According to the maximum entropy distribution
theorem given in [14] (Theorem 11.1.1, p. 267) and given
in [8] (Theorem 2.1, p. 38), the pmf that maximizes
entropy given a moment constraint

X2d
i¼1

vixi ¼ x ð34Þ

is unique and has exponential form, v�i ¼ �e��
Txi , where

� 2 Rd and � 2 R satisfy

� ¼ 1P2d

i¼1 e
��T xi

ð35Þ

and

�
X2d
i¼1

xie
��T xi ¼ x: ð36Þ

We present a � and � that satisfy (35) and (36) and
show that the successive linear interpolation weights w�

are equal to the maximum entropy weights v� that solve
(25) and (26).

Denote the mth component of vector x with ðxÞm.
Then, let

� ¼
Yd
m¼1

1� ðxÞm

and let the mth component of � be

ð�Þm ¼ � ln
ðxÞm

1� ðxÞm

� �

form ¼ 1; . . . ; d. Substituting � and � into the equation for
the maximum entropy weight distribution v�i ¼ �e��

Txi ,
the maximum entropy weights are

v�i ¼
Yd
m¼1

1� ðxÞm
� 	" #

e

Pd

m¼1
ðxiÞm ln

ðxÞm
1�ðxÞm

� �
:

Simplifying,

v�i ¼
Yd
m¼1

1� ðxÞm
� 	 ðxÞm

1� ðxÞm

� �ðxiÞm

¼
Yd
m¼1

j1� ðxiÞm � ðxÞmj
� 	

;

where the last line follows because every component of xi
is either a one or a zero (since the training points lie on a
regular grid). Thus, the maximum entropy weights v� and
the successive linear interpolation weights w� are equiva-
lent and the successive linear interpolation weights must
be the unique maximum entropy weights given the mean
constraint. tu

Proof (Theorem 3 Convex Neighborhood). Readers will
note from this proof that, if Theorem 3 holds for d ¼ 2,
then it holds for any d. Before turning to the main proof
in two dimensions, some preliminaries are required.

The following theorem (Theorem 4) is needed for this
proof. It is proven by a slight variation of the arguments
for Theorem 12.2 of [35] and Theorem 3.15 of [36].

Theorem 4. Suppose that � > 0, a dimension d <1, p > 0, and
a Vapnik-Chervonenkis class B are given. Then, there exists a
constant c ¼ cðp; �; d;BÞ such that, for all n � Nðp; �; d;BÞ,
there is a set A, with P ðAÞ � 1� n�ð2pþ1Þ on which
simultaneously for all B 2 B,

jF̂FnðBÞ � F ðBÞj � �F̂FnðBÞ þ c
logn

n

and

jF̂FnðBÞ � F ðBÞj � �F ðBÞ þ c
logn

n
:

Here, F ðBÞ ¼ P ðX 2 BÞ; F̂FnðBÞ ¼ n�1
Pn

i¼1 Ixi2B, where IE
is the indicator function of the event E.

Some further notation is needed to prove Theorem 3.For

x 2 R2 and r > 0, let Sðx; rÞ denote the circle of radius r
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centered at x. Working in polar coordinates, letWiðx; rÞ be

the “wedge” defined as Sðx; rÞ \ f2	ði� 1Þ=5 � 
i <
2	i=5g. Thus, Sðx; rÞ ¼ [5

i¼1Wiðx; rÞ, and �ðWiðx; rÞÞ 

2	r2=5¼ �ðSðx; rÞ=5Þ. Clearly, if there exist points zi 2Wi

ðx; rÞ, i ¼ 1; . . . ; 5, then x 2 Cðfz1; z2; z3; z4; z5gÞ, that is, x is

contained within the closure of the convex hull of

fz1; z2; z3; z4; z5g. By arguments using Fubini’s Theorem

as in [37], it is enough to prove Theorem 3 for fixed x 2 R2,

where x 2 suppðfÞ. Also, we will use the abbreviation “a.s.

ultimately” to mean “almost surely ultimately.” Now, we

begin the body of the proof. Note from [38, p. 39] that the

circle Sðx; rÞ as x and r vary is a differentiation basis for

L1ðR2Þ (that is, for the Lebesgue-integrable real functions

on R2). As a consequence, for Lebesgue almost all x 2
suppðfÞ0 and, thus, for almost all x 2 suppðfÞ,

fðxÞ ¼ lim
r!1

R
Sðx;rÞ fðuÞdu
�ðSðx; rÞÞ ; ð37Þ

so, for almost all x 2 suppðfÞ0,Z
Sðx;rÞ

fðuÞdu ¼ P ðx 2 Sðx; rÞÞ

¼ 2	r2fðxÞ þ oðr2Þ
¼ 2	r2fðxÞ þ oð�ðSðx; rÞÞÞ:

From the discussion prior to Theorem 1.1.1. [39, p. 3], it

follows that (37) is equivalent to

supprational r

R
Sðx;rÞ fðuÞdu
�ðSðx; rÞÞ <1 ð38Þ

for Lebesgue almost all x. From (38) and the discussion

prior to Theorem 1.1.1 of [39], it follows that

supprational r

R
Wiðx;rÞ fðuÞdu
�ðWiðx; rÞÞ

<1 ð39Þ

for i ¼ 1; . . . ; 5 and for almost allx. Therefore, for almost all

x 2 suppðfÞ0, it holds that for all i,Z
Wiðx;rÞ

fðuÞdu ¼ P ðx 2Wiðx; rÞÞ

¼ 2

5
	r2fðxÞ þ oðr2Þ

¼ 2

5
	r2fðxÞ þ oð�ðWiðx; rÞÞÞ:

ð40Þ

Recall from [40, pp. 18 and 30] that fSðx; rÞg [
fWiðx; rÞg as x, r, and i vary is a Vapnik-Chervonenkis

class of sets. Let EC
1 denote the event E1 not occurring,

then, for events E1; E2; . . . , write “En wp1ofo” to mean

“the event En with probability 1 only finitely often” if

P ð[1N¼1ð\1n¼NEC
n ÞÞ ¼ 1. Now,

jF̂FnðWiðx; rÞÞ � F̂FnðWjðx; rÞÞj � jF̂FnðWiðx; rÞÞ
� F ðWiðx; rÞÞj þ jF̂FnðWjðx; rÞÞ � F ðWjðx; rÞÞj:

Pick 1 > � > 0. From Theorem 4 and the Borel-Cantelli
lemma, it follows that there is a finite c <1 for which

jF̂FnðWiðx; rÞ � F ðWiðx; rÞÞj � �F ðWiðx; rÞ þ c
logn

n
wp1ofo:

ð41Þ

Therefore,

F̂FnðWiðx; rÞÞ < F ðWiðx; rÞÞ � �F ðWiðx; rÞÞ � c
logn

n
wp1ofo;

ð42Þ

and

F̂FnðWiðx; rÞÞ � ð1� �ÞF ðWiðx; rÞÞ � c
logn

n
a:s: ultimately:

ð43Þ

It follows that, for Lebesgue almost all fixed x0 2 suppðfÞ0,

F̂FnðWiðx0; rÞÞ � ð1� �Þ
2	fðx0Þ

5
r2

� �

þ oðr2Þ � c logn

n
a:s: ultimately:

ð44Þ

Let rn ¼ kXk;nðx0Þ � x0k, where Xk;nðx0Þ is the kth
nearest neighbor out of n neighbors to x0. If logn

n ¼ ðr2
nÞ,

then a.s. ultimately F̂FnðWiðx0; rÞÞ > 0, i ¼ 1; . . . ; 5; so
x0 2 CðfX1;n; X2;n; . . . ; Xk;ngÞ. Therefore, what remains is
to prove that the probability is 1 that logðnÞ=n ¼ oðr2

nÞ.
Let an be defined as in the theorem’s statement; then

Theorem 4 implies that

���F̂FnðSðx0; rnÞÞ
F ðSðx0; rnÞÞ

� 1
��� > "þ c

an
wp1ofo: ð45Þ

It follows that

��� F̂FnðSðx0; rnÞÞ
2	fðx0Þr2

n þ oðr2
nÞ
� 1
��� > "þ c

an
wp1ofo: ð46Þ

Because F̂FnðSðx0; rnÞÞ � kðnÞ=n, where kðnÞ is as de-
scribed in the statement of the theorem, a.s. ultimately,
logn=n ¼ oðr2

nÞ. tu
Conjecture: (LIME weights consistent for unbounded X).
Here, we discuss what we know about whether the LIME

weights are Lp consistent in Stone’s sense if X is unbounded
but with E½kXkp	 <1.

DenoteE½Y jX	with fðXÞ. LetDn ¼ DnðX;X1; . . . ; XnÞ ¼
fjjX �Xk;nðXÞjj < �ng, where �n is to be specified. Suppose
that p > 1 andE½jY jp	 <1. Let 1 < p0 < p and q ¼ p=ðp� p0Þ.
Then,

E

"���Xn
i¼1

wi;nYi � fðXÞ
���p0
#

¼ E
"���Xn

i¼1

wi;nYi � fðXÞ
���p0 ðIDn

þ IDc
n
Þ
#

¼ E
"���Xn

i¼1

wi;nYi � fðXÞ
���p0IDc

n

#
þ E

"���Xn
i¼1

wi;nYi � fðXÞ
���IDn

#
:

ð47Þ
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We study the first term of (47),

0 � E
"���Xn

i¼1

wi;nYi � fðXÞ
���p0IDc

n

#

�
 
E1=p

"���Xn
i¼1

wi;nYi � fðXÞ
���p0
#!p

E1=q½IqDc
n
	

�
 Xn

i¼1

E1=p

"���wi;nYi � fðXÞ���p0
#!p

P 1=qðDc
nÞ:

The first inequality is a consequence of Hölder’s inequality.
The second follows from the norm inequality and the fact that
an indicator function to a positive real power is just itself.
Now, the last displayed product of two terms is at most

nE1=p w1;nY1 � fðXÞ
�� ��p� �� �p0

P 1=qðDc
nÞ ð48Þ

by the exchangeability of the learning sample. But, (48) is
bounded above by

np
0
P 1=q ðDc

nÞ
 
E1=p

h���w1;nY1

���piþE1=p
h���fðXÞ���pi

!p0

� np0P 1=q ðDc
nÞ
 
E1=p

h���Y ���piþ E1=p
h���fðXÞ���pi

!p0

� np0P 1=q ðDc
nÞ
 

2E1=p
h���Y ���pi

!p0

because conditional expectations reduce norms. Showing
that

E

"���Xn
i¼1

wi;nYi � fðXÞ
���pIDc

n

#
! 0 ð49Þ

is now seen to follow from showing that np
0
P 1=qðDc

nÞ ! 0.
There is a constant K; 1 < K <1 for which

KjjX �Xk;nðXÞjjd inf
SðX;Xk;nðXÞÞ

f � P ðSðX;Xk;nðXÞÞÞ

which is not trivial if there is a version of f and an � > 0 for
which

inf
SðX;Xk;nðXÞÞ

f > � : ð50Þ

When this is the case, jjX �Xk;nðXÞjj and P 1=dðSðX;
Xk;nðXÞÞ are of the same order of magnitude. It follows from
Theorem 5 that when (50) holds, it is easy to choose �n so that
(49) also holds. But, now comes the difficulty. When the
support of f has infinite Lebesgue measure, even when f > 0
everywhereonthenonemptyinteriorof itssupport, there isno
� > 0 for which (50) holds. Necessarily, � ¼ �ðXÞ. We would
like to argue that P ðSðX;Xk;nðXÞÞÞ small ensures that jjX �
Xk;nðXÞjj is small, except possibly on an event of “small
enough” probability.

The discussion thus far has focused only on the first term of
(47). That the second term tends to 0 follows from an argument
like that for LIME consistency when jjXjj is bounded. Though
the proof remains in the details, based on the above
arguments, we conjecture thatE½j

Pn
i¼1 wi;nYi � fðXÞj

p0 	 ! 0.
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