
Strategies for Similarity-based Learning

Yihua Chen

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

University of Washington

2010

Program Authorized to Offer Degree: Electrical Engineering

University of Washington
Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Yihua Chen

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Chair of the Supervisory Committee:

Maya R. Gupta

Reading Committee:

Maryam Fazel

Maya R. Gupta

Mari Ostendorf

Date:

In presenting this dissertation in partial fulfillment of the requirements for the doctoral
degree at the University of Washington, I agree that the Library shall make its copies
freely available for inspection. I further agree that extensive copying of this dissertation is
allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S.
Copyright Law. Requests for copying or reproduction of this dissertation may be referred
to Proquest Information and Learning, 300 North Zeeb Road, Ann Arbor, MI 48106-1346,
1-800-521-0600, to whom the author has granted “the right to reproduce and sell (a) copies
of the manuscript in microform and/or (b) printed copies of the manuscript made from
microform.”

Signature

Date

University of Washington

Abstract

Strategies for Similarity-based Learning

Yihua Chen

Chair of the Supervisory Committee:
Professor Maya R. Gupta

Electrical Engineering

This dissertation addresses the problem of learning from similarity data. Such similarity-

based learning problems arise in bioinformatics, computer vision, information retrieval,

natural language processing, and a broad range of other fields. I first review the field

of similarity-based classification. Then I propose two design goals for similarity-based

weighted nearest-neighbor classifiers. Based on these design goals, two weighting meth-

ods are proposed. Then a comparative study of ten similarity-based classification methods

is presented with a comprehensive set of experimental results on eight real data sets.

Similarity measures in many real applications generate indefinite similarity matrices.

These indefinite kernels can be problematic for standard kernel-based learning algorithms

as the optimization problems become nonconvex and the underlying theory is invalidated.

In order to adapt kernel methods for similarity-based learning, I introduce a method that

aims to simultaneously find a reproducing kernel Hilbert space based on the given indef-

inite similarities and train a classifier with good generalization in that space. The method

is formulated as a convex optimization problem. I also propose a simplified version that

can reduce overfitting and whose associated convex optimization problem can be solved

efficiently. The proposed simplified version is extended to multiple kernel learning, where

indefinite similarities are combined with multiple kernels for the learning task.

Lastly, I discuss the research on completing a kernel matrix with missing rows and

columns using auxiliary information, and sketch a possible direction for future research.

TABLE OF CONTENTS

Page

List of Figures . iii

List of Tables . iv

Chapter 1: Introduction . 1

Chapter 2: Background and Related Work . 5

2.1 Similarities as Inner Products . 6

2.2 Similarities as Features . 11

2.3 Generalization Bounds for Similarity SVM Classifiers 13

Chapter 3: Similarity-based Weighted Nearest-Neighbors 16

3.1 Design Goals for Similarity-based Weighted k-NN 16

3.2 Kernel Ridge Interpolation Weights . 18

Chapter 4: Comparative Study of Similarity-based Classification Methods 25

4.1 Consistent Treatment of Training and Test Samples 25

4.2 Data Sets . 28

4.3 Experimental Setup . 35

4.4 Experimental Results . 37

4.5 Clip, Flip, or Shift? . 42

4.6 Probability Estimates from Weighted k-NN 44

Chapter 5: Learning Kernels from Indefinite Similarities 51

5.1 Learning the Kernel Matrix . 51

5.2 Learning the Spectrum Modification . 60

5.3 Experiments . 67

5.4 Combining Similarities with Multiple Kernels 76

i

Chapter 6: Kernel Matrix Completion Using Auxiliary Information 99
6.1 Prior Work . 101
6.2 Problem Settings . 104
6.3 SVM for Kernel Matrix Completion . 105

Chapter 7: Conclusions . 109

Bibliography . 112

Appendix A: Proof of Proposition 4.1 . 121

Appendix B: Proof of Lemma 5.3 . 122

Appendix C: Wishart and Inverse Wishart Distributions 124

ii

LIST OF FIGURES

Figure Number Page

3.1 KRI and KRR weights for Example 1 . 22
3.2 KRI and KRR weights for Example 2 . 22
3.3 KRI and KRR weights for Example 3 . 22

4.1 Similarity matrices of the Amazon-47 and Patrol data sets 29
4.2 Similarity matrices of the Aural Sonar and Voting data sets 30
4.3 Similarity matrix of the Caltech-101 data set 31
4.4 Similarity matrices of the Face Rec and Mirex07 data sets 32
4.5 Similarity matrices of the Protein and Protein RBF-sim data sets 33
4.6 Perplexity vs neighborhood size k, part 1 . 48
4.7 Perplexity vs neighborhood size k, part 2 . 49
4.8 Perplexity vs neighborhood size k, part 3 . 50

5.1 SimSVM vs the Indefinite SVM on the Amazon-2 data set 77
5.2 Similarity matrix and spectrum of the Amazon-2 data set 78
5.3 Similarity matrix and spectrum of the Aural Sonar data set 79
5.4 Similarity matrix and spectrum of the Protein-2 data set 80
5.5 Similarity matrix and spectrum of the Voting data set 81
5.6 Similarity matrix and spectrum of the Yeast-5-7 data set 82
5.7 Similarity matrix and spectrum of the Yeast-5-12 data set 83
5.8 Similarity matrix and spectrum of the Yeast-6-8 data set 84
5.9 Similarity matrix and spectrum of the Yeast-6-10 data set 85
5.10 Similarity and kernel matrices of the Amazon-2 data set 92
5.11 Similarity and kernel matrices of the Aural Sonar data set 93
5.12 Similarity and kernel matrices of the Protein-2 data set 94
5.13 Similarity and kernel matrices of the Yeast-7-12 data set 95
5.14 Fused kernel matrices of the Amazon-2 and Yeast-7-12 data sets 98

6.1 Hierarchical model for kernel matrix completion 103

iii

LIST OF TABLES

Table Number Page

4.1 Summary of the eight data sets used in the comparative study 28
4.2 Cross-validation parameter choices for the comparative study 36
4.3 Experimental results of the comparative study, part 1 37
4.4 Experimental results of the comparative study, part 2 38
4.5 Experimental results of the comparative study, part 3 39
4.6 Clip, flip, shift, and pinv comparison . 43
4.7 Perplexities of the weighted k-NN methods 47
4.8 Normalized cross entropies of the weighted k-NN methods 47

5.1 The LP approximation method vs the SOCP method, part 1 70
5.2 The LP approximation method vs the SOCP method, part 2 71
5.3 Classification performance of the SimSVM 74
5.4 Modified vs unmodified test similarities for the SimSVM 76
5.5 Classification performance of the SimMKL, part 1 96
5.6 Classification performance of the SimMKL, part 2 97

iv

ACKNOWLEDGMENTS

Plain language is not enough to express my deep gratitude to those who made this

dissertation possible, but to say a few “thanks” is the least I can do here.

First, my thanks go to my supervisory committee: Maryam Fazel, Maya Gupta, Bill

Noble, and Mari Ostendorf. I would like to thank Mari for her statistical language process-

ing class, which introduced me to many machine learning problems in natural language

processing, and also her suggestions on how to evaluate posterior probability estimates on

real data sets. This dissertation uses optimization heavily, almost all of which I learned

from Maryam’s convex optimization class; the math taught in her class was so delightful

that I could only get satisfied by doing a lot of extra homework problems. Unlike some

literature on learning with indefinite similarities that only presents experimental results

on artificial data sets, all the experiments reported in this dissertation were done on real

data sets, and some of them were provided by Bill. I also want to thank Bill for pointing

me to many papers related to my research. To have had Maya as my academic adviser is

one of the most wonderful things that happened to me during graduate school, and this

dissertation serves as a witness to her constant inspiration.

More thanks go to those whom I worked with in the past four years: Hyrum Ander-

son, Sergey Feldman, Bela Frigyik, Eric Garcia, Evan Hanusa, Nasiha Hrustemovic, Kevin

Jamieson, Alex Marin, Will Mortensen, Nathan Parrish, Peter Sadowski, Eric Swanson, and

Kristi Tsukida. They simply made my graduate school years a lot more fun.

I also appreciate guidance, help, inspiration, or mentorship from Luca Cazzanti, John

Krumm, Kunal Mukerjee, Ting-Kei Pong, Ali Rahimi, Ben Recht, Paul Tseng, and I apolo-

gize for any appreciation left unmentioned.

Last but not least, I would like to thank my family, especially my parents and my uncle,

for their constant support and encouragement.

v

DEDICATION

To my parents

with love and gratitude

vi

1

Chapter 1

INTRODUCTION

Man is a classifying animal: in one sense it

may be said that the whole process of

speaking is nothing but distributing

phenomena, of which no two are alike in

every respect, into different classes on the

strength of perceived similarities and

dissimilarities.
Otto Jespersen

Two common types of data in machine learning problems are vectorial data and pair-

wise similarity data. Vectorial data represents samples as points in an n-dimensional Eu-

clidean space, while similarity data reveals pairwise (dis)similarities between samples, and

is usually presented in the form of a matrix. Many theories and algorithms have been de-

veloped to solve learning problems for vectorial data. However, as put by Laub et al. [58],

“structure is really what is of interest in data analysis and not a particular representation.”

Sometimes, the inherent structure of the data can only be properly described by a pairwise

relationship, often interpreted as (dis)similarity. Such data occurs natively in computer vi-

sion, bioinformatics, information retrieval, natural language processing, and a broad range

of other fields, especially those involving or trying to imitate human judgment.

This research focuses on the problem of classification given pairwise similarity data,

although the methods considered here are applicable to a range of similarity-based estima-

tion tasks, such as ranking and regression. Formally, similarity-based classifiers estimate

the class label of a test sample based on the similarities between the test sample and a set of

labeled training samples, and also the pairwise similarities between the training samples.

Like others, I use the term similarity-based classification whether the pairwise relationship is

a similarity or dissimilarity. Similarity-based classification does not require direct access

2

to the features of the samples, and thus the sample space can be any set, not necessarily a

Euclidean space, as long as the similarity function is well defined for any pair of samples.

Moreover, for certain types of samples whose features we can access directly, pairwise sim-

ilarities computed from their features can still be more helpful than their original features

for solving the learning problem.

To formally describe the similarity-based classification problem, let Ω be the sample

space and G be the finite set of class labels. Let ψ : Ω×Ω → R be the similarity function.

I assume that the pairwise similarities between n training samples are given as an n × n

similarity matrix S whose (i, j)-entry is ψ(xi, xj), where xi ∈ Ω, i = 1, . . . , n, denotes the ith

training sample, and yi ∈ G, i = 1, . . . , n, the corresponding ith class label. The problem

is to estimate the class label ŷ for a test sample x based on its similarities to the training

samples ψ(x, xi), i = 1, . . . , n and its self-similarity ψ(x, x).

Similarity functions can be asymmetric or fail to satisfy the other mathematical proper-

ties required for metrics or inner products [85]. Some simple example similarity functions

are: travel time from one place to another, compressability of one random process given

a code built for another, and the minimum number of steps to convert one sequence into

another (edit distance). Computer vision researchers use many similarities, such as the tan-

gent distance [26], earth mover’s distance (EMD) [83], shape matching distance [11], and

pyramid match kernel [40] to measure the similarity or dissimilarity between images in or-

der to do image retrieval and object recognition. In bioinformatics, the Smith-Waterman al-

gorithm [89], the FASTA algorithm [61], and the BLAST algorithm [2] are popular methods

to compute the similarity between different amino acid sequences for protein classification.

In natural language processing, researchers use similarity measures such as matching coef-

ficient, Dice coefficient, Jaccard coefficient, and overlap coefficient to estimate the semantic

similarity between words or documents in the vector space model [66]. The cosine similar-

ity between term frequency-inverse document frequency (tf-idf) vectors is widely used in

information retrieval and text mining for document classification.

Notions of similarity appear to play a fundamental role in human learning, and thus

psychologists have done extensive research to model human similarity judgment. Tver-

sky’s contrast model and ratio model [98] represent an important class of similarity functions.

3

In these two models, each sample is represented by a set of features, and the similarity

function is an increasing function of set overlap but a decreasing function of set differ-

ences. Tversky’s set-theoretic similarity models have been successful in explaining human

judgment in various similarity assessment tasks, and are consistent with the observations

made by psychologists that metrics do not account for cognitive judgment of similarity in

complex situations [98, 99, 33]. Therefore, similarity-based classification may be useful for

imitating or understanding how humans categorize.

This dissertation details the contributions I have made to date in the research area of

similarity-based learning, which include:

1. design goals and new methods for similarity-based weighted nearest-neighbor clas-

sifiers,

2. a comprehensive set of experimental results for eight similarity-based learning prob-

lems using ten different similarity-based classification methods,

3. a new method that simultaneously learns a kernel through spectrum modification

and trains a discriminative classifier given indefinite similarities, and

4. an extension of the above method to combining indefinite similarities with multiple

kernels for classification.

Some of these contributions have previously appeared in the peer-reviewed literature [21,

23, 22].

To begin with, Chapter 2 reviews the background and related work. Then in Chapter 3,

I propose design goals for similarity-based weighted nearest-neighbors and also methods

that satisfy these design goals. The results of a comparative study of ten similarity-based

classification methods are reported and discussed in Chapter 4. In Chapter 5, after in-

troducing a method that aims to simultaneously learn a kernel and train a discriminative

classifier given indefinite similarities, I propose a simplified version as a trade-off between

model flexibility and overfitting, and also discuss its efficient implementations. At the end

4

of Chapter 5, I extend the proposed kernel learning method to combining indefinite simi-

larities with multiple kernels. Chapter 6 departs from the contributions I have made and

lands on a topic that I am interested in for my future research; the speculative ideas dis-

cussed in that chapter serve as a proof that my intellectual curiosity has not diminished at

the end of graduate school. Chapter 7 summarizes the whole dissertation.

5

Chapter 2

BACKGROUND AND RELATED WORK

Tell us what the former things were, so that

we may consider them and know their final

outcome.
Isaiah 41:22

A natural approach to similarity-based classification is k-nearest-neighbors (k-NN), be-

cause k-NN does not require metric properties. Nearest-neighbor learning is the algorith-

mic parallel of the exemplar model of human learning [35]. Although simple, it is often

effective, and experiments on some benchmark data sets show that it is difficult to surpass

the performance of k-NN for similarity data [75]. Weighted k-NN is a generalization of

k-NN by assigning weights to the neighbors, which is detailed in Chapter 3.

A simple alternative to k-NN classifiers for similarity-based classification is the nearest-

centroid classifier [102], which is a simple algorithmic parallel of the prototype model of

human learning [35], and generalizes the nearest-means classifier for Euclidean features.

The nearest-centroid classifier models each class by one central prototype, and classifies

the test sample as the class whose prototype is most similar to the test sample. A more

flexible variant that takes into account class variability is similarity discriminant analysis

(SDA), which uses an exponential model based on the maximum entropy principle for

the similarity from a sample to each class centroid [18]. These model-based approaches

may have a high model bias due to the rigidity of using only one prototype per class.

In order to reduce the model bias, local versions have been proposed that act on the k-

nearest neighbors of the test sample [16, 18]. However, degenerate cases tend to occur

quite often when learning a local SDA model. In order to handle this degeneracy problem,

three regularization methods were investigated in [17], among which directly regularizing

the class-conditional probabilities seems to be most effective. Furthermore, Sadowski et

al. proposed a Bayesian framework for local SDA, in which a Dirichlet prior was used to

6

achieve regularization [84]. They also formulated a variant of local SDA that models pair-

wise similarities between the test sample and all its neighbors, rather than those between

the test sample and local centroids [84].

Other similarity-based classification methods are mainly based on two different per-

spectives of similarities. One is to treat similarities as inner products, and the other is to

treat similarities as features. These two different perspectives are discussed in Section 2.1

and Section 2.2, respectively.

2.1 Similarities as Inner Products

A popular approach to similarity-based classification is to treat the given similarities as in-

ner products in some Hilbert space or to treat dissimilarities as distances in some Euclidean

space. This approach can be roughly divided into two categories: one is to explicitly em-

bed the samples in a Euclidean space according to the given (dis)similarities using multi-

dimensional scaling (see [12] for further reading) and then apply classifiers for Euclidean

features; the other is to modify the similarities to be kernels and apply kernel classifiers,

which is the topic of this section.

2.1.1 Support Vector Machine

Here I focus on the support vector machine (SVM), which is a well-known representative of

kernel methods, and thus appears to be a natural approach to similarity-based learning. All

the SVM algorithms discussed here are for binary classification (see [48, 80] for multiclass

SVM) so that yi ∈ {±1}. An elegant interpretation of the SVM is to view it as a special case

of empirical risk minimization (ERM) with regularization, which solves

minimize
f∈HK

1
n

n

∑
i=1

Lhinge(yi, f (xi)) + η‖ f ‖2
K , (2.1)

where HK is the reproducing kernel Hilbert space (RKHS) induced by a kernel function

K : Ω×Ω → R, ‖ f ‖K =
√
〈 f , f 〉K is the norm induced by the inner product associated

withHK, η > 0 is the regularization parameter, and Lhinge is the hinge loss defined by

Lhinge(y, f (x)) , max(1− y f (x), 0) .

7

The decision rule with the discriminant function f (x) is simply

ŷ = sgn(f (x)).

By the representer theorem [87], the solution to (2.1) has the form

f (x) =
n

∑
i=1

ciK(x, xi). (2.2)

By adding a bias term b to (2.2), that is, letting

f (x) =
n

∑
i=1

ciK(x, xi) + b,

we can write the primal problem of the SVM as

minimize
c, b, ξ

1
n

1Tξ + ηcTKc

subject to diag(y)(Kc + b1) ≥ 1− ξ,

ξ ≥ 0,

(2.3)

where c ∈ Rn, b ∈ R, and ξ ∈ Rn are variables, 1 denotes the column vector with all entries

one, y is the n× 1 vector whose ith element is yi, K is an n× n positive semidefinite (PSD)

kernel matrix whose (i, j)-entry is K(xi, xj), and ≥ denotes component-wise inequality for

vectors. In practice, people often prefer to solve the dual problem of (2.3), that is,

maximize
α

1Tα− 1
2

αT diag(y)K diag(y)α

subject to 0 ≤ α ≤ C1,

yTα = 0,

(2.4)

with variable α ∈ Rn and hyperparameter C = 1
2nη > 0. By solving (2.4), we can recover c

by

ci = yiαi, i = 1, . . . , n,

and recover b by

b = yj −
n

∑
i=1

ciK(xi, xj)

for any j that satisfies 0 < αj < C.

8

The theory of RKHS requires the kernel function to satisfy Mercer’s condition, and thus

the corresponding kernel matrix K must be PSD, which makes both (2.3) and (2.4) quadratic

programs. However, many similarity functions do not satisfy the properties of an inner

product, and thus the similarity matrix S can be indefinite. In the following subsections, I

will discuss several methods to modify similarities into kernels; a previous review can be

found in [104]. Unless mentioned otherwise, in this section I assume that S is symmetric.

If not, its symmetric part 1
2

(
S + ST) is used instead. Notice that the symmetrization does

not affect the objective function in (2.4) since

αT diag(y)
1
2
(S + ST)diag(y)α =

1
2

αT diag(y)S diag(y)α +
1
2

αT diag(y)ST diag(y)α

= αT diag(y)S diag(y)α.

2.1.2 Indefinite Kernels

One approach is to simply replace K with S, and ignore the fact that S is indefinite. For

example, although the SVM dual problem given by (2.4) is no longer convex when S

is indefinite, Lin and Lin showed that the sequential minimal optimization (SMO) algo-

rithm [77, 78] will still converge with a simple modification to the original algorithm [60],

but the solution is a stationary point instead of a global maximum. Ong et al. interpreted

this as finding the stationary point in a reproducing kernel Kreı̆n space (RKKS) [73], while

Haasdonk showed that this is equivalent to minimizing the distance between reduced con-

vex hulls in a pseudo-Euclidean space [43]. A Kreı̆n space, denoted by K, is defined to be

the direct sum of two disjoint Hilbert spaces, denoted by H+ and H−, respectively. So for

any a, b ∈ K = H+⊕H−, there are unique a+, b+ ∈ H+ and unique a−, b− ∈ H− such that

a = a+ + a− and b = b+ + b−. The “inner product” on K is defined by

〈a, b〉K = 〈a+, b+〉H+ − 〈a−, b−〉H− ,

which no longer has the property of positive definiteness. Pseudo-Euclidean space is a

special case of Kreı̆n space where H+ and H− are two Euclidean spaces. Ong et al. pro-

vided a representer theorem for RKKS that poses learning in RKKS as a problem of finding

a stationary point of the risk functional [73], in contrast to minimizing a risk functional in

9

RKHS. Using indefinite kernels in ERM methods such as SVM can lead to a saddle point

solution and thus does not ensure minimizing the risk functional, so this approach does not

guarantee learning in the sense of a good function approximation. Also, the nonconvexity

of the problem may require intensive computation.

2.1.3 Spectrum Clip

Since S is assumed to be symmetric, it has an eigenvalue decomposition S = UΛUT, where

U is an orthogonal matrix and Λ is a diagonal matrix of real eigenvalues, that is, Λ =

diag(λ1, . . . , λn). Spectrum clip makes S PSD by clipping all the negative eigenvalues to

zero. Some researchers assume that the negative eigenvalues of the similarity matrix are

caused by noise and view spectrum clip as a denoising step [104]. Let

Λclip = diag (max(λ1, 0), . . . , max(λn, 0)) ,

and the modified PSD similarity matrix be Sclip = UΛclipUT. Let vi denote the ith column

vector of UT. Using Sclip as a kernel matrix for training the SVM is equivalent to implicitly

using xi = Λ1/2
clipvi as the representation of the ith training sample since 〈xi, xj〉 is equal

to the (i, j)-entry of Sclip. A mathematical justification for spectrum clip is that Sclip is the

nearest PSD matrix to S in terms of the Frobenius norm [44], that is,

Sclip = arg min
K�0
‖K− S‖F,

where � denotes the generalized inequality with respect to the PSD cone.

2.1.4 Spectrum Flip

In contrast to the interpretation that negative eigenvalues are caused by noise, some re-

searchers show that the negative eigenvalues of some similarity data can code useful in-

formation about object features or categories [57, 58], which agrees with some fundamen-

tal psychological studies [99, 32]. In order to use the negative eigenvalues, Graepel et

al. proposed an SVM in pseudo-Euclidean space [38], and Pekalska et al. also considered

a generalized nearest mean classifier and Fisher linear discriminant classifier in the same

10

space [75]. Following the notation in Section 2.1.2, they assume that the samples lie in a

Kreı̆n space K = H+ ⊕H− with similarities given by

ψ(a, b) = 〈a+, b+〉H+ − 〈a−, b−〉H− .

These proposed classifiers are their standard versions in the Hilbert space H = H+ ⊕H−
with associated inner product

〈a, b〉H = 〈a+, b+〉H+ + 〈a−, b−〉H− .

This is equivalent to flipping the sign of the negative eigenvalues of the similarity matrix

S: let

Λflip = diag (|λ1|, . . . , |λn|) ,

and the similarity matrix after spectrum flip is Sflip = UΛflipUT. Wu et al. note that this is

the same as replacing the original eigenvalues of S with its singular values [104].

2.1.5 Spectrum Shift

Spectrum shift is another popular approach to modifying a similarity matrix into a kernel

matrix: since S + λI = U(Λ + λI)UT, where I is the identity matrix, any indefinite similar-

ity matrix can be made PSD by shifting its spectrum by the absolute value of its minimum

eigenvalue |λmin(S)|. Let

Λshift = Λ + |min (λmin(S), 0)|I,

which is used to form the modified similarity matrix Sshift = UΛshiftUT. Compared with

spectrum clip and flip, spectrum shift only enhances all the self-similarities by the amount

of |λmin(S)| and does not change the similarity between any two different samples. Roth

et al. proposed spectrum shift for clustering nonmetric proximity data; they showed that

Sshift preserves the group structure of the original data represented by S [82]. Let X be the

set of samples to cluster, and {X`}N
`=1 be a partition of X into N sets. Specifically, they

11

consider minimizing the clustering cost function1

f
(
{X`}N

`=1

)
= −

N

∑
`=1

∑
i,j∈X`

i 6=j

ψ(xi, xj)

|X`|
, (2.5)

where |X`| denotes the cardinality of set X`. It is easy to see that (2.5) is invariant under

spectrum shift.

Recently, Zhang et al. proposed training an SVM only on the k-nearest neighbors of

each test sample, called SVM-KNN [108]. They used spectrum shift to produce a kernel

from the similarity data. Their experimental results on image classification demonstrate

that SVM-KNN performs comparably to a standard SVM classifier, yet is able to trade an

increase in test time for a significant reduction in training time.

2.1.6 Spectrum Square

The fact that SST � 0 for any S ∈ Rn×n led us to consider using SST as a kernel, which

is valid even when S is not symmetric. For symmetric S, this is equivalent to squaring its

spectrum since SST = UΛ2UT. It is also true that using SST is the same as defining a new

similarity function ψ̃ for any a, b ∈ Ω as

ψ̃(a, b) =
n

∑
i=1

ψ(a, xi)ψ(xi, b).

Note that for symmetric S, treating SST as a kernel matrix K is equivalent to representing

each xi by its similarity feature vector

si =
[
ψ(xi, x1) . . . ψ(xi, xn)

]T
,

since Kij = 〈si, sj〉. The concept of treating similarities as features is discussed in more

detail in Section 2.2.

2.2 Similarities as Features

Similarity-based classification problems can be formulated into standard learning prob-

lems in Euclidean space by treating the similarities between a sample x and the n training

1They originally used dissimilarities in their cost function, and we reformulate it into similarities with the
assumption that the relationship between dissimilarities and similarities is affine.

12

samples as features [38, 39, 75, 74, 59], that is, representing sample x by its similarity feature

vector s:

s =
[
ψ(x, x1) . . . ψ(x, xn)

]T
.

As detailed in Section 2.3, the generalization analysis yields different results for using sim-

ilarities as features and using similarities as inner products.

Graepel et al. considered applying a linear SVM on similarity feature vectors by solving

the following problem [38]:

minimize
w, b

1
2
‖w‖2

2 + C
n

∑
i=1

Lhinge(yi, wTsi + b) (2.6)

with variables w ∈ Rn, b ∈ R and hyperparameter C > 0. Liao and Noble also proposed to

apply an SVM on similarity feature vectors [59]; they used a Gaussian radial basis function

(RBF) kernel.

In order to make the solution w sparser, which helps ease the computation of the dis-

criminant function f (s) = wTs + b, Graepel et al. substituted the `1-norm regularization

for the squared `2-norm regularization in (2.6), and proposed a linear programming (LP)

machine [39]:

minimize
w, b

‖w‖1 + C
n

∑
i=1

Lhinge(yi, wTsi + b). (2.7)

Balcan et al. provided a theoretical analysis for using similarities as features [8], and

showed that if a similarity is good in the sense that the expected intraclass similarity is

sufficiently large compared to the expected interclass similarity, then given n training sam-

ples, there exists a linear separator on the similarities as features that has a specifiable

maximum error at a margin that depends on n. Specifically, Theorem 4 in [8] gives a suffi-

cient condition on the similarity function ψ for (2.6) to achieve good generalization. Their

latest results for `1-margin (inversely proportional to ‖w‖1) provided similar theoretical

guarantees for (2.7) [7, Theorem 11]. Wang et al. showed that under slightly less restrictive

assumptions on the similarity function there exists with high probability a convex combi-

nation of simple classifiers on the similarities as features which has a maximum specifiable

error [101].

13

Another approach is the potential support vector machine (P-SVM) [45, 52], which

solves
minimize

α

1
2
‖y− Sα‖2

2 + ε‖α‖1

subject to ‖α‖∞ ≤ C,
(2.8)

where C > 0 and ε > 0 are two hyperparameters. Note that by strong duality, (2.8) is

equivalent to

minimize
α

1
2
‖y− Sα‖2

2 + ε‖α‖1 + γ‖α‖∞ (2.9)

for some γ > 0. One can see from (2.9) that P-SVM is equivalent to the lasso regression [95]

with an extra `∞-norm regularization term. The use of multiple regularization terms in P-

SVM is similar to the elastic net [112], which uses `1 and squared `2 regularization together.

The algorithms above minimize the empirical risk with regularization. In addition,

Pekalska et al. considered generative classifiers for similarity feature vectors; they pro-

posed a regularized Fisher linear discriminant classifier [75] and a regularized quadratic

discriminant classifier [74].

We note that treating similarities as features may not capture discriminative informa-

tion if there is a large intraclass variance compared to the interclass variance, even if the

classes are well-separated. A simple example is if the two classes are generated by Gaus-

sian distributions with highly-ellipsoidal covariances, and the similarity function is taken

to be a negative linear function of the distance.

2.3 Generalization Bounds for Similarity SVM Classifiers

The analysis of the generalization bounds presented in this section offers a glimpse into the

theoretical difference between an SVM using similarity as a kernel and a linear SVM treat-

ing similarities as features. In both cases, the SVM learns a linear discriminant function on

the similarities:

f (s) = wTs + b,

and as mentioned in Section 2.1.1, such a function is learned by minimizing the empirical

risk

R̂D(f , Lhinge) =
1
n

n

∑
i=1

Lhinge(yi, f (si)),

14

where D denotes the training set {(xi, yi)}n
i=1, subject to some smoothness constraint ϑ on

the function f , that is, by solving

minimize
f

R̂D(f , Lhinge) + ηnϑ(f),

where ηn = 1
2nC . Note that the linear SVM given by (2.6) using (arbitrary) similarities as

features corresponds to setting ϑ(f) = ‖w‖2
2 = wTw, while using (PSD) similarities as a

kernel changes the smoothness constraint to ϑ(f) = wTSw [81, Appendix B]. In fact, this

change of regularizer is the only difference between these two similarity-based SVM ap-

proaches; however, as shown below, this seemingly small change in regularization affects

the generalization ability of the SVM classifiers.

In order to simplify the analysis, instead of investigating the SVM as presented, we,

as standard in SVM learning theory, choose to analyze a slightly modified version of the

problem:

minimize
f

R̂D(f , Ltrunc)

subject to ϑ(f) ≤ β2,
(2.10)

where the discriminant function f is stripped of the bias term b such that f (s) = wTs, and

the loss function is changed to the following truncated hinge loss:

Ltrunc(y, f (s)) , min(Lhinge(y, f (s)), 1) ∈ [0, 1].

The following generalization bound for the SVM using (PSD) similarities2 as a kernel

follows directly from the results in [9].

Theorem 2.1 (Generalization Bound for SVM using Similarities as Kernel). Suppose (x, y)

and D = {(xi, yi)}n
i=1 are drawn i.i.d. from a distribution on Ω × {±1}. Let ψ be a positive

definite similarity function, and there exists κ > 0 such that ψ(a, a) ≤ κ2 for all a ∈ Ω. Let S be

the n× n matrix with (i, j)-entry ψ(xi, xj) and s be the n× 1 vector with ith element ψ(x, xi). For

a finite β > 0, define FS,β as the set of real-valued functions
{

f (s) = wTs
∣∣ wTSw ≤ β2}. Then

with probability at least 1− δ with respect to D, every function f in FS,β satisfies

P(y f (s) ≤ 0) ≤ R̂D(f , Ltrunc) + 4βκ

√
1
n
+

√
ln(2/δ)

2n
.

2If the original similarities are not PSD, then they must be modified to be PSD before this result applies. A
discussion of some common modifications can be found in Section 2.1.

15

The detailed proof of Theorem 2.1 is provided in [21, Appendix A] by my co-author Eric

Garcia.

Theorem 2.1 says that with high probability, as n → ∞, the misclassification rate is

tightly bounded by the empirical risk R̂D(f , Ltrunc), implying that a discriminant function

trained by (2.10) with ϑ(f) = wTSw generalizes well to unseen data.

Next, we state a weaker result in Theorem 2.2 for a linear SVM using (arbitrary) simi-

larities as features. First, we randomly select m (< n) samples D̃ = {(x̃i, ỹi)}m
i=1 from the

training set as prototypes. Then we let the features of x be its similarities to these m pro-

totypes, represented by an m× 1 vector s̃ with ith element ψ(x, x̃i). The following result is

obtained on the remaining n−m training samples, denoted by D̄ = D\D̃.

Theorem 2.2 (Generalization Bound for SVM using Similarities as Features). Suppose (x, y)

and D = {(xi, yi)}n
i=1 are drawn i.i.d. from a distribution on Ω × {±1}. Let ψ be a similarity

function, and there exists κ > 0 such that ψ(a, b) ≤ κ2 for all a, b ∈ Ω. Let D̃ = {(x̃i, ỹi)}m
i=1 ⊂

D be a set of randomly chosen prototypes with m < n, and denote D̄ = D\D̃. Let s̃ be the m× 1

vector with ith element ψ(x, x̃i), and for a finite β > 0, define Fβ as the set of real-valued functions{
f (s̃) = wT s̃

∣∣ wTw ≤ β2}. Then with probability at least 1− δ with respect to D̄, every function

f in Fβ satisfies

P(y f (s̃) ≤ 0) ≤ R̂D̄(f , Ltrunc) + 4βκ2
√

m
n
+

√
ln(2/δ)

2n
.

The detailed proof of Theorem 2.2 is also provided in [21, Appendix A] by Eric Garcia.

Theorem 2.2 only differs significantly3 from Theorem 2.1 in the term
√

m/n, which

means that if m, the number of prototypes used, grows no faster than o(n), then with

high probability, as n → ∞, the misclassification rate is tightly bounded by the empirical

risk on the remaining training set R̂D̄(f , Ltrunc). This implies that good generalization can

achieved by training a linear SVM using similarities to a randomly selected small subset

of training samples. However, Theorem 2.2 is unable to claim anything about the general-

ization when m = n, that is, when the entire training set is chosen as prototypes, and this

remains as an interesting case for theoretical investigation.

3We do not consider having κ in Theorem 2.1 and κ2 in Theorem 2.2 as a significant difference.

16

Chapter 3

SIMILARITY-BASED WEIGHTED NEAREST-NEIGHBORS

Be careful the environment you choose for

it will shape you; be careful the friends you

choose for you will become like them.

W. Clement Stone

In this chapter, I address design goals and propose solutions for weighted nearest-

neighbors for similarity-based classification. Most of the research in this chapter also ap-

pears in one of my publications [21].

Weighted nearest-neighbor algorithms generalize the simple k-NN algorithm by as-

signing weights to the neighbors and making each neighbor’s voting right proportional

to its weight. Weighted k-NN algorithms are task-flexible in the sense that the weights on

the neighbors can be interpreted as probabilities as long as they are nonnegative and sum

to one. For classification, such weights can be summed for each class to form posterior

probabilities, which is helpful for use with asymmetric misclassification costs or when the

similarity-based classifier is a component of a larger decision-making system whose other

components prefer probabilities. As a lazy learning method, weighted k-NN classifiers do

not require training before the arrival of test samples. This might preclude its use in ap-

plications with very limited resources for testing, but this can be advantageous to certain

applications where the amount of training data is huge, or there are a large number of

classes, or the training data is constantly evolving.

3.1 Design Goals for Similarity-based Weighted k-NN

In this chapter, for a test sample x, we use xi to denote its ith nearest neighbor from the

training set as defined by the similarity function ψ for i = 1, . . . , k, and yi to denote the

label of xi. Also, we redefine S as the k× k matrix of the similarities between the k-nearest

neighbors and s the k × 1 vector of the similarities between the test sample x and its k-

17

nearest neighbors. For each test sample, weighted k-NN assigns weight wi to the ith nearest

neighbor xi for i = 1, . . . , k. Weighted k-NN classifies the test sample x as the class ŷ that is

assigned the most weight:

ŷ = arg max
g∈G

k

∑
i=1

wi I{yi=g}, (3.1)

where I{·} is the indicator function. It is common to additionally require that the weights

be nonnegative and normalized such that the weights form a posterior distribution over

the set of classes G. Then the estimated posterior probability for class g is

P̂(Y = g | x) =
k

∑
i=1

wi I{yi=g}, (3.2)

which can be used with asymmetric misclassification costs.

Given pairwise similarities, an intuitive and standard approach to weighting nearest

neighbors is to give larger weight to neighbors that are more similar to the test sample.

Formally, this can be stated as:

Design Goal 1 (Affinity): wi should be an increasing function of ψ(x, xi).

In addition, I propose a second design goal for the weights. This design goal is inspired

by the observation that in practice, some samples in the training set are often very similar.

For example, a random sampling of the emails by one person may include many emails

from the same thread that contain repeated text due to replies and forwarding. Another

example is to create image training sets for object recognition or other image classifica-

tion tasks by retrieving images from the Internet; such training sets very often contain

images with the same content but different resolutions, formats, compression ratios, or

file names [103]. These similar training samples provide highly correlated information to

the classifier. In fact, many of the nearest neighbors may provide very similar or even re-

dundant information which can bias the classifier. Moreover, those training samples that

are similar to many other training samples should be considered less valuable based on

the same motivation for tf-idf. To address this problem, one can choose weights to down-

weight highly similar samples and ensure that a diverse set of the neighbors has a voice in

the classification decision. This design goal can be formalized as:

Design Goal 2 (Diversity): wi should be a decreasing function of ψ(xi, xj) for any j 6= i.

18

In the next section, I will propose two approaches to weighting neighbors for similarity-

based classification that aim to satisfy these two goals.

3.2 Kernel Ridge Interpolation Weights

First, I describe kernel regularized linear interpolation, and I show that it leads to weights

that satisfy the two design goals proposed in the previous section. Gupta et al. proposed

weights for k-NN in Euclidean space that satisfy a linear interpolation with maximum

entropy (LIME) objective [42]:

minimize
w

∥∥∥∥∥ k

∑
i=1

wixi − x

∥∥∥∥∥
2

2

− λH(w)

subject to wi ≥ 0, i = 1, . . . , k,

k

∑
i=1

wi = 1,

(3.3)

with variable w ∈ Rk, where H(w) = −∑k
i=1 wi log wi is the entropy of the weights and

λ > 0 is a regularization parameter. The first term of the convex objective in (3.3) tries to

solve the linear interpolation equations, which balances the weights so that the test point

is best approximated by a convex combination of its k-nearest neighbors. Additionally, the

entropy maximization pushes the LIME weights toward the uniform weights.

Note that (3.3) can be simplified to a quadratic program (QP) by replacing the negative

entropy regularization with a ridge regularizer. Due to the constraint 1Tw = 1, the ridge

regularizer actually regularizes the variance of the weights and hence has similar effect as

the negative entropy regularizer, that is, to push the weights to be uniform. We can write

this QP in the following matrix form:

minimize
w

1
2

wTXTXw− xTXw +
λ

2
wTw

subject to w ≥ 0, 1Tw = 1,
(3.4)

where X =
[

x1 · · · xk

]
. Now note that (3.4) is completely specified in terms of the inner

products of the feature vectors: 〈xi, xj〉 and 〈x, xi〉, and thus we term the solution to (3.4)

as kernel ridge interpolation (KRI) weights. Generalizing from inner products to similarities,

19

we form the similarity-based KRI weights:

minimize
w

1
2

wTSw− sTw +
λ

2
wTw

subject to w ≥ 0, 1Tw = 1.
(3.5)

There are three terms in the objective function of (3.5). Acting alone, the linear term −sTw

would give all the weight to the 1-nearest neighbor. This, however, is prevented by the

ridge regularization term 1
2 λwTw, which regularizes the variance of w and hence pushes

the weights toward the uniform weights. These two terms work together to give more

weight to the training samples that are more similar to the test sample, and therefore help

the resulting weights satisfy the first design goal of rewarding neighbors with high affinity

to the test sample. The quadratic term in (3.5) can be expanded as follows,

1
2

wTSw =
1
2 ∑

i,j
ψ(xi, xj)wiwj.

Intuitively, one can see from the above expansion that holding all else constant in (3.5),

the bigger ψ(xi, xj) and ψ(xj, xi) are, the smaller the chosen wi and wj will be. Thus the

quadratic term tends to down-weight the neighbors that are similar to each other and acts

to achieve the second design goal of spreading the weight among a diverse set of neigh-

bors.

A sensitivity analysis further verifies the above observations. Let g(w; S, s) be the ob-

jective function of (3.5), and w? denote the optimal solution. To simplify the analysis, we

assume that w? is in the interior of the standard (k− 1)-simplex and thus

∇g(w?; S, s) = (S + λI)w? − s = 0.

First, we perturb s by adding δ > 0 to its ith element, that is, we let

s̃ = s + δei,

where ei denotes the standard basis vector with ith element 1 and 0 elsewhere. Then the

gradient of g at w? with the perturbed s̃ is

∇g(w?; S, s̃) = (S + λI)w? − s̃ = −δei,

20

and its projection on the standard (k− 1)-simplex is

∇g(w?; S, s̃)− 1
k

(
1T∇g(w?; S, s̃)

)
1 = δ

(
1
k

1− ei

)
. (3.6)

The direction of the steepest descent given by the negative of the projected gradient in (3.6)

indicates that the new optimal solution will have an increased wi, which satisfies the first

design goal.

Next, if we keep s unaltered and perturb S by adding δ > 0 to its (i, j)-entry (i 6= j), that

is, we let

S̃ = S + δEij,

where Eij denotes the matrix with (i, j)-entry 1 and 0 elsewhere, then the gradient of g at

w? with the perturbed S̃ is

∇g(w?; S̃, s) = (S̃ + λI)w? − s = δEijw? = δw?
j ei,

and its projection on the standard (k− 1)-simplex is

∇g(w?; S̃, s)− 1
k

(
1T∇g(w?; S̃, s)

)
1 = δw?

j

(
ei −

1
k

1
)

. (3.7)

The direction of the steepest descent given by the negative of the projected gradient in (3.7)

indicates that the new optimal solution will have a decreased wi, which satisfies the second

design goal.

Experimentally, we found little statistically significant difference between using nega-

tive entropy or ridge regularization for the KRI weights. Analytically, entropy regulariza-

tion leads to an exponential form for the weights that can be used to prove consistency [30].

Computationally, the ridge regularizer is more practical because when the S matrix is PSD

or approximated by a PSD matrix as discussed in Section 2.1, using ridge regularization

results in a QP with box constraints and an equality constraint, which is exactly the same

type of QP as the SVM dual problem given by (2.4), and therefore can be solved by the

SMO algorithm [77, 78], which has proved to be an efficient algorithm for SVM.

3.2.1 Kernel Ridge Regression Weights

A closed-form solution to (3.5) is possible if one relaxes the problem by removing the con-

straints w ≥ 0 and 1Tw = 1 which ensure a valid probability distribution formed by the

21

weights. Then for a PSD S, the objective function 1
2 wTSw− sTw + 1

2 λwTw alone is solved

by

w = (S + λI)−1s. (3.8)

Using the above weights, the weighted k-NN decision rule given by (3.1) turns out to be

equivalent to classifying by maximizing the discriminant of a local kernel ridge regression.

For each class g ∈ G, local kernel ridge regression (without intercept) solves

minimize
βg

k

∑
i=1

(
I{yi=g} − 〈βg, φ(xi)〉

)2
+ λ〈βg, βg〉, (3.9)

where φ denotes the mapping from the sample space Ω to a Hilbert space with inner prod-

uct 〈φ(xi), φ(xj)〉 = ψ(xi, xj). The solution to (3.9) yields the following discriminant func-

tion for class g [24]:

fg(x) = 〈βg, φ(x)〉 = νT
g (S + λI)−1s,

where

νg =
[

I{y1=g} . . . I{yk=g}

]T
.

Maximizing fg(x) over g ∈ G produces the same estimated class label ŷ as (3.1) using the

weights given by (3.8), and hence we refer to these weights as kernel ridge regression (KRR)

weights.

For an indefinite S, it is possible that S + λI is singular. In the experiments shown in

Chapter 4, I will compare handling indefinite S by spectrum clip, flip, shift, or taking the

pseudoinverse (pinv), that is,

w = (S + λI)†s.

3.2.2 Illustrative Examples

In this subsection, I illustrate the KRI and KRR weights with three toy examples. In each

example, there are k = 4 nearest-neighbors, and the KRI and KRR weights are shown for a

continuous range of regularization parameter λ. For the purpose of comparison, the nor-

malized KRR weights w̃ are shown here where w̃ =
(

I − 1
k 11T)w+ 1

k 1. This normalization

does not affect the result of classification since each weight is shifted by the same constant.

22

10
−2

10
0

10
20

0.1

0.25

0.4

0.5

0.6

λ

w4

w3

w2

w1

(a) KRI weights

10
−2

10
0

10
2−0.1

0

0.1

0.25

0.4

0.5

0.6

λ

w2

w1

w3

w4

(b) KRR weights

Figure 3.1: KRI and KRR weights for Example 1.

10
−2

10
0

10
20.15

0.2

0.25

0.3

0.35

0.4

λ

w2, w3

w4

w1

(a) KRI weights

10
−2

10
0

10
20.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

λ

w2, w3

w4

w1

(b) KRR weights

Figure 3.2: KRI and KRR weights for Example 2.

10
−2

10
0

10
20

0.1

0.25

0.4

0.5

0.6

0.7

λ

w1

w3

w4

w2

(a) KRI weights

10
−2

10
0

10
2

−0.4

−0.2

0

0.25
0.4

0.6

0.8

1

λ

w4

w1

w3

w2

(b) KRR weights

Figure 3.3: KRI and KRR weights for Example 3.

23

Example 1: sT =
[
4 3 2 1

]
, S =

5 0 0 0

0 5 0 0

0 0 5 0

0 0 0 5

In Example 1, the design goal of affinity is illustrated. One can see from s that the four

distinct training samples are not equally similar to the test sample, and from S that the

training samples have zero similarity to each other. As a result, both KRI and KRR give

more weight to the training samples that are more similar to the test sample, illustrating

that the proposed weighting methods achieve the design goal of affinity. Also, as λ goes

larger, the harder the regularization is and the more uniform the weights are.

Example 2: sT =
[
3 3 3 3

]
, S =

5 1 1 1

1 5 4 2

1 4 5 2

1 2 2 5

In Example 2, the design goal of diversity is illustrated. Here the four training samples

are all equally similar to the test sample, but x2 and x3 are very similar to each other. As

a result, x2 and x3 are both weighted down as prescribed by the design goal of diversity.

Because of the symmetry of the similarities shown in S, the weights for x2 and x3 are exactly

the same for both KRI and KRR.

Example 3: sT =
[
2 4 3 3

]
, S =

5 1 1 1

1 5 4 2

1 4 5 2

1 2 2 5

In Example 3, the interaction between the two design goals is illustrated. The matrix S

is the same as in Example 2, but s is no longer uniform. In fact, although x1 is less similar

to the test sample than x3, x1 receives more weight than x3 because it is less similar to

the other training samples. The affinity goal allots the largest weight to the most similar

neighbor x2, but because x2 and x3 are highly similar to each other, the diversity goal forces

them to share weight, resulting in a very small weight assigned to x3.

24

Also, one can observe from the juxtaposition of the figures that the KRR weights tend

to be smoother than the KRI weights with respect to the change of the regularization pa-

rameter λ. This is because the KRI weights are constrained to the standard (k− 1)-simplex

while the KRR weights are unconstrained.

25

Chapter 4

COMPARATIVE STUDY OF SIMILARITY-BASED CLASSIFICATION
METHODS

When they measure themselves by

themselves and compare themselves with

themselves, they are not wise.

2 Corinthians 10:12

This chapter describes a comparative study of ten similarity-based classification meth-

ods: a linear SVM and an RBF SVM using similarities as features, the P-SVM [45, 52], a

local SVM (SVM-KNN) [108] and a global SVM using the given similarities as a kernel,

local SDA [16, 18], k-NN, and three weighted k-NN methods: the KRI and KRR weights

proposed in Chapter 3, and the affinity weights as a control, defined by wi = aψ(x, xi),

i = 1, . . . , k, where a is a normalization constant. Note that unlike the proposed KRI and

KRR weights, the affinity weights only satisfy the design goal of affinity. Most of the results

in this chapter also appear in one of my publications [21].

In addition to the comparative study on classification performance, at the end of this

chapter, we also compare weighted k-NN methods for estimating the posterior probabili-

ties of the classes using the uniform, affinity and KRI weights.

4.1 Consistent Treatment of Training and Test Samples

Before we proceed to the experiments, we need to address an important technicality about

how to treat training and test samples consistently. Consider the approach that treats sim-

ilarities as inner products as discussed in Section 2.1. When the given similarity is in-

definite, we can perform various spectrum modifications to make an indefinite similarity

matrix S into a PSD matrix S̃. Now suppose a test sample x is the same as a training sample

xi; if one trains an ERM classifier such as an SVM using the modified similarities S̃ but uses

26

the unmodified test similarities, represented by vector

s =
[
ψ(x, x1) . . . ψ(x, xn)

]T
,

for testing, then the same sample will be treated inconsistently, violating the spirit of ERM.

In general, one would like to modify the training and test similarities in a consistent fash-

ion, that is, to modify the underlying similarity function rather than only modifying the

similarity matrix S of the training data. In this context, given S and S̃, a transformation T

on test similarities is termed consistent if T(si) is equal to the ith column of S̃ for i = 1, . . . , n.

One solution is to modify the training and test samples all at once. However, when

test samples are not known beforehand, this may not be possible. For such cases, Wu et

al. proposed to first modify S and train the classifier using the modified n × n similarity

matrix S̃, and then for each test sample modify its s in an effort to be consistent with the

modified similarities used to train the model [104]. Given s and the self-similarity of the

test sample ψ(x, x), their approach is to perform the same spectrum modification on the

augmented (n + 1)× (n + 1) similarity matrix:

S′ =

 S s

sT ψ(x, x)

to form S̃′, and then let the modified test similarities s̃ be the first n elements of the last col-

umn of S̃′.1 The classifier trained on the modified training similarities S̃ is then applied on

s̃ to obtain the estimated class label ŷ for the test sample. To implement this approach, they

proposed a fast algorithm to perform eigenvalue decomposition on S′ by using the results

of the eigenvalue decomposition of S [104]. However, this approach does not guarantee

consistency.

To attain consistency, I note that both the spectrum clip and flip modifications can be

represented by matrix multiplications, that is, S̃ = PS, where P is the corresponding trans-

formation matrix. Therefore, I propose to apply the same transformation matrix P on s

such that s̃ = Ps, and it is easy to see that according to our previous definition, the trans-

formation T(s) = Ps is consistent. Recall that S has eigenvalue decomposition S = UΛUT,

1Note that even if the same spectrum modification is applied to S and S′, there is no guarantee that S̃ will
be equal to the upper left n× n submatrix of S̃′.

27

where Λ = diag(λ1, . . . , λn). For spectrum flip, the transformation matrix is

Pflip = UDflipUT,

where

Dflip = diag(sgn(λ1), . . . , sgn(λn)).

For spectrum clip, the transformation matrix is

Pclip = UDclipUT,

where

Dclip = diag(I{λ1≥0}, . . . , I{λn≥0}),

and I{·} is the indicator function.

Recall that using the modified similarity matrix S̃ implies embedding the training sam-

ples in a Euclidean space. For spectrum clip, the transformation T(s) = Pclips is equivalent

to embedding the test sample x as a feature vector into the same Euclidean space of the

embedded training samples:

Proposition 4.1. Let Sclip be the Gram matrix of the column vectors of a matrix X ∈ Rm×n

with rank(X) = m ≤ n. For a given vector s ∈ Rn, let x = arg minz∈Rm
∥∥XTz− s

∥∥
2, then

XTx = Pclips.

The proof is in Appendix A.

Proposition 4.1 states that if the n training samples are embedded in Rm with Sclip as

their Gram matrix, and we embed the test sample in Rm by finding the feature vector

whose inner products with the embedded training samples are closest to the given s with

respect to the Euclidean distance, then the inner products between the embedded test sam-

ple and the embedded training samples are indeed s̃ = Pclips.

On the other hand, there is no matrix multiplication to ensure consistency for spectrum

shift. For our experiments using spectrum shift, we adopt the approach of Wu et al. [104],

which we mentioned earlier in this section; for this case, their approach is to simply let

s̃ = s, because spectrum shift only affects self-similarities, and hence there is no change to

the off-diagonal elements of the augmented similarity matrix S′.

28

Table 4.1: Summary of the eight data sets used in the comparative study.

Name # Samples # Classes Symmetric PSD Sparse

Amazon-47 204 47 no no yes

Aural Sonar 100 2 yes no no

Caltech-101 8677 101 yes yes no

Face Rec 945 139 yes no no

Mirex07 3090 10 yes no yes

Patrol 241 8 no no yes

Protein 213 4 yes no no

Voting 435 2 yes no no

4.2 Data Sets

The ten similarity-based classification methods were tested on eight real data sets repre-

senting a diverse set of similarities ranging from human judgment of audio signals to se-

quence alignment scores of proteins. The similarity matrices of these data sets are shown

in Figure 4.1–4.5. The rows and columns are ordered by class label; on many of the data

sets, particularly those with a fewer number of classes, a block diagonal structure is visi-

ble along the class boundaries, indicated by tick marks. Note that a purely block diagonal

similarity matrix would indicate a particularly easy classification problem, as objects have

nonzero similarities only to objects of the same class. These data sets are described in detail

below, and a summary is given in Table 4.1.

The Amazon-47 data set, shown in Figure 4.1(a), was created for this comparative study,

and it consists of 204 books written by 47 authors. Each book listed on amazon.com links

to the top four books that customers bought after viewing it, along with the percentage of

the customers who did so. We take the similarity of book A to book B to be the percentage

of the customers who bought book B after viewing book A, and the classification problem

is to determine the author of the book.

The Aural Sonar data set, shown in Figure 4.2(a), is from a recent paper which inves-

29

(a) Amazon-47

(b) Patrol

Figure 4.1: Similarity matrices of the Amazon-47 and Patrol data sets used in the com-
parative study. For each matrix, class divisions are indicated by tick marks, and black
corresponds to maximum similarity while white corresponds to zero similarity.

30

(a) Aural Sonar

(b) Voting

Figure 4.2: Similarity matrices of the Aural Sonar and Voting data sets used in the com-
parative study. For each matrix, class divisions are indicated by tick marks, and black
corresponds to maximum similarity while white corresponds to zero similarity.

31

Figure 4.3: Similarity matrix of the Caltech-101 data set used in the comparative study. For
this matrix, class divisions are indicated by tick marks, and black corresponds to maximum
similarity while white corresponds to zero similarity.

32

(a) Face Rec

(b) Mirex07

Figure 4.4: Similarity matrices of the Face Rec and Mirex07 data sets used in the com-
parative study. For each matrix, class divisions are indicated by tick marks, and black
corresponds to maximum similarity while white corresponds to zero similarity.

33

(a) Protein

(b) Protein RBF-sim

Figure 4.5: Similarity matrices of the Protein and Protein RBF-sim data sets used in the
comparative study. For each matrix, class divisions are indicated by tick marks, and black
corresponds to maximum similarity while white corresponds to zero similarity.

34

tigated the human ability to distinguish different types of sonar signals by ear [76]. The

signals were returns from a broadband active sonar system, with 50 target-of-interest sig-

nals and 50 clutter signals. Every pair of signals was assigned a similarity score from 1 to

5 by two randomly chosen human subjects unaware of the true labels, and the two scores

were added to produce a 100× 100 similarity matrix with integer values from 2 to 10.

The Caltech-101 data set, shown in Figure 4.3, is an object recognition benchmark data

set consisting of 8677 images from 101 object categories [28]. Similarities between images

were computed using the pyramid match kernel [40] on SIFT features [63]. Here the simi-

larity is PSD.

The Face Rec data set, shown in Figure 4.4(a), consists of 945 sample faces of 139 people

from the NIST Fact Recognition Grand Challenge data set.2 There are 139 classes, one

for each person. Similarities for pairs of the original three-dimensional face data were

computed as the cosine similarity between integral invariant signatures based on surface

curves of the face [29]. The original paper demonstrated comparable results to the state-

of-the-art using these similarities with a 1-NN classifier.

The Mirex07 data set, shown in Figure 4.4(b), was obtained from the human-rated, fine-

scale audio similarity data used in the MIREX 2007 Audio Music Similarity and Retrieval

evaluation task.3 Mirex07 consists of 3090 samples, divided roughly evenly among 10

classes that correspond to different music genres. Humans judged how similar two songs

are on a 0–10 scale with 0.1 increments. Each song pair was evaluated by three people,

and the three similarity values were averaged. Self-similarity was assumed to be 10, the

maximum similarity. The classification task is to correctly label each song with its genre.

The Patrol data set, shown in Figure 4.1(b), was collected by Driskell and McDon-

ald [25]. Members of seven patrol units were asked to name five members of their unit;

in some cases the respondents inaccurately named people who were not in their unit, in-

cluding people who did not belong to any unit. Of the original 385 respondents and named

people, only the ones that were named at least once were kept, reducing the data set to 241

2See http://face.nist.gov/frgc/

3See http://www.music-ir.org/mirex/wiki/2007:Audio Music Similarity and Retrieval

35

samples. The similarity between any two people a and b is

ψ(a, b) =
1
2
(N(a, b) + N(b, a)) ,

where N(a, b) is the number of times person a names person b. Thus, here the similarity ψ

has range {0, 0.5, 1}. The classification problem is to estimate to which of the seven patrol

units a person belongs, or to correctly place them in an eighth class that corresponds to

“not in any of the patrol units.”

The Protein data set, shown in Figure 4.5(a), has sequence alignment similarities for 213

proteins from 4 classes,4 where class one through four contains 72, 72, 39, and 30 samples,

respectively [46]. As further discussed in the results, we define an additional similarity

termed RBF-sim for the Protein data set:

ψRBF(x, x′) = exp
(
−‖s(x)− s(x′)‖2

)
,

where s(x) is the 213× 1 similarity vector with ith component ψ(x, xi). Its similarity matrix

is shown in Figure 4.5(b).

The Voting data set, shown in Figure 4.2(b), comes from the UCI Machine Learning

Repository [4]. It is a binary classification problem with 435 samples, where each sample is

a categorical feature vector with 16 components and three possibilities for each component.

We compute the value difference metric (VDM) [93] from the categorical data, which is a

dissimilarity that uses the training class labels to weight different components differently

so as to achieve maximum probability of class separation. We normalize the dissimilarities

such that d(x, x′) ∈ [0, 1], and convert them to similarities by letting ψ(x, x′) = 1− d(x, x′).

4.3 Experimental Setup

For each data set, we randomly selected 20% of the data for testing and used the remaining

80% for training. The classifier parameters such as C for the SVM, λ for the KRI and KRR

weights, and k for local classifiers were chosen by 10-fold cross-validation on the training

set, and then the selected parameters were used to train the classifiers on the complete

4The original data set has 226 samples with 9 classes. As is standard practice with this data set, we removed
those classes which contain less than 7 samples.

36

Table 4.2: Cross-validation parameter choices for the comparative study.

All local methods k : 1, 2, 3, . . ., 16, 32, 64, 128

KRI λ : 10−6, 10−5, . . ., 10, and 106

KRR λ : 10−3, 10−2, . . ., 10

PSVM ε : 10−4, 10−3, . . ., 10

PSVM C : 100, 101, . . ., 104

SVM-KNN C : 10−3, 10−2, . . ., 105

SVM (linear, clip, flip, shift) C : 10−3, 10−2, . . ., 105

SVM (RBF) C : 10−3, . . ., 10

SVM (RBF) γ : 10−5, 10−4, . . ., 10

training data and classify the held out test data. This process was repeated for 20 random

partitions of test and training data, and the statistical significance of the classification error

was computed by a one-sided Wilcoxon signed-rank test. Multiclass implementations of

the SVM classifiers used the “one-vs-one” scheme [48].

Nearest neighbors for local methods were determined using symmetrized similarities,5

that is, 1
2 (ψ(x, xi) + ψ(xi, x)). Cross-validation choices are listed in Table 4.2, including

those for the parameter γ for the RBF kernel:

KRBF(x, x′) = exp
(
−γ‖s− s′‖2

2
)

,

where s and s′ are the similarity vectors of x and x′, respectively. These choices were based

on recommendations and usage in previous literature, and on preliminary experiments

that we conducted with a larger range of cross-validation parameters on the Voting and

Protein data sets.

The main experimental results are shown in Table 4.3, 4.4, and 4.5, respectively. For

algorithms that require a PSD similarity matrix S, we made S PSD by spectrum clip, flip

and shift as discussed in Section 2.1, and pinv for the KRR weights. The main results,

5Only Amazon-47 and Patrol are natively asymmetric.

37

Table 4.3: Mean and standard deviation (in parentheses) of the test errors (in percent-
age) across 20 randomized test/training partitions for the Amazon-47, Aural Sonar and
Caltech-101 data sets. For each data set, the lowest mean error and those not statistically
significantly worse are boldfaced. The six local classifiers are grouped together, and so are
the four global classifiers.

Amazon-47 Aural Sonar Caltech-101

k-NN 16.95 (4.85) 17.00 (7.65) 41.55 (0.95)

affinity k-NN 15.00 (4.77) 15.00 (6.12) 39.20 (0.86)

KRI k-NN (clip) 17.68 (4.75) 14.00 (6.82) 30.13 (0.42)

KRR k-NN (pinv) 16.10 (4.90) 15.25 (6.22) 29.90 (0.44)

Local SDA 16.83 (5.11) 17.75 (7.66) 41.99 (0.52)

SVM-KNN (clip) 17.56 (4.60) 13.75 (7.40) 36.82 (0.60)

SVM, sim-as-kernel (clip) 81.34 (4.77) 13.00 (5.34) 33.49 (0.78)

SVM, sim-as-features (linear) 76.10 (6.92) 14.25 (6.94) 38.18 (0.78)

SVM, sim-as-features (RBF) 75.98 (7.33) 14.25 (7.46) 38.16 (0.75)

P-SVM 70.12 (8.82) 14.25 (5.97) 34.23 (0.95)

discussed in the next section, are for spectrum clip; the experimental differences between

spectrum clip, flip and shift, and pinv are shown in Table 4.6 and discussed in Section 4.5.

4.4 Experimental Results

The mean and standard deviation of the test errors across the 20 randomized test/training

partitions are shown in Table 4.3 for the Amazon-47, Aural Sonar and Caltech-101 data

sets, in Table 4.4 for the Face Rec, Mirex07 and Patrol data sets, and in Table 4.5 for the

Protein, Protein RBF-sim and Voting data sets. The bold results in each column indicate

the classifier with the lowest average error; also boldfaced are any classifiers that were not

statistically significantly worse than the classifier with the lowest average error.

The similarity matrices of the Aural Sonar and Voting data sets, shown in Figure 4.2,

exhibit fairly nice block diagonal structures, indicating that these are somewhat easy clas-

sification problems. This is reflected in the relatively low error rates across the board and

38

Table 4.4: Mean and standard deviation (in parentheses) of the test errors (in percentage)
across 20 randomized test/training partitions for the Face Rec, Mirex07 and Patrol data
sets. For each data set, the lowest mean error and those not statistically significantly worse
are boldfaced. The six local classifiers are grouped together, and so are the four global
classifiers.

Face Rec Mirex07 Patrol

k-NN 4.23 (1.43) 61.21 (1.97) 11.88 (4.42)

affinity k-NN 4.23 (1.48) 61.15 (1.90) 11.67 (4.08)

KRI k-NN (clip) 4.15 (1.32) 61.20 (2.03) 11.56 (4.54)

KRR k-NN (pinv) 4.31 (1.86) 61.18 (1.96) 12.81 (4.62)

Local SDA 4.55 (1.67) 60.94 (1.94) 11.77 (4.62)

SVM-KNN (clip) 4.23 (1.25) 61.25 (1.95) 11.98 (4.36)

SVM, sim-as-kernel (clip) 4.18 (1.25) 57.83 (2.05) 38.75 (4.81)

SVM, sim-as-features (linear) 4.29 (1.36) 55.54 (2.52) 42.19 (5.85)

SVM, sim-as-features (RBF) 3.92 (1.29) 55.72 (2.06) 40.73 (5.95)

P-SVM 4.05 (1.44) 63.81 (2.70) 40.42 (5.94)

39

Table 4.5: Mean and standard deviation (in parentheses) of the test errors (in percentage)
across 20 randomized test/training partitions for the Protein, Protein RBM-sim and Voting
data sets. For each data set, the lowest mean error and those not statistically significantly
worse are boldfaced. The six local classifiers are grouped together, and so are the four
global classifiers.

Protein Protein RBF Voting

k-NN 29.88 (9.96) 0.93 (1.71) 5.80 (1.83)

affinity k-NN 30.81 (6.61) 0.93 (1.71) 5.86 (1.78)

KRI k-NN (clip) 30.35 (9.71) 1.05 (1.72) 5.29 (1.80)

KRR k-NN (pinv) 9.53 (5.04) 1.05 (1.72) 5.52 (1.69)

Local SDA 17.44 (6.52) 0.93 (1.71) 6.38 (2.07)

SVM-KNN (clip) 11.86 (5.50) 1.16 (1.72) 5.23 (2.25)

SVM, sim-as-kernel (clip) 5.35 (4.60) 1.16 (1.72) 4.89 (2.05)

SVM, sim-as-features (linear) 3.02 (2.76) 2.67 (2.12) 5.40 (2.03)

SVM, sim-as-features (RBF) 2.67 (2.97) 2.44 (2.60) 5.52 (1.77)

P-SVM 1.86 (1.89) 1.05 (1.56) 5.34 (1.72)

40

few statistically significant differences in classification performance. More interesting re-

sults can be observed on the more difficult classification problems posed by the other data

sets.

The Amazon-47 data set is very sparse with at most four nonzero similarities per row.

With such sparse data, one might expect a 1-NN classifier to perform well; indeed, for

the uniformly weighted k-NN classifier, the cross-validation chose k = 1 on all 20 of the

randomized partitions. For all of the local classifiers, the k chosen by cross-validation on

this data set was never larger than k = 3, and out of the 20 randomized partitions, k = 1

was chosen the majority of the time for all the local classifiers. In contrast, the global SVM

classifiers perform poorly on this sparse data set. The patrol data set is the next sparsest

data set, and the results show a similar pattern, that is, local classifiers on average perform

significantly better than global classifiers. However, the Mirex07 data set is also relatively

sparse, and yet the global classifiers do well, in particular the SVMs that use similarities

as features. The Amazon-47 and Patrol data sets do differ from the Mirex07 data set in

that the self-similarities are not always maximal, and also samples in the Mirex07 data set

tend to have strong interclass similarities more often than those in the other two sparse

data sets. Whether and how either of these two differences causes or correlates the relative

differences in classification performance is worth further investigation.

On the Protein data set, classifiers exhibit large differences in their performance, with

the statistically significantly lowest error rates achieved by two of the three SVMs that use

similarity as features. The reason why using similarities as features performs so well while

others do so poorly is because the first and second classes exhibit a strong interclass simi-

larity, and rows belonging to the same class exhibit very similar patterns, thus treating the

rows of the similarity matrix as feature vectors provides good discrimination of classes.

To investigate this effect, we transformed the entire data set using a Gaussian radial basis

function (RBF) to create a similarity based on the Euclidean distance between rows of the

original similarity matrix, yielding the 213× 213 Protein RBF similarity matrix. One can

see from Table 4.5 that this transformation increases the performance of classifiers across

the board, indicating that this is indeed a better measure of similarity for this particular

data set. Furthermore, after this transformation, we see a complete turnaround in perfor-

41

mance: for Protein RBF-sim, the SVMs that use similarities as features are among the worst

performers (with the P-SVM still performing decently), and the vanilla k-NN does better

than the best classifier given the original Protein similarities.

The Caltech-101 data set is the largest data set, and with 8677 samples in 101 classes, an

analysis of the structure of this similarity matrix is difficult. Here we see the most dramatic

improvement in classification performance (25% lower error) by using the KRR and KRI

weights rather than k-NN with the uniform or affinity weights, suggesting that there are

highly correlated samples that bias the classification, which might be related to the fact

that the original set of images was collected using Google Images6 [28]. In contrast, for

the Amazon-47, Aural Sonar, Face Rec, Mirex07, and Patrol data sets, there is only a small

win by using the KRI or KRR weights, or a statistically insignificant small decline in per-

formance (we hypothesize that this occurred because of overfitting due to the additional

parameter λ). On the Protein data set, the error rate of the KRR weights is one third of the

error of any other k-NN method; this is a consequence of using the pseudoinverse rather

than other types of spectrum modification, as can be easily seen from the results in Ta-

ble 4.6. The other significant difference between the weighting methods is a roughly 10%

improvement in average error on the Voting data set by using the KRI or KRR weights. In

conclusion, the use of diverse weights may not matter on some data sets, but can be very

helpful on certain data sets.

SVM-KNN was proposed by Zhang et al. in part as a way to reduce the computations

required to train a global SVM using similarities as a kernel [108], and their results showed

that it performed similarly to a global SVM. That is somewhat true here, but some dif-

ferences emerge. For the Amazon-47 and Patrol data sets, the local methods all do well

including SVM-KNN, but the global methods do poorly, including the global SVM using

similarities as a kernel. On the other hand, the global SVM using similarities as a kernel

is statistically significantly better than SVM-KNN on Caltech-101, even though the best

performance on that data set is achieved by a local method (k-NN with the KRR weights).

From this sampling of data sets, we conclude that applying the SVM locally or globally can

6See http://images.google.com/

42

in fact make a difference, but whether it is a positive or negative difference depends on the

application.

Among the four global SVMs (including the P-SVM), it is hard to draw conclusions

about the performance of the one that uses similarities as a kernel versus the other three

that use similarities as features. In terms of statistical significance, the SVM using similar-

ities as a kernel outperforms the others on the Patrol and Caltech-101 data sets whereas

it is the worst on the Amazon-47 and Protein data sets, and there is no clear division on

the remaining data sets. Lastly, the results do not show statistically significant differences

between using the linear or RBF version of the SVM with similarities as features except for

small difference on the Face Rec and Patrol data sets.

4.5 Clip, Flip, or Shift?

Three different approaches to modifying similarities to form a kernel were discussed in

Section 2.1. We experimentally compared spectrum clip, flip and shift for the KRI weights,

SVM-KNN and SVM, and clip, flip, shift and pinv for the KRR weights on the nine data

sets. Table 4.6 shows the results on the four data sets for which at least one method showed

statistically significantly different results depending on the choice of spectrum modifica-

tion method.

For the KRR weights, one can see that the pinv solution is never statistically signifi-

cantly worse than spectrum clip, flip or shift, which are worse than pinv at least once. For

the KRI weights, the differences are negligible, but based on the average error, I recom-

mend clip.

Spectrum flip takes the absolute value of the eigenvalues, which is similar to the effect

of spectrum square, that is, using SST as a kernel (as discussed in Section 2.1.6), which

for an SVM is equivalent to treating similarities as features. Therefore it is not surprising

that for the Protein data set, which, according to the results in Table 4.5, favors treating

similarities as features, flip makes a large positive difference for both SVM-KNN and SVM.

Lastly, notice from Table 4.6 the different effects of the spectrum modifications on the

local methods versus the global SVM. This is because for the local methods, the modifi-

43

Table 4.6: Clip, flip, shift, and pinv comparison. The following table shows the test errors
(in percentage) averaged over 20 randomized test/training partitions for the four data sets
that exhibit statistically significant differences between these spectrum modifications. If
there are statistically significant differences for a given algorithm and a given data set,
then the highest error and those not statistically significantly better are boldfaced.

Amazon-47 Mirex07 Patrol Protein

KRI

clip 17.68 61.20 11.56 30.35

flip 17.56 61.17 11.67 31.28

shift 17.68 61.25 13.23 30.35

KRR

clip 16.22 61.22 11.67 30.35

flip 16.22 61.12 12.08 30.47

shift 16.34 61.25 11.88 30.35

pinv 16.10 61.18 12.81 9.53

SVM-KNN

clip 17.56 61.25 11.98 11.86

flip 17.56 61.25 11.88 1.74

shift 17.56 61.25 11.88 30.23

SVM

clip 81.34 57.83 38.75 5.35

flip 84.27 56.34 47.29 1.51

shift 77.68 85.29 40.83 23.49

44

cation is done only locally, which is on a much smaller scale than performing spectrum

modification on the similarity matrix of the entire training set.

4.6 Probability Estimates from Weighted k-NN

We mentioned in Chapter 3 that for weighted k-NN, when the weights are nonnegative

and sum to one, they can be used to form posterior probability estimates as given by (3.2).

In this section, we evaluate the quality of the posterior probability estimates using the

uniform weights, the affinity weights and the KRI weights proposed in Section 3.2.

4.6.1 Evaluation Measure

First, we discuss the evaluation measure. For a fixed x ∈ Ω, let P(y | x) and P̂(y | x) be the

true and estimated posterior probabilities, respectively. To measure how close the posterior

probability estimate is to the true one, we can use the Kullback-Leibler (KL) divergence

between P(y | x) and P̂(y | x), that is,

DKL(P(y | x) ‖ P̂(y | x)) = ∑
y∈G

P(y | x) log
P(y | x)
P̂(y | x)

= EY|x

(
log

P(Y | x)
P̂(Y | x)

)
.

To measure the quality of the posterior probability estimate for all x ∈ Ω, we need to

average the above KL divergence over the entire sample space Ω, that is,

EX
(

DKL(P(y |X) ‖ P̂(y |X))
)
= EX

(
EY|X

(
log

P(Y |X)

P̂(Y |X)

))
= EX,Y

(
log

P(Y |X)

P̂(Y |X)

)
= EX,Y (log P(Y |X)) + EX,Y

(
− log P̂(Y |X)

)
= −H(Y |X) + EX,Y

(
− log P̂(Y |X)

)
,

where H(Y |X) = EX,Y (− log P(Y |X)) is the conditional entropy, and we further denote

the second term by

ζ , EX,Y
(
− log P̂(Y |X)

)
.

Since H(Y |X) does not depend on P̂(y | x), for any posterior probability estimate P̂(y | x),

the lower ζ is, the lower the expected KL divergence is, and the closer it is to the true

45

posterior probability. Hence we can use ζ to measure the quality of P̂(y | x). Unfortunately,

we do not know the true joint probability distribution of (X, Y) for real data sets, but by

applying the law of large numbers, we can obtain the following empirical estimate of ζ:

ζ̂ = − 1
n

n

∑
i=1

log P̂(yi | xi),

which is sometimes called the empirical cross entropy. In our experiments, we use ζ̂ as

the evaluation measure: the lower ζ̂ is, the better we consider P̂(y | x) is. Following the

tradition of natural language processing [66], we report the results by perplexity, which is

defined as

perplexity , 2ζ̂ = 2−
1
n ∑n

i=1 log2 P̂(yi | xi) =

(
n

∏
i=1

P̂(yi | xi)

)− 1
n

.

The posterior probability estimate with lower perplexity is considered better.

Another measure commonly used in natural language processing for confidence esti-

mation is the normalized cross entropy (NCE) [31], which is defined as

NCE ,
ζ̂0 − ζ̂

ζ̂0
,

where ζ̂0 is the empirical cross entropy using a baseline probability estimate. Usually,

the class prior probability estimated from the training data is used as the baseline model.

The normalized cross entropy is bounded above by one, and the larger it is, the better the

posterior probability estimate is.

4.6.2 Results

We compared the posterior probability estimates formed by the uniform, affinity and KRI

weights on the Aural Sonar, Caltech-101, Face Rec, Patrol and Voting data sets by per-

forming leave-one-out cross-validation, that is, for each sample, we found its k-nearest

neighbors from the rest of the data set. We computed ζ̂ for each k that is less than n from

the following set:

k ∈ {1, 2, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256},

46

and for the KRI weights, we chose the regularization parameter λ from

λ ∈ {10−6, 10−5, . . . , 1, 10, 100}.

When computing ζ̂, it is possible that for some i ∈ {1, . . . , n}, we have P̂(yi | xi) = 0. This

happens to all the three weighting methods when none of the k-nearest neighbors of xi are

from its class yi. This can also happen when the affinity or KRI weights assign zero weight

to all the neighbors of xi from its class yi, which is theoretically possible but not very likely

in practice. In order to avoid the singular case that P̂(yi | xi) = 0, we used a smoothed

version of P̂(y | x):

P̂smooth(y | x) =
P̂(y | x) + ε

∑g∈G
(

P̂(g | x) + ε
) ,

where ε > 0 is a small positive number.7 The above smoothing is called additive smoothing

or sometimes Lidstone smoothing.

The lowest perplexities achieved by the three weighting methods on the five data sets

that we used for this experiment are shown in Table 4.7. It is easy to see that among the

three weighting methods, the proposed KRI weights consistently achieved the lowest per-

plexity, which indicates that with a proper regularization parameter λ, the KRI weights can

achieve better posterior probability estimates than both the uniform and affinity weights.

Notice that the relatively big reduction in perplexity on the Caltech-101 data set achieved

by the KRI weights is consistent with the classification performance reported in Table 4.3.

For completeness, we also show in Table 4.8 the highest normalized cross entropies

achieved by the three weighting methods on the five data sets, where for each sample, the

class prior probability estimated from the rest of the data set is used as the baseline model.

The normalized cross entropies lead to the same conclusion as do the perplexities.

We plot the value of the empirical cross entropy ζ̂ versus the neighborhood size k in

Figure 4.6–4.8. For the KRI weights, the λ’s of the plots are those that helped achieve the

lowest perplexities shown in Table 4.7. In general, when k increases, it is more likely that

a sample x will have neighbors from other classes; when weights are assigned to these

7We chose ε = 10−4 for the Aural Sonar, Patrol and Voting data sets, and ε = 10−6 for the Caltech-101 and
Face Rec data sets. These numbers were determined by the number of classes in each data set and several
preliminary experiments.

47

Table 4.7: Lowest perplexities achieved by the uniform, affinity and KRI weights during
the leave-one-out cross-validation.

Aural Sonar Caltech-101 Face Rec Patrol Voting

uniform weights 1.41 10.24 1.32 1.92 1.14

affinity weights 1.39 9.97 1.32 1.82 1.14

KRI weights 1.35 6.45 1.18 1.70 1.12

Table 4.8: Highest normalized cross entropies achieved by the uniform, affinity and KRI
weights during the leave-one-out cross-validation.

Aural Sonar Caltech-101 Face Rec Patrol Voting

uniform weights 0.5083 0.4459 0.9435 0.6819 0.7984

affinity weights 0.5295 0.4522 0.9436 0.7072 0.7994

KRI weights 0.5757 0.5559 0.9658 0.7406 0.8243

neighbors, the estimated probability of x’s own class goes down, which explains why for

the uniform and affinity weights, ζ̂ goes up when k becomes large. An exception can be

observed in Figure 4.7(b) for the affinity weights on the Patrol data set. This is because

the similarity matrix of the Patrol data set is sparse (see Figure 4.1); for a large k, many

“neighbors” actually have zero similarity to x, and therefore will be assigned zero weight

according to the affinity weights. For the KRI weights, we did not observe a dramatic

increase of ζ̂ when k goes large. This is a result of the diversity goal: when those neighbors

from other classes are more similar to each other than to the sample x, they will not receive

much weight from the KRI weighting method. In other words, by exploring the similarity

structure among neighbors, the KRI weights gain more information and hence produce

better posterior probability estimates.

48

10
0

10
1

0

0.5

1

1.5

2

2.5

3

k

ζ̂

uniform weights

affinity weights

KRI weights

(a) Aural Sonar

10
0

10
1

10
2

2

3

4

5

6

7

8

9

10

k

ζ̂

uniform weights

affinity weights

KRI weights

(b) Caltech-101

Figure 4.6: How ζ̂ changes with the neighborhood size k on the Aural Sonar and Caltech-
101 data sets are shown in (a) and (b), respectively. Here the KRI weights use λ = 1 and
λ = 10−3 for the Aural Sonar and Caltech-101 data sets, respectively.

49

10
0

10
1

10
2

0

1

2

3

4

5

6

k

ζ̂

uniform weights

affinity weights

KRI weights

(a) Face Rec

10
0

10
1

10
2

0.5

1

1.5

2

2.5

3

3.5

k

ζ̂

uniform weights

affinity weights

KRI weights

(b) Patrol

Figure 4.7: How ζ̂ changes with the neighborhood size k on the Face Rec and Patrol data
sets are shown in (a) and (b), respectively. Here the KRI weights use λ = 10−4 and λ = 10−1

for the Face Rec and Patrol data sets, respectively.

50

10
0

10
1

10
2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

k

ζ̂

uniform weights

affinity weights

KRI weights

Figure 4.8: The above plot shows how ζ̂ changes with the neighborhood size k on the
Voting data set. Here the KRI weights use λ = 10−1.

51

Chapter 5

LEARNING KERNELS FROM INDEFINITE SIMILARITIES

Joint undertakings stand a better chance

when they benefit both sides.

Euripides

The results in Table 4.6 show that different approaches to modifying indefinite simi-

larities into kernels can yield different results. This motivates me to investigate directly

learning a kernel given indefinite similarities that produces a classifier with good general-

ization. Formally, given a similarity function ψ(x, x′), we would like to seek a surrogate

kernel function K(x, x′) that induces an RKHS in which a classifier with good generaliza-

tion can be learned. However, assuming one only has access to the values of the similarity

function for all pairs of the training samples, I pose the problem as follows:

Given an indefinite similarity matrix S, can we find a surrogate PSD matrix K

corresponding to an RKHS in which a classifier with good generalization can

be learned?

In Section 5.1, we first consider the surrogate kernel matrix K to be a free parameter

in the SVM primal problem. Then in Section 5.2, we restrict the surrogate kernel ma-

trix K to be a spectrum modification of S in order to reduce overfitting and yield a more

tractable optimization problem. Some experimental results are shown in Section 5.3, and

in Section 5.4, we discuss an extension that combines indefinite similarities with multiple

kernels. A more concise version of some of the research in this chapter appears in my

publications [23, 22].

5.1 Learning the Kernel Matrix

The traditional way of using indefinite similarities for the SVM decouples the steps of mod-

ifying indefinite similarities into a kernel and training an SVM using that kernel. Basically,

52

the modification does not take the class labels of the data into account. Since the training

of the SVM depends on the kernel, which is a result of the modification, it is very natural

to ask: Can we directly learn a kernel from the data in a more principled way? And can

we do it together with learning an SVM?

To answer these two questions, we consider minimizing the empirical risk with regu-

larization jointly over the kernel matrix K and the original SVM parameters, that is,

minimize
f , K

1
n

n

∑
i=1

Lhinge(yi, f (xi)) + η‖ f ‖2
K + γ‖K− S‖F, (5.1)

where f has the form

f (x) =
n

∑
i=1

ciK(x, xi) + b,

and η > 0 and γ > 0 are both regularization parameters. Comparing (5.1) with (2.1),

we added an extra regularization term ‖K − S‖F, which focuses the search for K in the

vicinity of S in terms of the Frobenius norm. This regularization term imposes the belief

that a good kernel matrix K is close to the given indefinite similarity matrix S; however, if

there is different prior knowledge about how K and S are related, one can easily replace

‖K − S‖F with a term that more appropriately reflects the known relationship between K

and S.

For the development of the investigated methods, we favor the primal form of the

SVM as given in (2.3) due to its clear mathematical interpretation in terms of empirical risk

minimization with regularization. To that end, we reformulate (5.1) as an extension of the

primal form of the SVM given in (2.3):

minimize
c, b, ξ, K

1
n

1Tξ + ηcTKc + γ‖K− S‖F

subject to diag(y)(Kc + b1) ≥ 1− ξ,

ξ ≥ 0,

K � 0,

(5.2)

with additional variable K ∈ Rn×n and additional regularization parameter γ > 0. Recall

from Section 2.1.3 that spectrum clip yields the nearest PSD matrix to S in term of the

Frobenius norm; hence, when γ is set very large, solving (5.2) is almost the same as training

an SVM with Sclip.

53

It is not trivial to solve (5.2) as formulated; the optimization problem given by (5.2)

is not convex because both c and K are variables and we have a quadratic form cTKc in

the objective and a product term Kc in one of the constraints. We show that by using the

following lemma, (5.2) can in fact be expressed as a convex conic program, whose special

structure enables us to design efficient algorithms [70], and for small to medium size data

sets, we can solve the problem using a general-purpose convex conic optimizer such as

SeDuMi [94] or SDPT3 [97].

Lemma 5.1. Let K ∈ Rn×n, z ∈ Rn and u ∈ R. ThenK z

zT u

 � 0

if and only if K � 0, z is in the range (column space) of K, and u− zTK†z ≥ 0, where K† is the

Moore-Penrose pseudoinverse of K.

Lemma 5.1 follows directly from [47, p. 44, Theorem 1.20], which states a basic property

of the generalized Schur complement. Note that Lemma 5.1 can be concisely expressed asK z

zT u

 � 0 ⇔ K � 0, z = Kc, u− zTK†z ≥ 0, (5.3)

where z = Kc for some c ∈ Rn is equivalent to saying that z is in the range of K. Since the

pseudoinverse of K satisfies the following property

KK†K = K,

for z = Kc, we have

zTK†z = cTKK†Kc = cTKc,

and hence (5.3) is equivalent toK z

zT u

 � 0 ⇔ K � 0, z = Kc, cTKc ≤ u. (5.4)

The equivalence condition given by (5.4) is the key to the reformulation of (5.2).

54

In order to formulate (5.2) as a convex conic program, we first introduce slack variables

u, v ∈ R, and rewrite (5.2) as

minimize
c, b, ξ, K, u, v

1
n

1Tξ + ηu + γv

subject to diag(y)(Kc + b1) ≥ 1− ξ,

ξ ≥ 0,

K � 0,

cTKc ≤ u,

‖K− S‖F ≤ v.

(5.5)

Then we let z = Kc, and based on the equivalence condition given by (5.4), we can easily

rewrite (5.5) as the following equivalent problem:

minimize
z, b, ξ, K, u, v

1
n

1Tξ + ηu + γv

subject to diag(y)(z + b1) ≥ 1− ξ,

ξ ≥ 0,K z

zT u

 � 0,

‖K− S‖F ≤ v,

(5.6)

with variables z ∈ Rn, b ∈ R, ξ ∈ Rn, K ∈ Rn×n, u ∈ R and v ∈ R. The problem in (5.6)

is a convex conic program since it has a linear objective, a set of affine constraints, a linear

matrix inequality (LMI) constraint and a second-order cone (SOC) constraint.

After solving (5.6), we obtain the optimal solution, denoted by z?, b? and K?. Here K?

is the kernel matrix learned from the data, and b? is the bias term for the SVM, but we still

need to recover the SVM parameter c ∈ Rn. Again, by Lemma 5.1, we know that there

must exist a c ∈ Rn that satisfies

z? = K?c. (5.7)

Such c is unique when K? is full-rank, but when K? is not full-rank, such c is not unique. In

fact, when K? is not full-rank, the null space of K?, denoted by null(K?), contains nonzero

55

vectors. Suppose c is a solution to (5.7), then for any a ∈ null(K?)\{0}, c′ = c + a is still

a solution to (5.7), and both c and c′ are optimal solutions to (5.2). In order to avoid the

ambiguity when recovering c, we choose the optimal c? to be

c? = (K?)†z?,

which, according to the properties of the Moore-Penrose pseudoinverse, solves the follow-

ing least-norm problem:

minimize
c

‖c‖2

subject to K?c = z?,

or in other words, c? is the solution to (5.7) with minimum Euclidean norm [68].

5.1.1 Related Work: Indefinite SVM

The idea of jointly learning a kernel matrix and training an SVM first appeared in [64].

This paper took the perspective that indefinite similarities are noisy observations of an

unknown PSD kernel; based on this perspective, the authors of [64] considered all the PSD

matrices within distance β to S, that is,

KS,β =
{

K � 0
∣∣ ‖K− S‖F ≤ β

}
,

where β > minK�0 ‖K − S‖F, and proposed to maximize the minimum of the SVM dual

objective among these matrices:

maximize
α

min
K∈KS,β

(
1Tα− 1

2
αT diag(y)K diag(y)α

)
subject to 0 ≤ α ≤ C1,

yTα = 0.

In practice, they replaced the hard constraint ‖K − S‖F ≤ β with a penalty term and pro-

posed the following problem for indefinite similarity matrix S:

maximize
α

min
K�0

(
1Tα− 1

2
αT diag(y)K diag(y)α + ρ‖K− S‖2

F

)
subject to 0 ≤ α ≤ C1,

yTα = 0,

(5.8)

56

where ρ > 0 is the parameter to control the trade-off. They referred to (5.8) as the Indefinite

SVM. They pointed out that the inner problem of (5.8) has a closed-form solution, that is,

for a fixed α,

arg min
K�0

(
−1

2
αT diag(y)K diag(y)α + ρ‖K− S‖2

F

)
=

(
S +

1
4ρ

(diag(y)α) (diag(y)α)T
)

clip
,

(5.9)

where (·)clip denotes the spectrum clip operator. They also pointed out that outer problem

is convex since its objective is a pointwise minimum of a set of concave quadratic functions

of α and thus also concave in α [13].

The problem in (5.8) looks very different from what we formulated in (5.2); these two

problems were formed from completely different perspectives: (5.2) extends the primal

form of the SVM by including kernel matrix K as an additional variable, while (5.8) ex-

tends the dual form of the SVM by applying the maximin rule to the original objective

function. Even philosophically, these two problems seem very different: (5.2) takes an

optimistic view of finding a kernel matrix K that results in a better classifier, while (5.8)

was interpreted by the authors of [64] as “a worst-case robust classification problem with

bounded uncertainty on the kernel matrix K” with a clearly pessimistic overtone. How-

ever, with the help of the following theorem, I will show below that these two problems

are in fact equivalent except for a slight difference in the regularizer of K.

Theorem 5.2 (Sion’s Minimax Theorem). Let M and N be convex spaces one of which is com-

pact, and f (µ, ν) a function on M × N, which is quasiconcave in M, quasiconvex in N, upper

semi-continuous in µ for each ν ∈ N, and lower semi-continuous in ν for each µ ∈ M, then

sup
µ∈M

inf
ν∈N

f (µ, ν) = inf
ν∈N

sup
µ∈M

f (µ, ν).

This general minimax theorem was proved in [88].

First, we denote the feasible set of the SVM dual problem shown in (2.4) by

A =

{
α ∈ Rn

∣∣∣∣ yTα = 0, 0 ≤ α ≤ C1
}

,

and rewrite (5.8) as

max
α∈A

min
K�0

1Tα− 1
2

αT diag(y)K diag(y)α + ρ‖K− S‖2
F. (5.10)

57

Because A and the PSD cone are both convex, A is compact, and the objective function

of (5.10) is continuous in α and K and is concave in α and convex in K, we apply Theo-

rem 5.2 and switch the max and the min. Therefore, (5.10) is equivalent to

min
K�0

max
α∈A

1Tα− 1
2

αT diag(y)K diag(y)α + ρ‖K− S‖2
F. (5.11)

Since (2.4) is the dual of (2.3) with zero duality gap, we can replace the (2.4) part in the inner

problem of (5.11) with (2.3), then merge the inner minimization over c, b and ξ with the

outer minimization over K, and obtain the following equivalent problem of the indefinite

SVM:
minimize

c, b, ξ, K

1
n

1Tξ + ηcTKc + ρ‖K− S‖2
F

subject to diag(y)(Kc + b1) ≥ 1− ξ,

ξ ≥ 0,

K � 0.

(5.12)

Now compare (5.12) with (5.2), and it is easy to see that the only difference is that (5.2) uses

‖K− S‖F as the regularizer of K while (5.12) uses ‖K− S‖2
F, which is a sufficient condition

for the inner problem of (5.8) to have a closed-form solution. Therefore, a more accurate

interpretation of (5.8) is that it finds the best-case kernel matrix K for classification rather

than the worst-case K.

Two algorithms to solve the Indefinite SVM were proposed in [64]: one is based on

the projected gradient method and the other is based on the analytic center cutting plane

method. A third algorithm was proposed in [20], which reformulated (5.8) as a semi-

infinite quadratically constrained linear program, and a fourth algorithm that applies Nes-

terov’s smooth optimization method [72] was proposed in [106]. Several extensions of the

Indefinite SVM, including those extensions to support vector regression (SVR) [90] and

one-class SVMs [86], were discussed in [65].

5.1.2 Modifying the Test Similarities

We discussed in Section 4.1 how to handle test similarities for spectrum clip, flip and shift

on the training similarity matrix. The same problem arises when we learn a kernel matrix

58

from an indefinite similarity matrix. As stated before, ideally, we would like to find a sur-

rogate kernel function K(x, x′) for the similarity function ψ(x, x′). However, only K?, the

surrogate of S in the PSD cone, is learned from training. Given a test sample x, estimating

its label using its unmodified similarities to the training samples s ∈ Rn, that is,

ŷ = sgn
(
(c?)Ts + b?

)
,

ignores the fact that c? and b? are trained on K? not on S.

Based on the same spirit of using ‖K− S‖F to restrict the search for K to the vicinity of

S, given s, ψ(x, x), S and K?, I propose to find the appropriately modified test similarities s̃

by solving

minimize
r, t

∥∥∥∥∥∥
K? r

rT t

−
 S s

sT ψ(x, x)

∥∥∥∥∥∥
F

subject to

K? r

rT t

 � 0,

(5.13)

with variables r ∈ Rn and t ∈ R, in the hope that the optimal solution r?, which will be

our s̃, is related to s in a way that is similar to how K? is related to S. The test sample x is

then classified as

ŷ = sgn
(
(c?)Tr? + b?

)
.

The problem in (5.13) can be easily written as a convex conic program, but it can be

further simplified. By applying Lemma 5.1 with its condition that r be in the range of K?

expressed as [13, Appendix A.5.5]

(
I − K?(K?)†

)
r = 0,

we have K? r

rT t

 � 0 ⇔
(

I − K?(K?)†
)

r = 0, rTK?r− t ≤ 0,

and as a result, we can reduce (5.13) to the following quadratically constrained quadratic

59

program (QCQP):

minimize
r, t

2‖r− s‖2
2 + (t− ψ(x, x))2

subject to rTK?r− t ≤ 0,(
I − K?(K?)†

)
r = 0,

(5.14)

which can be solved efficiently using interior point methods [34, 67, 71].

5.1.3 Formulation for Transductive Learning

Section 5.1.2 gives a QCQP formulation for modifying test similarities under the setting of

inductive learning. I want to point out that for the case of transductive learning, where

training and test samples are provided altogether, the task of training an SVM and that

of learning kernel values for both training and test samples can be combined into one

single optimization problem. Here we assume that besides n training samples, we also

have n′ test samples, and temporarily for the transductive learning setting, we are given

an (n + n′)× (n + n′) indefinite similarity matrix S, which can be partitioned as follows,

S =

S11 S12

S21 S22

 ,

where the upper left submatrix S11 ∈ Rn×n is the similarity matrix for the n training sam-

ples. Assume the kernel matrix K ∈ R(n+n′)×(n+n′) that we would like to learn for both

training and test samples has the same partition, that is,

K =

K11 K12

K21 K22

 ,

where the upper left submatrix K11 ∈ Rn×n is the kernel matrix for the n training samples,

then we can form the following problem as a transductive learning extension of (5.2):

minimize
c, b, ξ, K

1
n

1Tξ + ηcTK11c + γ‖K− S‖F

subject to diag(y)(K11c + b1) ≥ 1− ξ,

ξ ≥ 0,

K � 0.

(5.15)

60

By the same technique that we used before, we can rewrite (5.15) as the following convex

conic program:

minimize
z, b, ξ, K, u, v

1
n

1Tξ + ηu + γv

subject to diag(y)(z + b1) ≥ 1− ξ,

ξ ≥ 0,K11 z

zT u

 � 0,

K � 0,

‖K− S‖F ≤ v,

(5.16)

which now has two LMI constraints. There is no need for modifying test similarities if we

solve (5.16), because the optimal K?
12 already has the learned kernel values between the

training and test samples, which should be used to classify the n′ test samples.

Note that the main purpose of the above transductive learning extension of (5.2) is to

avoid modifying test similarities separately — it is not an attempt to combine the concept of

learning kernels from indefinite similarities with the transductive support vector machine

(TSVM). Although it is possible to do so, it is out of the scope of this dissertation since

TSVM itself is a big topic. We refer the reader to [19, Chapter 6 & 7] and [110, Chapter 6]

for more details on the TSVM.

5.2 Learning the Spectrum Modification

Although (5.6) is a convex optimization problem, the scale of the problem, as measured by

the number of (scalar) variables, grows quadratically with the number of training samples.

Moreover, the flexibility of learning the whole kernel matrix K may lead to a model that

overfits the data. Therefore, in this section, I propose a method that restricts K to be a

spectrum modification of S and also has lower computational cost.

As discussed in Section 4.1, spectrum clip and flip can both be represented by ma-

trix multiplications, that is, S̃ = PS, where P is the transformation matrix. Recall that

S = UΛUT, where Λ = diag(λ1, . . . , λn). For spectrum clip and flip, their corresponding

61

transformation matrices Pclip and Pflip share the same form:

P = U diag(α)UT, (5.17)

where α ∈ Rn, and we have

αclip =
[

I{λ1≥0} . . . I{λn≥0}

]T
,

and

αflip =
[
sgn(λ1) . . . sgn(λn)

]T
.

Inspired by (5.17), I propose to restrict the surrogate kernel matrix K to be

Kα = U diag(α)UTS = U diag(α)UTUΛUT = U diag(α)ΛUT, (5.18)

and treat α, which modifies the spectrum of S, as a variable to learn instead of the whole

kernel matrix K. With the restriction given by (5.18), the number of (scalar) variables that

we need to learn from the data grows linearly with the number of training samples instead

of quadratically, and the model is less flexible and thus less prone to overfitting. A third

benefit is that we no longer need to solve the QCQP given by (5.14) for each test sample;

after we learn the spectrum modification vector α, for a test sample x with similarity vector

s, as proposed in Section 4.1, we can modify its similarities to the training samples using

the same matrix multiplication:

s̃ = Ps = U diag(α)UTs. (5.19)

Using (5.18), I propose the following problem to jointly learn a spectrum modification

and train an SVM:
minimize

c, b, ξ, α

1
n

1Tξ + ηcTKαc + γh(α)

subject to diag(y)(Kαc + b1) ≥ 1− ξ,

ξ ≥ 0,

Λα ≥ 0,

(5.20)

where h(α) is a convex regularizer of α. From now on, I will refer to (5.20) as the SimSVM.

As in Section 5.1, by introducing slack variables t, v ∈ R and letting z = Kαc, we can

62

rewrite (5.20) as the following convex optimization problem:

minimize
z, b, ξ, α, t, v

1
n

1Tξ + ηt + γv

subject to diag(y)(z + b1) ≥ 1− ξ,

ξ ≥ 0,Kα z

zT t

 � 0,

h(α) ≤ v.

(5.21)

The type of the last constraint h(α) ≤ v depends on what kind of h(α) we choose as the

regularizer, which will be discussed below.

5.2.1 Options for the Regularizer h(α)

In Section (5.1), we regularize the search for K toward S using ‖K− S‖F. Since

‖Kα − S‖F = ‖U(diag(α)− I)ΛUT‖F = ‖(diag(α)− I)Λ‖F = ‖Λ(α− 1)‖2,

‖Λ(α− 1)‖2 could be a reasonable option for h(α). As mentioned in Section (5.1), when the

regularization parameter γ is set large, using ‖K − S‖F makes (5.2) very close to training

an SVM with Sclip, and hence we expect that using h(α) =
∥∥α− αclip

∥∥
2 will achieve similar

results as using h(α) = ‖Λ(α− 1)‖2, which we have verified experimentally. We have also

observed that for certain S that has many near-zero eigenvalues, using h(α) =
∥∥α− αclip

∥∥
2

can make some convex optimization solvers less prone to numerical instability.

In fact, instead of searching in the vicinity of S, one might want to regularize the search

for Kα toward other approximations of S. For example, one can use other regularizers such

as h(α) =
∥∥α− αflip

∥∥
2, and we have seen from the results in Table 4.6 that spectrum flip

helps both SVM and SVM-KNN achieve their best results on the Protein data set.

Choosing either h(α) =
∥∥α− αclip

∥∥
2 or h(α) =

∥∥α− αflip
∥∥

2 will make h(α) ≤ v an

SOC constraint. However, if we change the `2-norm to the `1-norm, that is, we let h(α) =∥∥α− αclip
∥∥

1 or h(α) =
∥∥α− αflip

∥∥
1, then h(α) ≤ v can be expressed as a set of linear con-

straints. Moreover, due to the fact that the `1-norm encourages sparse solutions [13], one

63

should expect that many components of α will be exactly the same as those of αclip or αflip,

depending on which one is used in the regularizer.

5.2.2 Linear Program Approximation

Being able to formulate the SimSVM as a convex optimization problem does not mean that

we are able to solve it fast enough for practical uses; even though the number of (scalar)

variables in (5.21) grows linearly with n, due to its large LMI constraint, it is still impractical

to solve (5.21) on large or even medium size data sets. In this subsection, we describe an

attempt for a fast algorithm by using an LP to approximate (5.21). The rationale of using

an LP to approximate the original problem is that LPs are generally considered efficiently

solvable in both theory and practice, and modern commercial solvers can handle LPs with

millions of variables and constraints. Another attempt that reformulates (5.20) as a second-

order cone program (SOCP) will be described in the next subsection.

The key idea of the LP approximation is to replace the LMI constraint in (5.21) with the

following equality constraint: Kα z

zT t

 =
m

∑
i=1

wiβiβ
T
i , (5.22)

for some βi ∈ Rn+1, i = 1, . . . , m, where wi ≥ 0, i = 1, . . . , m. That is, we approximate the

LMI in (5.21) by expressing the matrix on the left side of the LMI as a conic combination

of m rank-one PSD matrices constructed from a set of m preselected vectors {βi}m
i=1. This

approximation is adapted from the idea proposed in [51]. The authors of [51] proposed

an algorithm termed random conic pursuit to solve semidefinite programs (SDPs) [100] via

repeated optimization over randomly selected two-dimensional subcones of the PSD cone.

For the ith iteration, they construct the following subcone:

Ci =
{

X ∈ Rn×n
∣∣∣ X = aXi−1 + bxixT

i , a, b ≥ 0
}

,

where Xi−1 ∈ Rn×n is the solution from the previous iteration, and xi ∈ Rn is a random

vector sampled from a multivariate Gaussian distribution. Then they optimize over Ci by

using a double bisection search for variables a and b. With an initial solution X0 � 0, their

64

solution at the ith iteration can be expressed as

Xi = w0X0 +
i

∑
j=1

wjxjxT
j , (5.23)

for some wj ≥ 0, j = 0, . . . , i. The approximation given by (5.22) was inspired by random

conic pursuit in that both construct the final PSD matrix solution as a conic combination of

rank-one PSD matrices. However, because of the special structure of the matrix we have

in (5.22), we can be more efficient than choosing the basis matrices completely at random.

It is clear that the conic combination of the m rank-one PSD matrices can only repre-

sent a subset of all (n + 1)× (n + 1) PSD matrices, but we hope that by choosing a large

m and carefully designing the set {βi}m
i=1, we can obtain a decent approximation to the

original optimal solution. To construct the rank-one PSD matrices in (5.22), first, for each

i ∈ {1, . . . , n}, we randomly draw p i.i.d. samples τij, j = 1, . . . , p, from some probability

distribution on R. Then, we let

βij =

ui

τij

 ,

for i = 1, . . . , n and j = 1, . . . , p, where ui denotes the ith column of U. With these βij’s, the

approximation is given byKα z

zT t

 =
n

∑
i=1

p

∑
j=1

wijβijβ
T
ij =

 ∑n
i=1 ∑

p
j=1 wijGi ∑n

i=1 ∑
p
j=1 wijτijui

∑n
i=1 ∑

p
j=1 wijτijuT

i ∑n
i=1 ∑

p
j=1 wijτ

2
ij

 , (5.24)

where Gi = uiuT
i , i = 1, . . . , n. Since

Kα = U diag(α)ΛUT =
n

∑
i=1

λiαiGi,

where αi is the ith component of α, and

〈Gi, Gj〉 = tr(GT
i Gj) =

1, i = j,

0, i 6= j,

under the approximation given by (5.24), we have

λiαi =
p

∑
j=1

wij, (5.25)

65

for i = 1, . . . , n. From (5.24), we also have

z =
n

∑
i=1

p

∑
j=1

wijτijui, (5.26)

and

t =
n

∑
i=1

p

∑
j=1

wijτ
2
ij. (5.27)

Given the relationships in (5.25)–(5.27), and assume, for example, h(α) =
∥∥α− αclip

∥∥
1, we

can then solve (5.21), which, in this case, is an SDP, approximately by solving the following

LP:

minimize
w, b, ξ, v

1
n

1Tξ + η
n

∑
i=1

p

∑
j=1

wijτ
2
ij + γ1Tv

subject to diag(y)

(
n

∑
i=1

p

∑
j=1

wijτijui + b1

)
≥ 1− ξ,

− vi ≤
1
λi

p

∑
j=1

wij −
(
αclip

)
i ≤ vi, i = 1, . . . , n,

ξ ≥ 0, w ≥ 0, v ≥ 0,

(5.28)

with variables w ∈ Rnp, b ∈ R, ξ ∈ Rn and v ∈ Rn. Notice that in (5.28), we assume λi 6= 0,

i = 1, . . . , n; if there exist λi’s that are zero, we can simply remove their corresponding

terms in (5.28) and only solve for those wij’s that correspond to nonzero λi’s.

5.2.3 Second-Order Cone Program Formulation

In this subsection, we describe a reformulation of (5.20) that takes advantage of the spe-

cial structure of learning the spectrum modification and results in a convex optimization

problem that is easier to solve than (5.21).

First, we let c̃ = UTc, and given (5.18), we can rewrite (5.20) as

minimize
c̃, b, ξ, α

1
n

1Tξ + ηc̃T diag(α)Λc̃ + γh(α)

subject to diag(y)(U diag(α)Λc̃ + b1) ≥ 1− ξ,

ξ ≥ 0,

Λα ≥ 0.

(5.29)

66

Then we let z = diag(α)Λc̃, that is, zi = λiαi c̃i, i = 1, . . . , n. Because

c̃T diag(α)Λc̃ =
n

∑
i=1

λiαi c̃2
i ,

and given λiαi ≥ 0, ti ≥ 0, i = 1, . . . , n, we have

λiαi c̃2
i ≤ ti ⇔ λ2

i α2
i c̃2

i ≤ λiαiti ⇔ z2
i ≤ λiαiti.

Thus, we can rewrite (5.29) as

minimize
z, b, ξ, α, t

1
n

1Tξ + η1Tt + γh(α)

subject to diag(y)(Uz + b1) ≥ 1− ξ,

ξ ≥ 0, t ≥ 0,

Λα ≥ 0,

z2
i ≤ λiαiti, i = 1, . . . , n,

(5.30)

where t ∈ Rn is the vector of n slack variables. What stands out in (5.30) is the set of hyper-

bolic constraints on the last line. Before we proceed, we need to introduce the following

lemma that establishes the equivalence between restricted hyperbolic constraints and SOC

constraints.

Lemma 5.3. For x ∈ Rn and y, z ∈ R, we have

xTx ≤ yz, y ≥ 0, z ≥ 0,

if and only if ∥∥∥∥∥∥
 2x

y− z

∥∥∥∥∥∥
2

≤ y + z, y ≥ 0, z ≥ 0.

Lemma 5.3 is well-known in the convex optimization community [13, 1, 62]. For complete-

ness, I provide the proof and a geometric interpretation in Appendix B.

By applying Lemma 5.3 to those hyperbolic constraints, we have

z2
i ≤ λiαiti, λiαi ≥ 0, ti ≥ 0 ⇔

∥∥∥∥∥∥
 2zi

λiαi − ti

∥∥∥∥∥∥
2

≤ λiαi + ti, λiαi ≥ 0, ti ≥ 0,

67

for i = 1, . . . , n. Given the above equivalence and assume, for example, we use the regu-

larizer h(α) =
∥∥α− αclip

∥∥
2, we can rewrite (5.30) as

minimize
z, b, ξ, α, t, v

1
n

1Tξ + η1Tt + γv

subject to diag(y)(Uz + b1) ≥ 1− ξ,

ξ ≥ 0, t ≥ 0,

Λα ≥ 0,∥∥∥∥∥∥
 2zi

λiαi − ti

∥∥∥∥∥∥
2

≤ λiαi + ti, i = 1, . . . , n,

∥∥α− αclip
∥∥

2 ≤ v,

(5.31)

with variables z, ξ, α, t ∈ Rn and b, v ∈ R. The problem in (5.31) is a second-order cone

program (SOCP) [1, 62], and can be efficiently solved by algorithms such as the primal-

dual interior point method [3]. Compare (5.31) with (5.21), and we can find that the large

LMI constraint in (5.21) is now replaced in (5.31) by n SOC constraints , each of which

involves only a two-dimensional vector. This key difference makes (5.31) much easier to

solve than (5.21). Also notice that unlike the LP approximation discussed in the previous

subsection, (5.31) is equivalent to (5.20), and therefore solving (5.31) gives the exact optimal

solution to the original problem.

Lastly, let z? and α? denote the optimal solution to (5.31), and since we let

z = diag(α)Λc̃ = diag(α)ΛUTc,

we can recover the optimal c? by

c? = U (diag(α?)Λ)† z?.

5.3 Experiments

In this section, we first compare the method using the LP approximation to solve the

SimSVM as detailed in Section 5.2.2 and the method using the SOCP formulation as de-

scribed in Section 5.2.3. Then we compare the proposed SimSVM with the SVMs using

68

the similarities as a kernel via spectrum clip, flip and shift, and the Indefinite SVM given

by (5.8), which, as shown in Section 5.1.1, is equivalent to learning the full kernel matrix.

5.3.1 LP Approximation vs SOCP Formulation

We tested the LP approximation method and the SOCP method on the Aural Sonar and

Voting data sets, which are described in Section 4.2. Both data sets have two classes. To be

able to apply the LP approximation, we chose the regularizer h(α) = ‖α− αclip‖1 for both

methods, and the two regularization parameters were set to η = γ = 0.01. The convex

optimization solver MOSEK1 was used to solve both the LP and the SOCP. MOSEK offers

four methods for solving the LP: the primal simplex method, the dual simplex method,

the primal-dual simplex method, and the interior point method. We used the dual simplex

method for it was the fastest when tested on our problems. The computer on which we

ran these experiments has an Intel Core i7 3.2 GHz processor and 12 GB memory and runs

the Linux operating system.

In the LP approximation method, for each i ∈ {1, . . . , n}, we generated τij, j = 1, . . . , p,

from a Gaussian distribution whose mean and variance are equal to the sample mean and

variance of the elements of ui, respectively. We tested four different choices of p: 10, 50,

100 and 200.

The goal of this set of experiments is to answer the following two questions:

1. Can the LP approximation method yield solutions that are reasonably close to those

obtained using the SOCP method?

2. Can we gain a shorter running time by using the LP approximation method?

Unfortunately, the results unveiled in Table 5.1 and 5.2 show that the performance of the

LP approximation method is quite disappointing. Table 5.1 shows the running time (in

milliseconds), the optimal value of the objective function, the empirical risk defined as the

average hinge loss on the training set, and the empirical classification error defined as the

1Available at http://www.mosek.com/

69

percent of training samples misclassified. Table 5.2 shows the relative differences between

the LP approximation method and the SOCP method, which is used as the baseline, in

terms of the optimal value of the objective function and the optimal solutions of the SVM

parameters c and b and the spectrum modification vector α. Here the relative difference

between a scalar or vector x and its baseline x0 is defined as

Ex =
‖x− x0‖2

‖x0‖2
× 100%.

Because the directly measured running time is not a constant and the LP approximation

method uses random numbers, the results shown in Table 5.1 and 5.2 are averaged over

10 runs.

It is easy to see that as p, the number of random samples drawn for each i, goes larger,

the results of the LP approximation method get closer to those of the SOCP method, espe-

cially the empirical risk and classification error, which are most pertinent to our classifica-

tion tasks. This is as expected since with a larger p, we have more rank-one PSD matrices

for the approximation given by (5.22). However, as can be seen from Table 5.2, even when

p = 200, there are still significant relative differences in the SVM parameters c and b and

the spectrum modification vector α. The most disappointing part of the LP approximation

method is that even when p = 10, it already takes longer to solve the LP given by (5.28)

than the SOCP given by (5.31) as shown in Table 5.1, not to mention when p grows larger.

Notice that the running time of both methods on the Voting data set is less than that on

the Aural Sonar data set even though the Voting data set has 435 samples while the Aural

Sonar data set has only 100 samples. This is because the similarity matrix of the Voting

data set has many near-zero eigenvalues and the decision variables corresponding to these

near-zero eigenvalues are removed from the optimization problems.

In conclusion, compared with the SOCP method for solving the SimSVM, the LP ap-

proximation method is not very effective in terms of both accuracy and speed. Therefore,

for the experiments on classification performance, which will be discussed in the next sub-

section, we used the SOCP method for implementing the SimSVM.

70

Table 5.1: Performances of the LP approximation method and the SOCP method are com-
pared below in terms of the running time (in millisecond), optimal value of the objective
function, and risk and classification error (in percentage) on the training set. The results
are averaged over 10 runs, and their standard deviations are shown in the parentheses.

p Aural Sonar Voting

Running Time (ms)

SOCP 44.6 (2.7) 38.3 (3.4)

LP 10 134.3 (7.1) 56.4 (1.5)

LP 50 550.2 (22.3) 367.1 (8.5)

LP 100 1093.5 (68.4) 740.5 (31.2)

LP 200 2479.2 (214.0) 1354.8 (19.6)

Optimal Value

SOCP 0.283 0.185

LP 10 0.366 (0.047) 0.255 (0.033)

LP 50 0.303 (0.004) 0.219 (0.006)

LP 100 0.301 (0.004) 0.217 (0.008)

LP 200 0.294 (0.002) 0.211 (0.005)

Empirical Risk

SOCP 0.166 0.102

LP 10 0.241 (0.028) 0.177 (0.018)

LP 50 0.201 (0.002) 0.151 (0.008)

LP 100 0.198 (0.003) 0.149 (0.011)

LP 200 0.192 (0.001) 0.140 (0.013)

Empirical Error (%)

SOCP 6.0 4.4

LP 10 10.3 (1.5) 7.0 (1.2)

LP 50 7.8 (0.8) 5.6 (0.4)

LP 100 7.4 (0.5) 5.6 (0.6)

LP 200 7.0 (0.0) 5.2 (0.5)

71

Table 5.2: Percent difference between the LP approximation method and the SOCP method
(used as the baseline) in terms of the optimal value of the objective function f and the
optimal solutions of c ∈ Rn, b ∈ R and α ∈ Rn. The results are averaged over 10 runs, and
their standard deviations are shown in the parentheses.

p Aural Sonar Voting

E f (%)

10 29.5 (16.6) 37.8 (18.0)

50 7.0 (1.3) 18.0 (3.3)

100 6.3 (1.5) 17.0 (4.4)

200 3.9 (0.6) 13.7 (2.4)

Ec (%)

10 68.4 (5.7) 79.8 (5.4)

50 49.4 (2.2) 67.5 (5.7)

100 46.2 (1.8) 65.1 (5.8)

200 40.0 (1.9) 59.5 (6.5)

Eb (%)

10 661.1 (1032.0) 47.4 (44.0)

50 27.8 (15.4) 72.0 (22.0)

100 31.1 (15.3) 59.9 (26.7)

200 24.7 (13.0) 65.0 (16.6)

Eα (%)

10 64.1 (22.0) 68.6 (69.0)

50 21.9 (6.8) 32.2 (7.6)

100 20.4 (8.1) 29.1 (7.7)

200 11.9 (5.5) 28.1 (4.9)

72

5.3.2 Classification Test

In this subsection, we compare five SVM methods that treat similarities as a kernel: SVMs

with spectrum clip, flip and shift, the Indefinite SVM given by (5.8), which learns the full

kernel matrix, and the SimSVM proposed in Section 5.2, which learns the spectrum modi-

fication. For the Indefinite SVM, we used the code provided by the authors of [65], which

solves the Indefinite SVM using both the projected gradient method and the analytic cen-

ter cutting plane method. For our experiments, we used the projected gradient method,

which, according to the experiments reported in [65] and some of our own experiments,

is more efficient than the analytic center cutting plane method. For the SimSVM, we used

MOSEK to solve the SOCP formulation given by (5.31).

We ran the experiments on eight binary classification tasks using eight real data sets

representing a diverse set of indefinite similarities. These eight data sets are: Amazon-

2, Aural Sonar, Protein-2, Voting, Yeast-5-7, Yeast-5-12, Yeast-6-8 and Yeast-6-10. Among

them, the Aural Sonar and Voting data sets are already described in Section 4.2.

The Amazon-2 data set is a subset of the Amazon-47 data set described in Section 4.2,

and therefore has the same type of similarities. We manually labeled 96 books by 23 dif-

ferent authors as either fiction or nonfiction, and the problem is to correctly classify each

book as one of the 36 nonfiction books or one of the 60 fiction books.

The Protein-2 data set is a subset of the Protein data set described in Section 4.2. The

original data set has 213 samples and 4 classes. In order to use it for binary classification,

we treat the problem as classifying the two most confusable classes, each of which has 72

samples.

The Yeast-5-7, Yeast-5-12, Yeast-6-8 and Yeast-6-10 data sets are all subsets of the Yeast

data set used in [56]. The problem is to predict the functions of yeast proteins. The original

Yeast data set contains 3588 samples and each sample is a yeast protein sequence, and the

Smith-Waterman E-value is used to measure the similarity between two protein sequences.

There are 13 classes in the original data set and some samples belong to more than one class

due to their multiple roles. To simplify the problem and adapt it to binary classification, we

arbitrarily chose four pairs of classes. Each subset with the name “Yeast-A-B” was formed

73

by selecting samples that belong to either class A or class B, and then eliminating those

that belong to both classes.

We symmetrized all the similarity matrices and normalized their entries to the range of

[0, 1]. For each data set, we randomly partitioned the data 20 times into 20% test and 80%

training. For each of the 20 partitions, we selected parameters by a 10-fold cross-validation

on the training set. The hyperparameter C for the traditional C-SVM and the Indefinite

SVM, the regularization parameter ρ for the Indefinite SVM, and the regularization pa-

rameters η and γ for the SimSVM were cross-validated from the following sets:

C ∈ {10−3, 10−2, 10−1, 1, 10, 102, 103},

ρ ∈ {10−3, 10−2, 10−1, 1, 10, 102, 103},

η ∈ {10−4, 10−3, 10−2, 10−1, 1, 10},

γ ∈ {10−4, 10−3, 10−2, 10−1, 1, 10, 102, 103, 104},

except that for the C-SVM with spectrum shift, its hyperparameter C was cross-validated

from

C ∈ {10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 102, 103},

because we observed from preliminary experiments that the SVM with spectrum shift

tends to favor small values for C more often than the SVMs with spectrum clip and flip.

For the SimSVM, we used the regularizer h(α) =
∥∥α− αclip

∥∥
2 for all the data sets except

that for the Protein-2 data set, we used h(α) =
∥∥α− αflip

∥∥
2 based on our prior knowledge

gained from the comparative study discussed in Chapter 4 that this particular data set

favors spectrum flip.

The test errors averaged over the 20 randomized test/training partitions along with

the standard deviations (in parentheses) are shown in Table 5.3. For each data set, the

bold results denote the classifier with the lowest average error and those not statistically

significantly worse according to a one-sided Wilcoxon signed-rank test at a significance

level of 5%. Due to the excessive time it takes to run the Indefinite SVM,2 we were only

2For example, on a computer that has an AMD Athlon X2 2.6 GHz processor and 2 GB memory and runs
the Windows XP operating system, it took the Indefinite SVM about five days to finish the 20 runs on the
Voting data set.

74

Table 5.3: Mean and standard deviation (in parentheses) of the test errors (in percentage)
across 20 randomized test/training partitions. For each data set, the lowest mean error
and those not statistically significantly worse are boldfaced.

Amazon-2 Aural Sonar Protein-2 Voting

Samples 96 100 144 435

SimSVM 11.05 (7.99) 12.00 (4.97) 3.10 (3.34) 4.60 (2.04)

Indefinite SVM 7.63 (6.72) 12.00 (5.94) 18.28 (5.72) 5.11 (1.88)

SVM w/ clip 11.84 (7.80) 13.00 (5.48) 8.79 (5.06) 4.89 (2.11)

SVM w/ flip 20.00 (11.66) 13.25 (5.45) 4.83 (3.04) 4.94 (2.08)

SVM w/ shift 17.89 (12.00) 32.75 (18.95) 26.55 (7.68) 5.00 (1.76)

Yeast-5-7 Yeast-5-12 Yeast-6-8 Yeast-6-10

Samples 814 635 778 909

SimSVM 18.31 (3.10) 8.74 (2.46) 23.75 (3.00) 29.40 (3.19)

Indefinite SVM N/A N/A N/A N/A

SVM w/ clip 19.75 (3.52) 9.53 (2.41) 24.84 (2.98) 29.89 (3.07)

SVM w/ flip 22.15 (2.94) 10.51 (2.67) 25.74 (3.56) 31.18 (3.69)

SVM w/ shift 43.28 (5.59) 34.39 (8.34) 28.75 (2.71) 41.04 (3.17)

able to provide the results of the Indefinite SVM on the four smaller data sets as shown

in Table 5.3. Truly, the computational cost of the SimSVM is also higher than that of the

traditional SVM, but it still takes much less time to run the SimSVM than the Indefinite

SVM, as we observed from our experiments.

One can see from Table 5.3 that the proposed SimSVM is among the top performers

on seven out of the eight data sets. This indicates that on some indefinite similarity data

sets, the SimSVM that learns the spectrum modification can achieve statistically significant

improvement over the SVMs with simple spectrum modification such as clip, flip and shift.

On the Amazon-2 data set, which is the only sparse data set here, the Indefinite SVM that

learns the full kernel matrix is obviously the winner. To investigate this, we trained the

SimSVM and the Indefinite SVM on all the samples of the Amazon-2 data set using the

75

parameters selected most frequently over the 20 random partitions. The similarity matrix

S and the kernel matrix Kα learned by the SimSVM are shown in Figure 5.1(a) and (b),

respectively. It is easy to see that the learned spectrum modification does not change the

sparseness of the similarity matrix. This is further verified by the difference matrix shown

in Figure 5.1(c), where each entry is the absolute difference between the corresponding

entries of S and Kα. Let K denote the kernel matrix learned by the Indefinite SVM. To

compare the SimSVM with the Indefinite SVM, we plot the difference matrix between K

and Kα in Figure 5.1(d). The block structure revealed in this difference matrix is clearly a

result of the rank-one update given by (5.9). Most of the entries in this difference matrix

are in the order of 10−5 to 10−4. Given that the original similarities are in the range of [0, 1],

and the range of the entries in K and Kα is close to [0, 1], such differences seem to be very

small, but we conjecture that these small differences introduced by the rank-one update

still help make the kernel matrix less sparse and to certain degree uncover some hidden

relationships between samples.

In addition to the classification results, we illustrate the behavior of the SimSVM in

Figure 5.2–5.9. For each data set, we trained the SimSVM on all the samples of that data

set using the parameters selected most frequently over the 20 random partitions. Then

we plotted for each data set the similarity matrix S, the kernel matrix Kα, the spectrum

modification vector α, and the spectrum before and after the modification. It is worth

pointing out that the negative eigenvalues of the similarity matrix of the Voting data set are

so small that they are hard to see in Figure 5.5(c). This explains why for the classification

task on this data set, there is no statistically significant difference between the five SVM

methods, as one can see from Table 5.3.

Our experiments also verify the necessity of treating training and test similarities con-

sistently.3 As an example, for the SimSVM, besides the results reported in Table 5.3 using

the modified test similarities s̃ given by (5.19), we also recorded its test errors using un-

modified test similarities s. Table 5.4 shows these two sets of test errors, and it is easy to

3This includes the Indefinite SVM. The code of the Indefinite SVM tries to modify training and test similar-
ities consistently by using a heuristic based on (5.9), which is detailed in [65]. This heuristic seems to work
well: for example, on the Protein-2 data set, if this heuristic were not used, the error rate of the Indefinite
SVM would increase from 18.28% to 44.31%.

76

Table 5.4: Test errors (in percentage) averaged over 20 randomized test/training partitions.

Amazon-2 Aural Sonar Protein-2 Voting

SimSVM using s̃ 11.05 12.00 3.10 4.60

SimSVM using s 13.68 14.50 44.31 5.40

Yeast-5-7 Yeast-5-12 Yeast-6-8 Yeast-6-10

SimSVM using s̃ 18.31 8.74 23.75 29.40

SimSVM using s 37.67 34.33 26.76 38.98

conclude that modifying test similarities by (5.19) is an indispensable step for the SimSVM.

5.4 Combining Similarities with Multiple Kernels

In some applications, there may be multiple possible descriptions of the similarities be-

tween data samples. An example of multiple similarity descriptions arises in the problem

of protein classification in computational biology [56, 54]. Pairwise similarities between

proteins can be based on protein-protein interactions, genetic interactions, co-participation

in a protein complex, Smith-Waterman sequence matching algorithm [89], and other fac-

tors. In general, fusing multiple similarities with regard to a particular classification task

can provide a task-specific view of the relationships between samples, and the perfor-

mance may be better than with any single description.

A special case is when each similarity satisfies the mathematical properties of a ker-

nel. In that case, one can treat each similarity as a kernel, and fuse the similarities using

multiple kernel learning (MKL), in which a linear combination of multiple kernels and

the parameters of a discriminative classifier acting on the kernel combination are jointly

learned [55]. MKL can be used to fuse heterogeneous descriptions of data samples in the

form of multiple kernels. For the above example of protein function prediction, it is shown

in [56] and [54] that a classifier trained on a conic combination of all the given kernels

yielded better classification results than the same classifier trained on any single kernel.

However, as we have seen, similarities can be indefinite and thus fail to satisfy the

77

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

(a) Similarity matrix S

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

(b) Kernel matrix Kα

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

(c) Difference matrix |Kα − S|

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

(d) Difference matrix |Kα − K|

Figure 5.1: The similarity matrix S of the Amazon-2 data set and the kernel matrix Kα

learned by the SimSVM are shown in (a) and (b), respectively. For each (i, j)-entry, the
absolute difference between Kα and S, and that between Kα and K, which is the kernel
matrix learned by the Indefinite SVM, are shown in (c) and (d), respectively. The darker
the color is, the larger the corresponding value is; however, depending on the range of
the data for each plot, the same color does not necessarily represent the same value across
plots.

78

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

(a) Similarity matrix S

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

(b) Kernel matrix Kα

0 20 40 60 80
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Eigenvalue Rank

E
ig

en
v
al

u
e

(c) Spectrum of S

0 20 40 60 80
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Eigenvalue Rank

α

(d) Spectrum modification vector α

0 20 40 60 80
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Eigenvalue Rank

E
ig

en
v
al

u
e

(e) Spectrum of Kα

Figure 5.2: The similarity matrix S of the Amazon-2 data set and the kernel matrix Kα

learned by the SimSVM are shown in (a) and (b), respectively. Also shown are the spectra
of S and Kα, and the spectrum modification vector α.

79

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

(a) Similarity matrix S

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

(b) Kernel matrix Kα

0 20 40 60 80
−5

0

5

10

15

20

25

30

35

Eigenvalue Rank

E
ig

en
v

al
u

e

(c) Spectrum of S

0 20 40 60 80
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Eigenvalue Rank

α

(d) Spectrum modification vector α

0 20 40 60 80
−5

0

5

10

15

20

25

30

35

Eigenvalue Rank

E
ig

en
v

al
u

e

(e) Spectrum of Kα

Figure 5.3: The similarity matrix S of the Aural Sonar data set and the kernel matrix Kα

learned by the SimSVM are shown in (a) and (b), respectively. Also shown are the spectra
of S and Kα, and the spectrum modification vector α.

80

20 40 60 80 100 120 140

20

40

60

80

100

120

140

(a) Similarity matrix S

20 40 60 80 100 120 140

20

40

60

80

100

120

140

(b) Kernel matrix Kα

0 20 40 60 80 100 120 140

−10

0

10

20

30

40

50

60

70

Eigenvalue Rank

E
ig

en
v
al

u
e

(c) Spectrum of S

0 20 40 60 80 100 120 140
−4

−2

0

2

4

6

Eigenvalue Rank

α

(d) Spectrum modification vector α

0 20 40 60 80 100 120 140

−10

0

10

20

30

40

50

60

70

Eigenvalue Rank

E
ig

en
v
al

u
e

(e) Spectrum of Kα

Figure 5.4: The similarity matrix S of the Protein-2 data set and the kernel matrix Kα learned
by the SimSVM are shown in (a) and (b), respectively. Also shown are the spectra of S and
Kα, and the spectrum modification vector α.

81

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

(a) Similarity matrix S

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

(b) Kernel matrix Kα

0 50 100 150 200 250 300 350 400
−50

0

50

100

150

200

250

Eigenvalue Rank

E
ig

en
v

al
u

e

(c) Spectrum of S

0 50 100 150 200 250 300 350 400
−100

−50

0

50

100

150

200

250

Eigenvalue Rank

α

(d) Spectrum modification vector α

0 50 100 150 200 250 300 350 400
−50

0

50

100

150

200

250

Eigenvalue Rank

E
ig

en
v

al
u

e

(e) Spectrum of Kα

Figure 5.5: The similarity matrix S of the Voting data set and the kernel matrix Kα learned
by the SimSVM are shown in (a) and (b), respectively. Also shown are the spectra of S and
Kα, and the spectrum modification vector α.

82

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

(a) Similarity matrix S

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

(b) Kernel matrix Kα

0 100 200 300 400 500 600 700 800

0

50

100

150

200

250

300

350

400

Eigenvalue Rank

E
ig

en
v
al

u
e

(c) Spectrum of S

0 100 200 300 400 500 600 700 800
−20

−10

0

10

20

30

40

50

60

Eigenvalue Rank

α

(d) Spectrum modification vector α

0 100 200 300 400 500 600 700 800
0

200

400

600

800

1000

1200

1400

1600

1800

Eigenvalue Rank

E
ig

en
v
al

u
e

(e) Spectrum of Kα

Figure 5.6: The similarity matrix S of the Yeast-5-7 data set and the kernel matrix Kα learned
by the SimSVM are shown in (a) and (b), respectively. Also shown are the spectra of S and
Kα, and the spectrum modification vector α.

83

100 200 300 400 500 600

100

200

300

400

500

600

(a) Similarity matrix S

100 200 300 400 500 600

100

200

300

400

500

600

(b) Kernel matrix Kα

0 100 200 300 400 500 600

0

50

100

150

200

250

300

Eigenvalue Rank

E
ig

en
v

al
u

e

(c) Spectrum of S

0 100 200 300 400 500 600
−10

0

10

20

30

40

50

Eigenvalue Rank

α

(d) Spectrum modification vector α

0 100 200 300 400 500 600
0

500

1000

1500

2000

2500

3000

3500

Eigenvalue Rank

E
ig

en
v

al
u

e

(e) Spectrum of Kα

Figure 5.7: The similarity matrix S of the Yeast-5-12 data set and the kernel matrix Kα

learned by the SimSVM are shown in (a) and (b), respectively. Also shown are the spectra
of S and Kα, and the spectrum modification vector α.

84

100 200 300 400 500 600 700

100

200

300

400

500

600

700

(a) Similarity matrix S

100 200 300 400 500 600 700

100

200

300

400

500

600

700

(b) Kernel matrix Kα

0 100 200 300 400 500 600 700

0

50

100

150

200

250

300

350

400

Eigenvalue Rank

E
ig

en
v

al
u

e

(c) Spectrum of S

0 100 200 300 400 500 600 700
−0.5

0

0.5

1

1.5

2

2.5

Eigenvalue Rank

α

(d) Spectrum modification vector α

0 100 200 300 400 500 600 700

0

50

100

150

200

250

300

350

400

Eigenvalue Rank

E
ig

en
v

al
u

e

(e) Spectrum of Kα

Figure 5.8: The similarity matrix S of the Yeast-6-8 data set and the kernel matrix Kα learned
by the SimSVM are shown in (a) and (b), respectively. Also shown are the spectra of S and
Kα, and the spectrum modification vector α.

85

100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

700

800

900

(a) Similarity matrix S

100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

700

800

900

(b) Kernel matrix Kα

0 200 400 600 800

0

100

200

300

400

500

Eigenvalue Rank

E
ig

en
v

al
u

e

(c) Spectrum of S

0 200 400 600 800
−1

0

1

2

3

4

Eigenvalue Rank

α

(d) Spectrum modification vector α

0 200 400 600 800

0

100

200

300

400

500

Eigenvalue Rank

E
ig

en
v

al
u

e

(e) Spectrum of Kα

Figure 5.9: The similarity matrix S of the Yeast-6-10 data set and the kernel matrix Kα

learned by the SimSVM are shown in (a) and (b), respectively. Also shown are the spectra
of S and Kα, and the spectrum modification vector α.

86

properties of a kernel. For this reason, after a brief review of MKL, we discuss an extension

of the SimSVM that combines an indefinite similarity with multiple kernels to produce a

classifier with good generalization. Including indefinite similarities in the framework of

kernel fusion provides a more comprehensive picture of the relationships between data

samples and extends the concept of MKL.

5.4.1 Multiple Kernel Learning

MKL enables kernel methods to learn for a particular learning problem how to combine

kernels with different parameters (for example, Gaussian RBF kernel with different band-

widths) or kernels from different sources.

Given m kernel matrices K1, . . . , Km each of size n× n, consider the set of PSD matrices

that are linear combinations of these m kernel matrices and have a fixed trace τ, that is,

K =

{
K � 0

∣∣∣∣∣ K =
m

∑
i=1

wiKi, wi ∈ R, i = 1, . . . , m, tr(K) = τ

}
.

Let ϑ(K) be the optimal value of the SVM dual problem given in (2.4) for a specific kernel

K. Lanckriet et al. proposed in [55] to learn an optimal linear combination of K1, . . . , Km by

solving

minimize
K

ϑ(K)

subject to K ∈ K.
(5.32)

A thorough and detailed theoretical analysis of the above problem can be found in [69].

Since the SVM primal problem given in (2.3) and its dual have the same optimal value,

based on the interpretation of the SVM primal problem, we can see that conceptually, (5.32)

is equivalent to:

minimize
f , K

1
n

n

∑
i=1

Lhinge(yi, f (xi)) + η‖ f ‖2
K

subject to f ∈ HK, K ∈ K.

Lanckriet et al. showed that the problem described by (5.32) is convex in K and can be

87

formulated as the following SDP:

minimize
w, t, µ, ν, δ

t

subject to tr

(
m

∑
i=1

wiKi

)
= τ,

m

∑
i=1

wiKi � 0,diag(y) (∑m
i=1 wiKi)diag(y) 1 + µ− ν + δy

(1 + µ− ν + δy)T t− 2C1Tν

 � 0,

µ ≥ 0, ν ≥ 0,

with variables w ∈ Rm, t ∈ R, µ ∈ Rn, ν ∈ Rn and δ ∈ R. By restricting the linear

combination ∑m
i=1 wiKi to be a conic combination such that wi ≥ 0, i = 1, . . . , m, they

further simplified the problem to the following QCQP:

maximize
α, t

1Tα− 1
2

τt

subject to αT diag(y)Ki diag(y)α ≤ tr(Ki)t, i = 1, . . . , m,

0 ≤ α ≤ C1,

yTα = 0,

(5.33)

with variables α ∈ Rn and t ∈ R. To make (5.33) look more like (2.4), one can rewrite (5.33)

by moving the m quadratic inequality constraints into the objective so that the problem

becomes

maximize
α, t

1Tα− 1
2

max
i

(
τ

tr(Ki)
αT diag(y)Ki diag(y)α

)
subject to 0 ≤ α ≤ C1,

yTα = 0.

(5.34)

Although the objective function in (5.34) is concave, it is not differentiable, and thus the

SMO algorithm [77, 78] for solving (2.4) cannot be applied. In [6], Bach et al. derived an

equivalent problem to (5.34); by adding additional regularization terms, they were able to

make the objective function of the equivalent problem differentiable, and then they pro-

posed an SMO-like algorithm to solve it.

88

For efficiently solving MKL, two fast algorithms designed for large-scale MKL prob-

lems were proposed in [92] and [79] for a slightly different case where K is replaced by the

set of convex combinations of K1, . . . , Km, that is,

K′ =
{

K =
m

∑
i=1

wiKi

∣∣∣∣∣ 1Tw = 1, w ≥ 0

}
.

An extension of MKL to multiclass classification can be found in [111]. Another extension

of MKL, termed localized MKL, was proposed in [36], where the weights wi, i = 1, . . . , m,

are modeled as functions of samples. The relationship between MKL and group lasso [107]

was established in [5], and recently an algorithm to solve MKL based on group lasso was

proposed in [105].

5.4.2 Multiple Kernel Learning with an Indefinite Similarity

We assume that besides the m given kernel matrices K1, . . . , Km, we are also given an indefi-

nite similarity matrix S. The m kernel matrices K1, . . . , Km already have associated RKHS’s:

H1, . . . ,Hm. For the indefinite similarity matrix S, we would like to find a surrogate kernel

matrix K0 corresponding to an RKHS denoted by H0. Then we can define a new RKHS H

as the direct sum ofHi, i = 0, . . . , m, that is,

H =
m⊕

i=0

Hi,

and its associated inner product for any a, b ∈ H is defined for some wi ≥ 0, i = 0, . . . , m,

as

〈a, b〉H =
m

∑
i=0

wi〈ai, bi〉Hi ,

where ai and bi are the unique components of a and b in Hi, respectively. Our goal is to

learn a classifier in H that can generalize better than one trained in any single Hi, i =

0, . . . , m. To achieve this goal, we need to find an effective H0 and equip the inner product

ofH with an optimal set of weights wi, i = 0, . . . , m.

Same as the SimSVM, we let the surrogate kernel matrix be a spectrum modification of

the indefinite similarity matrix:

K0 = U diag(α)UTS = U diag(α)UTUΛUT = U diag(α)ΛUT.

89

Then we combine K0 with a conic combination of the m given kernel matrices, and form

κ(α, w) = K0 +
m

∑
i=1

wiKi = U diag(α)ΛUT +
m

∑
i=1

wiKi,

where wi ≥ 0, i = 1, . . . , m. Let Gi = uiuT
i , i = 1, . . . , n, where ui is the ith column of U,

and we can rewrite κ(α, w) as

κ(α, w) =
n

∑
i=1

λiαiGi +
m

∑
j=1

wjKj.

Due to the constraints λiαi ≥ 0, i = 1, . . . , n, the above expression implies that κ(α, w) is

actually a conic combination of (m + n) kernels: |λ1|G1, . . . , |λn|Gn, K1, . . . , Km, and their

corresponding weights are |α1|, . . . , |αn|, w1, . . . , wm.

We propose to minimize the empirical risk with regularization simultaneously over the

spectrum modification vector α ∈ Rn, the kernel conic combination weights w ∈ Rm, and

the SVM parameters by extending (5.20) to:

minimize
c, b, ξ, α, w

1
n

1Tξ + ηcTκ(α, w)c + γh(α)

subject to diag(y) (κ(α, w)c + b1) ≥ 1− ξ,

ξ ≥ 0, w ≥ 0,

Λα ≥ 0,
m

∑
i=1

wi tr(Ki) ≤ τ,

(5.35)

where τ > 0 is a constant. We refer to (5.35) as the SimMKL. The trace constraint on

the last line of (5.35) is a linear inequality constraint on w, which prevents w from growing

unbounded. This constraint also guarantees that the inner product inH is bounded, which

is a crucial condition in Theorem 2.1 for establishing a generalization bound.

We can use the same technique that we used in Section 5.1 to reformulate (5.35) as

a convex optimization problem. First, we let z = κ(α, w)c. Then by introducing slack

90

variables u, v ∈ R and applying Lemma 5.1, we can rewrite (5.35) as

minimize
z, b, ξ, α, w, u, v

1
n

1Tξ + ηu + γv

subject to diag(y)(z + b1) ≥ 1− ξ,

ξ ≥ 0, w ≥ 0,

Λα ≥ 0,
m

∑
i=1

wi tr(Ki) ≤ τ,∑n
i=1 λiαiGi + ∑m

j=1 wjKj z

zT u

 � 0,

h(α) ≤ v.

(5.36)

By solving the convex optimization problem given by (5.36), we jointly (i) learn the spec-

trum modification on the similarity matrix to make it PSD, (ii) learn the optimal conic

combination of the m given kernel matrices, and (iii) learn the parameters of an SVM that

acts on this conic combination of PSD matrices.

Let z?, b?, α? and w? denote the optimal solution to (5.36). We can recover the optimal

c? by

c? = (κ(α?, w?))† z?.

For a test samples x, given its similarity vector s ∈ Rn and m kernel vectors:

ki =
[
Ki(x, x1) . . . Ki(x, xn)

]T
, i = 1, . . . , m,

we classify x as

ŷ = sgn

(
(c?)T

(
U diag(α?)UTs +

m

∑
i=1

w?
i ki

)
+ b?

)
.

5.4.3 Experiments

We compare the proposed SimMKL for data fusion with SVMs using a surrogate kernel

for the indefinite similarity formed by spectrum clip, flip or shift, and with SVMs trained

individually on one of the given kernels.

91

Four real data sets were used for experiments. We ran one experiment each with the

Amazon-2, Aural Sonar, and Protein-2 data sets, and two experiments with the Yeast-7-12

data set. These data sets have already been described in Section 5.3.2 except the Yeast-7-12

data set, which was formed by selecting from the original Yeast data set [56] the first 100

samples that exclusively belong to class 7 and the first 100 samples that exclusively belong

to class 12.

For the Amazon-2 data set, we created three kernels from its similarities. The first two

were created by treating the similarities as features. Let sj denote the jth column of the

similarity matrix S of all the samples in that data set. The first kernel is a linear kernel on

similarity features:

K1(xi, xj) = sT
i sj,

and the second kernel is a Gaussian RBF kernel on similarity features:

K2(xi, xj) = exp
(
−β‖si − sj‖2

2
)

,

with β = 0.1. Given that the original similarity matrix of this data set is very sparse,

we created the third kernel by treating S as the adjacency matrix of a weighted graph and

generated a diffusion kernel [53, 91] using the normalized graph Laplacian with parameter

σ2 = 20. These kernel matrices are shown in Figure 5.10.

For the Aural Sonar data set, we created all three kernels by treating the similarities as

features. The first one is a linear kernel, and the other two are Gaussian RBF kernels with

β = 0.01 and β = 0.1, respectively. We repeated the same process for the Protein-2 data set

except that for the two Gaussian RBF kernels, we chose β = 0.1 and β = 0.05. The kernel

matrices of these two data sets can be found in Figure 5.11 and 5.12, respectively.

For the Yeast-7-12 data set, the indefinite similarity here is the Smith-Waterman E-value.

We created three kernels by treating the similarities as features: one is a linear kernel and

the other two are Gaussian RBF kernels with β = 0.01 and β = 0.001, respectively. We

added a fourth kernel by using the Pfam kernel in [56], which measures the similarities

between the yeast proteins in a different way than the Smith-Waterman algorithm. These

kernel matrices are shown in Figure 5.13. We ran two sets of experiments on this data set.

92

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

(a) Similarity matrix S

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

(b) Kernel matrix K1

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

(c) Kernel matrix K2

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

(d) Kernel matrix K3

Figure 5.10: Similarity and kernel matrices of the Amazon-2 data set. K1 is a linear kernel
on similarity features. K2 is a Gaussian RBF kernel on similarity features. K3 is a diffusion
kernel computed on a weighted graph using S as its adjacency matrix.

93

20 40 60 80 100

20

40

60

80

100

(a) Similarity matrix S

20 40 60 80 100

20

40

60

80

100

(b) Kernel matrix K1

20 40 60 80 100

20

40

60

80

100

(c) Kernel matrix K2

20 40 60 80 100

20

40

60

80

100

(d) Kernel matrix K3

Figure 5.11: Similarity and kernel matrices of the Aural Sonar data set. K1 is a linear kernel
on similarity features. K2 and K3 are two Gaussian RBF kernels on similarity features with
different bandwidths.

94

20 40 60 80 100 120 140

20

40

60

80

100

120

140

(a) Similarity matrix S

20 40 60 80 100 120 140

20

40

60

80

100

120

140

(b) Kernel matrix K1

20 40 60 80 100 120 140

20

40

60

80

100

120

140

(c) Kernel matrix K2

20 40 60 80 100 120 140

20

40

60

80

100

120

140

(d) Kernel matrix K3

Figure 5.12: Similarity and kernel matrices of the Protein-2 data set. K1 is a linear kernel
on similarity features. K2 and K3 are two Gaussian RBF kernels on similarity features with
different bandwidths.

95

50 100 150 200

50

100

150

200

(a) Similarity matrix S

50 100 150 200

50

100

150

200

(b) Kernel matrix K1

50 100 150 200

50

100

150

200

(c) Kernel matrix K3

50 100 150 200

50

100

150

200

(d) Kernel matrix KPfam

Figure 5.13: Similarity and kernel matrices of the Yeast-7-12 data set. K1 is a linear kernel
on similarity features. K3 is a Gaussian RBF kernel on similarity features. KPfam is the Pfam
kernel. Because K2 looks highly similar to K3, it is not shown here.

96

Table 5.5: Mean and standard deviation (in parentheses) of the test errors (in percentage)
across 20 randomized test/training partitions for the Amazon-2, Aural Sonar and Protein-
2 data sets. For each data set, the lowest mean error and those not statistically significantly
worse are boldfaced.

Amazon-2 Aural Sonar Protein-2

SimMKL 9.74 (7.30) 12.00 (6.16) 1.38 (2.35)

SVM w/ clip 11.84 (7.80) 13.00 (5.48) 8.79 (5.06)

SVM w/ flip 20.00 (11.66) 13.25 (5.45) 4.83 (3.04)

SVM w/ shift 17.89 (12.00) 32.75 (18.95) 26.55 (7.68)

SVM w/ kernel 1 11.05 (11.05) 13.50 (7.45) 3.45 (3.16)

SVM w/ kernel 2 12.89 (8.27) 13.75 (7.23) 1.55 (2.37)

SVM w/ kernel 3 9.21 (7.61) 13.75 (6.66) 1.90 (2.85)

One was to fuse the Smith-Waterman similarity and the three kernels created out of it, and

the other was to fuse the Smith-Waterman similarity and the Pfam kernel.

The experimental setup for the classification test was exactly the same as what we have

described in Section 5.3.2. For the SimMKL, we chose the regularizer h(α) =
∥∥α− αclip

∥∥
2

for all the data sets. With this regularizer, (5.36) becomes a convex conic program, and we

solved it by the semidefinite-quadratic-linear program solver SDPT3 [97]. The hyperpa-

rameter C for the C-SVM and the regularization parameters η and γ for the SimMKL were

cross-validated from the following sets:

C ∈ {10−3, 10−2, 10−1, 1, 10, 102, 103},

η ∈ {10−4, 10−3, 10−2, 10−1, 1},

γ ∈ {10−3, 10−2, 10−1, 1, 10, 102, 103}.

The test errors averaged over 20 randomized test/training partitions are shown in Ta-

ble 5.5 and 5.6. For each classification task, the lowest average error is boldfaced. Also

boldfaced are the results that are not statistically significantly worse than the lowest one

97

Table 5.6: Mean and standard deviation (in parentheses) of the test errors (in percentage)
across 20 randomized test/training partitions for the two tasks on the Yeast-7-12 data set.
The first task used the Smith-Waterman (SW) similarity and three kernels created out of
it, and the second task used the Smith-Waterman similarity and the Pfam kernel. For each
task, the lowest mean error and those not statistically significantly worse are boldfaced.

Yeast-7-12 SW Yeast-7-12 SW-Pfam

SimMKL 7.38 (3.67) 6.13 (4.25)

SVM w/ clip 7.25 (3.53) 7.25 (3.53)

SVM w/ flip 8.00 (3.86) 8.00 (3.86)

SVM w/ shift 43.50 (8.37) 43.50 (8.37)

SVM w/ kernel 1 8.38 (3.06) 14.88 (5.16)

SVM w/ kernel 2 8.00 (3.40) – –

SVM w/ kernel 3 7.63 (4.09) – –

based on a one-sided Wilcoxon signed-rank test at the 5% significance level.4 The results

show that the proposed SimMKL achieves the lowest average error in three out of the five

experiments, and unlike any of the other methods, in all the experiments the SimMKL is

either the best or not statistically significantly different from the best. Interestingly, one can

see from the last column of Table 5.6 that the average error of the SVM using the Pfam ker-

nel alone is twice as high as that of the SVM using spectrum clip on the Smith-Waterman

similarity, yet fusing these two descriptions can in fact improve the classification perfor-

mance. This clearly demonstrates the potential benefits of combining multiple descriptions

from different sources.

Moreover, we illustrate the fused similarity κ(α?, w?) learned by the SimMKL for the

Amazon-2 and Yeast-7-12 (Smith-Waterman and Pfam fusion) data sets in Figure 5.14,

where for each data set we trained the SimMKL on all the samples using the parameters

4A statistical significance test decides whether a classifier performs consistently better or worse than an-
other classifier, and the result may differ from that indicated by the average performance. For example, the
results on the Aural Sonar data set show that the SVM with spectrum flip is statistically significantly worse
than the SimMKL but the SVM trained on kernel 1 is not, although the average error of the former is less
than that of the latter.

98

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

(a) Amazon-2

50 100 150 200

50

100

150

200

(b) Yeast-7-12 SW-Pfam

Figure 5.14: Fused kernel matrices learned from the Amazon-2 and Yeast-7-12 data sets.

selected most frequently over the 20 random partitions. For the Amazon-2 data set, the

intraclass similarities have been enhanced, as can be seen from the more obvious block-

diagonal structure. For the Smith-Waterman and Pfam fusion, the fused kernel matrix

appears to be a less noisy version of the original indefinite similarity matrix shown in Fig-

ure 5.13(a) with some scattered contributions from the Pfam kernel.

99

Chapter 6

KERNEL MATRIX COMPLETION USING AUXILIARY INFORMATION

An educated person is one who has learned

that information almost always turns out

to be at best incomplete and very often

false, misleading, fictitious, mendacious —

just dead wrong.

Russell Baker

So far we have assumed that all pairwise similarities are available. This may not be the

case in some applications, where some similarities are simply missing. These missing sim-

ilarities lead to missing entries in the similarity matrix S. In general, there are two typical

cases of the locations of the missing entries. One is that the locations of the missing entries

are distributed uniformly, that is, each (i, j)-entry has equal probability being missing. The

other is that the similarity matrix S has entire rows or columns missing. Suppose a sim-

ilarity is computed from some measurements of the samples. If such measurements are

not available for some samples, then no similarity involving any of those samples can be

computed, resulting in missing rows and missing columns in S.

For the first case, that is, uniformly distributed missing entries, Graepel specifically

considered kernels and proposed to complete the kernel matrix K by solving the following

problem [37]:

minimize
X

∑
(i,j)∈I

(Xij − Kij)
2

subject to X � 0,

(6.1)

where I denotes the set of the locations of all known entries in K. The above problem

can be easily formulated as an SDP. One can extend (6.1) to finding a complete kernel

matrix from any incomplete similarities by replacing the Kij’s with the known Sij’s. Note

that the solution to (6.1) might not be unique. If the complete similarity matrix is low-

rank or approximately low-rank, according to the recent results of the research on matrix

100

completion [15], one should be able to recover the complete similarity matrix S by solving

minimize
X

‖X‖∗

subject to Xij = Sij, ∀ (i, j) ∈ I ,
(6.2)

where ‖X‖∗ is the nuclear norm of X, which is defined as the sum of all the singular values

of X, that is, ‖X‖∗ = ∑n
i=1 σi(X). The problem in (6.2) can be rewritten as an SDP [27], and

for completing a kernel matrix, the SDP is simply

minimize
X

tr(X)

subject to Xij = Kij, ∀ (i, j) ∈ I ,

X � 0.

If the known entries in the similarity matrix S are noisy observations, then instead of (6.2),

one can solve the following problem [14]:

minimize
X

∑
(i,j)∈I

(Xij − Sij)
2 + µ‖X‖∗,

where µ > 0 is a regularization parameter.

This chapter focuses on the second case, and specifically on incomplete kernel matrices

with missing rows and columns. Without loss of generality, we assume that for an n× n

kernel matrix

K =

K11 K12

K21 K22

 ,

only the upper left block K11 ∈ Rn1×n1 is known, where n1 < n, and the other three blocks

are missing. Without any additional information, it is impossible to infer the missing en-

tries from K11 since there exist an endless number of possibilities for K12, K21 and K22 to

make K PSD. Therefore, we assume that we are also given a complete auxiliary kernel

matrix Kaux ∈ Rn×n for the same set of samples, and Kaux is derived from some measure-

ments of the samples that are easier to obtain than those used to compute K. For example,

for proteins, K can be a kernel matrix derived from measurements of the three-dimensional

structure (also known as the tertiary structure) of proteins, while Kaux can be a kernel ma-

trix derived from proteins’ sequence information; to measure the 3D coordinates of the

101

atoms in a protein is known to be more difficult and expensive than to sequence a protein’s

amino acid composition [50]. Another example is that the measurements for K require ex-

pensive, high-resolution sensors, while the measurements for Kaux are obtained by noisy,

low-resolution sensors. The matrix completion problem discussed here is to complete the

kernel matrix K given K11 and Kaux so that we can do better in our learning tasks using K

than using either K11 or Kaux.

We first review the prior work in Section 6.1, and then in Section 6.2 we discuss in detail

the problem settings for both inductive and transductive learning. Section 6.3 sketches one

possible direction for future research.

6.1 Prior Work

To my best knowledge, the em algorithm1 [96] is the first method proposed for completing

K using an auxiliary kernel matrix Kaux. The authors of [96] assumed K11 � 0, that is, K11

is strictly positive definite, and they formed two convex sets:

K =
{

K ∈ Rn×n ∣∣ K � 0, Kij = (K11)ij, i, j = 1, . . . , n1
}

,

and

M =

{
M ∈ Rn×n

∣∣∣∣∣ M =
n

∑
i=1

wi Mi, wi > 0, i = 1, . . . , n

}
, (6.3)

where Mi = vivT
i and vi is the ith eigenvector of Kaux for a certain eigenvalue decomposi-

tion. The em algorithm is an iterative procedure to solve

minimize
K, M

LS(K, M)

subject to K ∈ K, M ∈ M,
(6.4)

where LS is Stein’s loss:2

LS(K, M) = tr(KM−1)− log
∣∣KM−1∣∣− n.

1The authors of [96] used em to emphasize that their proposed algorithm is different from the expectation-
maximization (EM) algorithm for estimating parameters in statistical models.

2Note that Stein’s loss is a Bregman divergence between positive definite matrices. Stein’s loss is convex in
K (because f (X) = − log|X| is convex for X � 0), but neither convex nor concave in M, though it is convex
in M−1.

102

At the ith iteration, the e-step solves

K(i) = arg min
K∈K

LS(K, M(i−1)),

where M(i−1) is the solution from the previous iteration, and the following m-step solves

M(i) = arg min
M∈M

LS(K(i), M).

Both steps have closed-form solutions [96]. However, whether this alternating minimiza-

tion procedure will converge to a point in the solution set of (6.4) remains an open ques-

tion.3 Suppose the em algorithm converges at the jth iteration, then K(j) will be used as

the complete kernel matrix K. The construction of the convex setM given by (6.3) implies

the assumption that the useful information provided by Kaux for recovering K is mainly

carried by its eigenvectors. Although no theoretical or intuitive justification for this as-

sumption was provided in [96], the experiments on bacteria clustering [96] and protein

classification [50] showed that the kernel matrix K recovered by the em algorithm could

indeed be more helpful to the learning task than Kaux.

In [49], Kato et al. extended the em algorithm to inferring networks of proteins. An

example is to infer the metabolic network of yeast proteins, represented by an undirected

graph. They assumed that part of the network, that is, a subgraph, was known and mul-

tiple types of auxiliary information, such as gene expression, phylogenetic profiles and

amino acid sequences, were given for all the samples. They formulated the network infer-

ence problem as a kernel matrix completion problem by assuming that the edges of a graph

can be (approximately) recovered by thresholding a diffusion kernel [53, 91] computed on

that graph, that is, for any i 6= j,

Aij =

1, Kij ≥ δ,

0, Kij < δ,

where A is the adjacency matrix, K is the diffusion kernel matrix, and δ > 0 is the threshold.

They computed a diffusion kernel on the known subgraph and used that diffusion kernel

3The convergence of such alternating minimization method is proved in [10] for Bregman divergences that
are jointly convex; nevertheless, Stein’s loss function LS(K, M) is not jointly convex in K and M.

103

Ψ η

����
Σ ����

r

����
K

?
�

?

�
�

�
��=

�
�

�
��=

Figure 6.1: Hierarchical model proposed in [109] for kernel matrix completion. Each cir-
cle represents a random variable (or random matrix), and each square represents a fixed
parameter (or parameter matrix).

matrix as K11, even though this in general is not true. For the given m types of auxiliary

information, they represented each of them by a kernel matrix K(i)
aux, i = 1, . . . , m. They

modified the em algorithm to complete the diffusion kernel matrix K given K11 and K(i)
aux,

i = 1, . . . , m, and then thresholded K to infer the edges that involve the nodes outside the

known subgraph. In the modified em algorithm, instead ofM given by (6.3), they formed

the following convex set:

M′ =

{
M ∈ Rn×n

∣∣∣∣∣ M =
m

∑
i=1

wiK
(i)
aux + σ2 I,

m

∑
i=1

wi = 1, wi ≥ 0, i = 1, . . . , m

}
,

where σ2 > 0 is a regularization parameter ensuring M � 0 for all M ∈ M′.

Zhang et al. took a generative model approach for kernel matrix completion [109]. They

proposed a hierarchical model shown in Figure 6.1. They first assumed that the kernel

matrix K is drawn from a Wishart distribution,4 that is, K ∼ Wn(r, Σ/r). They further

assumed that given r, the parameter matrix Σ is distributed according to an inverse Wishart

distribution, that is,

Σ | r ∼ IWn(ηr + n + 1, ηrΨ),

where η ∈ R and Ψ ∈ Rn×n are fixed parameters, and they let Ψ = Kaux. To infer the two

4The definitions of the Wishart and inverse Wishart distributions and some of their basic properties can be
found in Appendix C. We refer the reader to [41] for more details on matrix variate distributions.

104

missing blocks K12 and K22 (notice that K21 = KT
12), they first computed the maximum a

posteriori (MAP) estimates of Σ and r:

(Σ̂, r̂) = arg max
Σ, r

p(Σ, r |K11, Kaux, η)

= arg max
Σ, r

p(K11 |Σ, r, Kaux, η)p(Σ, r |Kaux, η)

= arg max
Σ, r

p(K11 |Σ, r)p(Σ | r, Kaux, η)p(r)

= arg max
Σ, r

p(K11 |Σ, r)p(Σ | r, Kaux, η),

where they assumed a noninformative uniform prior on r. They solved the above problem

using the EM algorithm. With the MAP estimates Σ̂ and r̂, they then recovered K12 and K22

by computing the conditional expectation of these two blocks given K11 with respect to the

model K ∼ Wn(r̂, Σ̂/r̂).

In [109], Zhang et al. also showed that if one modifies the generative model shown

in Figure 6.1 by constraining Σ ∈ M, then the EM algorithm for solving the following

maximum likelihood estimation (MLE) problem:

maximize
Σ, r

p(K11 |Σ, r)

subject to Σ ∈ M,

r > n− 1,

is exactly the em algorithm. This result justifies the em algorithm from a generative model

perspective.

6.2 Problem Settings

The classification problems considered in [50] and [109] were all under the transductive

learning setting. For transductive learning, we have n samples in total, part of which is the

training set, whose class labels are given. We denote the set of the indices of the training

samples by T . For the kernel matrix K, we are only given the upper left block K11 of size

n1 × n1, where n1 < n. We are also given a complete auxiliary kernel matrix Kaux of size

n× n, which is supposed to be less informative in regard to the classification task than K, if

105

complete. The classification problem here is to estimate the class labels of the test samples,

that is, those whose indices are in the set {1, . . . , n}\T .

For inductive learning, we first have n training samples with known class labels rep-

resented by y ∈ Rn. For these n training samples, we are given K11 ∈ Rn1×n1 , which is

the upper left block of the kernel matrix K ∈ Rn×n, and also an auxiliary kernel matrix

Kaux ∈ Rn×n. We train a classifier using y, K11 and Kaux. The classification problem is to

estimate the class labels of the test samples that will come later, and we assume that the

test samples come one at a time. For a test sample x, we consider two cases based on the

information we have about x. In the first case, we only have for x the measurements used

to compute the auxiliary kernel function, and thus we only have Kaux(x, x) and Kaux(x, xi),

i = 1, . . . , n. In the second case, besides Kaux(x, x) and Kaux(x, xi), i = 1, . . . , n, we also

have the measurements used to compute K, and hence we also have K(x, x) and K(x, xi),

i = 1, . . . , n1 with n1 < n.

6.3 SVM for Kernel Matrix Completion

In this section, we explore the possibility of using the SVM for problems described in Sec-

tion 6.2. Notice that the essence of the em algorithm lies in (6.4); by using the Frobenius

norm instead of Stein’s loss, we can modify (6.4) into the following problem:

minimize
K12, K22, w, t

t

subject to

∥∥∥∥∥∥
K11 K12

KT
12 K22

− n

∑
i=1

wi Mi

∥∥∥∥∥∥
F

≤ t,

K11 K12

KT
12 K22

 � 0,

w ≥ 0,

(6.5)

which is a convex conic program. Compared with (6.4), (6.5) no longer has the full-rank

constraint implicitly enforced through the definitions of K andM. However, like the em

algorithm, to complete the kernel matrix K for classification problems by solving (6.5) does

not take the known class labels of the training data into account. One way to do this is

106

to incorporate (6.5) into the kernel learning idea proposed in Section 5.1 so that we can

complete the kernel matrix K and train an SVM simultaneously. Specifically, for inductive

learning, we can formulate the following problem:

minimize
c, b, ξ, K, w

1
n

1Tξ + ηcTKc + γ

∥∥∥∥∥K−
n

∑
i=1

wi Mi

∥∥∥∥∥
F

subject to diag(y)(Kc + b1) ≥ 1− ξ,

ξ ≥ 0, w ≥ 0,

K � 0,

(K)ij = (K11)ij, i, j = 1, . . . , n1,

(6.6)

with variables c ∈ Rn, b ∈ R, ξ ∈ Rn, K ∈ Rn×n and w ∈ Rn. Compared with (5.2), (6.6)

replaces the regularization term ‖K− S‖F with ‖K−∑n
i=1 wi Mi‖F in its objective function,

and adds constraints to reflect our knowledge of the known entries in K. As detailed in

Section 5.1, by letting z = Kc, we can rewrite (6.6) as the following convex conic program:

minimize
z, b, ξ, K, w, u, v

1
n

1Tξ + ηu + γv

subject to diag(y)(z + b1) ≥ 1− ξ,

ξ ≥ 0, w ≥ 0,K z

zT u

 � 0,

∥∥∥∥∥K−
n

∑
i=1

wi Mi

∥∥∥∥∥
F

≤ v,

(K)ij = (K11)ij, i, j = 1, . . . , n1,

(6.7)

where u, v ∈ R are slack variables.

As specified in Section 6.2 for inductive learning, we are only guaranteed to have aux-

iliary kernel values Kaux(x, x) and Kaux(x, xi), i = 1, . . . , n, for a test sample x. Therefore,

in order to apply the SVM trained by solving (6.7), we need to infer for x the kernel values

107

K(x, xi), i = 1, . . . , n. We first form

K′aux =

Kaux(x, x1)

Kaux
...

Kaux(x, xn)

Kaux(x, x1) · · · Kaux(x, xn) Kaux(x, x)

 ∈ R(n+1)×(n+1).

Then by performing eigenvalue decomposition5 on K′aux, we have its eigenvectors βi, i =

1, . . . , n + 1, and we let M′i = βiβ
T
i , i = 1, . . . , n + 1. As a heuristic, we can try to infer

K(x, xi), i = 1, . . . , n, by solving

minimize
r, t, w

∥∥∥∥∥∥
K? r

rT t

− n+1

∑
i=1

wi M′i

∥∥∥∥∥∥
F

subject to

K? r

rT t

 � 0,

(6.8)

where K? ∈ Rn×n is the kernel matrix completed by solving (6.7), and we will use the

optimal r? as
[
K(x, x1) . . . K(x, xn)

]T
to classify x. As detailed in Section 5.1.2, we can

rewrite (6.8) as the following QCQP:

minimize
r, t, w

∥∥∥∥∥∥
K? r

rT t

− n+1

∑
i=1

wi M′i

∥∥∥∥∥∥
2

F

subject to rTK?r− t ≤ 0,(
I − K?(K?)†

)
r = 0,

which is easier to solve than (6.8). If we happen to know K(x, x) and K(x, xi), i = 1, . . . , n1,

we can still solve (6.8) to infer K(x, xi), i = n1 + 1, . . . , n, except that only the unknown

kernel values are variables.

5Using the procedure proposed in [104], we can do eigenvalue decomposition on K′aux very efficiently by
reusing the results of the eigenvalue decomposition on Kaux.

108

Below we also give a variant of (6.6) for transductive learning:

minimize
c, b, ξ, K, w

1
|T |1

Tξ + ηcTKT c + γ

∥∥∥∥∥K−
n

∑
i=1

wi Mi

∥∥∥∥∥
F

subject to diag(y)(KT c + b1) ≥ 1− ξ,

ξ ≥ 0, w ≥ 0,

K � 0,

(K)ij = (K11)ij, i, j = 1, . . . , n1,

(6.9)

where KT ∈ R|T |×|T | is the submatrix of K that corresponds to the training set, and here

we have c, ξ ∈ R|T |. Similarly, we can rewrite (6.9) as the following convex conic program:

minimize
z, b, ξ, K, w, u, v

1
|T |1

Tξ + ηu + γv

subject to diag(y)(z + b1) ≥ 1− ξ,

ξ ≥ 0, w ≥ 0,KT z

zT u

 � 0, K � 0,

∥∥∥∥∥K−
n

∑
i=1

wi Mi

∥∥∥∥∥
F

≤ v,

(K)ij = (K11)ij, i, j = 1, . . . , n1.

(6.10)

By solving (6.10), we can have the optimal c?, b? and K?. Then for each test sample xi,

i ∈ {1, . . . , n}\T , we classify it as

ŷi = sgn

(
∑
j∈T

c?j K?(xi, xj) + b?
)

.

109

Chapter 7

CONCLUSIONS

I have approximate answers and possible

beliefs and different degrees of certainty

about different things, but I’m not

absolutely sure of anything and there are

many things I don’t know anything about.

Richard Feynman

Similarity-based learning is a practical learning framework for many problems in real

applications. Kernel methods can be applied in this framework, but similarity-based learn-

ing creates a richer set of challenges because the data may not be natively PSD.

In this dissertation, we explored four different PSD approximations of indefinite simi-

larities: clipping, flipping and shifting the spectrum, and in some cases a pseudoinverse so-

lution. Experimental results show small but sometimes statistically significant differences.

Based on the theoretical justification and experimental results, I suggest practitioners spec-

trum clip. Flipping the spectrum does help achieve significantly better performance for

the original Protein problem because, as noted earlier, flipping the spectrum has a similar

effect to using the similarities as features, which works favorably for the original Protein

problem. However, it should be easy to recognize when spectrum flip will be advanta-

geous, modify the similarity as we did to create the Protein RBF data set, and possibly

achieve even better results. Concerning modifying similarities, we addressed the issue of

consistent treatment of training and test samples when modifying their similarities to be

PSD. Although our proposed solution using matrix multiplication is consistent, we do not

contend that it is optimal, and consider this issue still open.

For similarity-based weighted nearest-neighbor classifiers, I first proposed two design

goals, namely, affinity and diversity, for the weights, and then proposed two methods for

constructing weights that satisfy these two design goals. Experimental results show that

110

on some real data sets, the proposed weighted k-NN methods can significantly reduce

classification error compared to standard k-NN with uniform weights. In particular, on the

Caltech-101 data set, which is a benchmark data set for object recognition, the proposed

KRI and KRR weights provided a roughly 25% improvement over k-NN with uniform and

affinity weights. This clearly demonstrates the importance of considering the design goal

of diversity for certain data sets, especially those likely to have highly correlated infor-

mation. Moreover, according to the empirical evaluation performed on five real data sets,

the proposed KRI weights consistently achieve better posterior probability estimates than

both the uniform and affinity weights. This implies that the additional cost of solving a QP

with k variables incurred by the KRI weights might be worthwhile if the system requires

posterior estimates instead of estimated class labels.

Overall, the comparative study shows that local methods are effective for similarity-

based learning. It is tempting from the conspicuous discrepancy between the performance

of local and global methods on the Amazon-47 and Patrol data sets to conclude that local

methods work better than global methods for sparse similarities. However, the Mirex07

data set is also relatively sparse, yet the best methods are global. The Amazon-47 and

Patrol data sets are different from the other data sets in that they are the only two data

sets with non-maximal self-similarities, and this combined with their sparsity makes the

spectra of their similarity matrices have relative large negative components. Therefore,

we conjecture that one explanation for the discrepancy is the distortion introduced by the

PSD approximation: global methods approximate the indefinite similarity matrix by a PSD

matrix on a global scale and seem to introduce more distortion to the original similarities

than local methods, which perform the PSD approximation only on a local scale.

For learning from indefinite similarities, I framed the problem as finding a surrogate

RKHS, and investigated two methods to simultaneously learn the kernel matrix and mini-

mize the empirical risk with regularization. Experimental evidence suggests that learning

a spectrum modification provides an effective trade-off between increased model flexi-

bility and the risk of overfitting. I consider it worthwhile to investigate other forms of

regularizers for learning the kernel matrix from indefinite similarities. I showed that these

kernel learning ideas can be formulated as convex optimization problems. Furthermore, I

111

showed that the SVM that learns the spectrum modification, termed the SimSVM, can be

solved efficiently by reformulating its optimization problem as an SOCP. I also extended

the idea of learning spectrum modification to multiple kernel learning, where indefinite

similarities are combined with multiple kernels for the learning task. The focus here was

on the SVM, but I hypothesize that this research might also be useful for other types of

kernel methods.

For practitioners, the computational cost of a learning algorithm is always a big con-

cern. The SOCP formulation is an efficient implementation of the SimSVM, but it is still

more expensive than the standard SVM; according to what we observed during the exper-

iments, on the same data set, the training time for the SimSVM was usually 2-4 times as

much as that for the standard SVM. Besides, the SimSVM has two regularization parame-

ters to cross-validate while the standard SVM only has one; however, since cross-validation

is completely parallelizable, this should not be a problem if a cluster is used. From the

experimental results reported in Section 5.3.2, we can tentatively conclude that for data

sets whose spectra have very small negative components such as the Voting data set, the

SimSVM is not likely to help; otherwise, the extra computational cost spent on training a

SimSVM will very likely result in better classification performance.

Lastly, I discussed the learning problems where we are provided an incomplete ker-

nel matrix with missing rows and columns and also a complete auxiliary kernel matrix.

The incomplete kernel matrix, if complete, is assumed to be more informative with re-

gard to the learning task than the auxiliary kernel matrix. Such problems can occur, for

example, when we have two views of the samples, yet the view that is more pertinent to

the learning task is more difficult to obtain, and therefore we only have it for a subset of

the training samples. After reviewing the prior work on completing the kernel matrix with

missing rows and columns using auxiliary information, I sketched a direction for future re-

search, namely, a method that extends the kernel learning idea to jointly training an SVM

and completing the kernel matrix. Other directions include exploring generative models

that model the relationship between the missing information and the auxiliary information

more naturally than the one proposed in [109].

112

BIBLIOGRAPHY

[1] Farid Alizadeh and Donald Goldfarb. Second-order cone programming. Mathemati-
cal Programming, 95(1):3–51, January 2003.

[2] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and David J. Lip-
man. Basic local alignment search tool. Journal of Molecular Biology, 215(3):403–410,
October 1990.

[3] Erling D. Andersen, Cees Roos, and Tamás Terlaky. On implementing a primal-dual
interior-point method for conic quadratic optimization. Mathematical Programming,
95(2):249–277, February 2003.

[4] Arthur Asuncion and David J. Newman. UCI machine learning repository, 2007.
http://archive.ics.uci.edu/ml/.

[5] Francis R. Bach. Consistency of the group lasso and multiple kernel learning. Journal
of Machine Learning Research, 9:1179–1225, June 2008.

[6] Francis R. Bach, Gert R. G. Lanckriet, and Michael I. Jordan. Multiple kernel learn-
ing, conic duality, and the SMO algorithm. In Proceedings of the 21th International
Conference on Machine Learning, 2004.

[7] Maria-Florina Balcan, Avrim Blum, and Nathan Srebro. Improved guarantees for
learning via similarity functions. In Proceedings of the 21st Annual Conference on Learn-
ing Theory, 2008.

[8] Maria-Florina Balcan, Avrim Blum, and Nathan Srebro. A theory of learning with
similarity functions. Machine Learning, 72(1–2):89–112, August 2008.

[9] Peter L. Bartlett and Shahar Mendelson. Rademacher and Gaussian complexities:
Risk bounds and structural results. Journal of Machine Learning Research, 3:463–482,
November 2002.

[10] Heinz H. Bauschke, Patrick L. Combettes, and Dominikus Noll. Joint minimiza-
tion with alternating Bregman proximity operators. Pacific Journal of Optimization,
2(3):401–424, September 2006.

[11] Serge Belongie, Jitendra Malik, and Jan Puzicha. Shape matching and object recog-
nition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 24(4):509–522, April 2002.

113

[12] Ingwer Borg and Patrick J. F. Groenen. Modern Multidimensional Scaling: Theory and
Applications. Springer, New York, NY, 2nd edition, 2005.

[13] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Univer-
sity Press, Cambridge, UK, 2004.

[14] Emamnuel J. Candès and Yaniv Plan. Matrix completion with noise. Proceedings of
the IEEE, 98(6):925–936, June 2010.

[15] Emmanuel J. Candès and Benjamin Recht. Exact matrix completion via convex opti-
mization. Foundations of Computational Mathematics, 9(6):717–772, December 2008.

[16] Luca Cazzanti and Maya R. Gupta. Local similarity discriminant analysis. In Pro-
ceedings of the 24th International Conference on Machine Learning, pages 137–144, 2007.

[17] Luca Cazzanti and Maya R. Gupta. Regularizing the local similarity discriminant
analysis classifier. In Proceedings of the 8th International Conference on Machine Learning
and Applications, pages 184–189, 2009.

[18] Luca Cazzanti, Maya R. Gupta, and Anjali J. Koppal. Generative models for
similarity-based classification. Pattern Recognition, 41(7):2289–2297, July 2008.

[19] Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien, editors. Semi-Supervised
Learning. MIT Press, Cambridge, MA, 2006.

[20] Jianhui Chen and Jieping Ye. Training SVM with indefinite kernels. In Proceedings of
the 25th International Conference on Machine Learning, pages 136–143, 2008.

[21] Yihua Chen, Eric K. Garcia, Maya R. Gupta, Ali Rahimi, and Luca Cazzanti.
Similarity-based classification: Concepts and algorithms. Journal of Machine Learn-
ing Research, 10:747–776, March 2009.

[22] Yihua Chen and Maya R. Gupta. Fusing similarities and kernels for classification. In
Proceedings of the 12th International Conference on Information Fusion, 2009.

[23] Yihua Chen, Maya R. Gupta, and Benjamin Recht. Learning kernels from indefinite
similarities. In Proceedings of the 26th International Conference on Machine Learning,
2009.

[24] Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Machines.
Cambridge University Press, Cambridge, UK, 2000.

[25] J. E. Driskell and T. McDonald. Identification of incomplete networks. Technical
report, Florida Maxima Corporation, 2008.

114

[26] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. John Wiley
& Sons, Inc., 2nd edition, 2001.

[27] Maryam Fazel. Matrix Rank Minimization with Applications. PhD thesis, Stanford
University, March 2002.

[28] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from
few training examples: An incremental Bayesian approach tested on 101 object cat-
egories. In Proceedings of the 17th IEEE Conference on Computer Vision and Pattern
Recognition, 2004.

[29] Shuo Feng, Hamid Krim, and Irina A. Kogan. 3D face recognition using Euclidean
integral invariants signature. In Proceedings of the IEEE Workshop on Statistical Signal
Processing, 2007.

[30] Michael P. Friedlander and Maya R. Gupta. On minimizing distortion and relative
entropy. IEEE Transactions on Information Theory, 52(1):238–245, January 2006.

[31] Simona Gandrabur, George Foster, and Guy Lapalme. Confidence estimation for
NLP applications. ACM Transactions on Speech and Language Processing, 3(3):1–29,
October 2006.

[32] Itamar Gati and Amos Tversky. Representations of qualitative and quantitative
dimensions. Journal of Experimental Psychology: Human Perception & Performance,
8(2):325–340, April 1982.

[33] Itamar Gati and Amos Tversky. Weighting common and distinctive features in per-
ceptual and conceptual judgments. Cognitive Psychology, 16(3):341–370, July 1984.

[34] Donald Goldfarb, Shucheng Liu, and Siyun Wang. A logarithmic barrier function al-
gorithm for quadratically constrained convex quadratic programming. SIAM Journal
on Optimization, 1(2):252–267, May 1991.

[35] Robert L. Goldstone and Alan Kersten. Concepts and categorization. In Comprehen-
sive Handbook of Psychology, volume 4, chapter 22, pages 599–621. Wiley, New Jersey,
2003.

[36] Mehmet Gönen and Ethem Alpaydm. Localized multiple kernel learning. In Pro-
ceedings of the 25th International Conference on Machine Learning, 2008.

[37] Thore Graepel. Kernel matrix completion by semidefinite programming. In Proceed-
ings of the International Conference on Artifical Neural Networks, 2002.

115

[38] Thore Graepel, Ralf Herbrich, Peter Bollmann-Sdorra, and Klaus Obermayer. Clas-
sification on pairwise proximity data. In Advances in Neural Information Processing
Systems, volume 11, pages 438–444, 1998.

[39] Thore Graepel, Ralf Herbrich, Bernhard Schölkopf, Alex Smola, Peter Bartlett, Klaus-
Robert Müller, Klaus Obermayer, and Robert Williamson. Classification on proxim-
ity data with LP–machines. In Proceedings of the 9th International Conference on Artifi-
cial Neural Networks, volume 1, pages 304–309, 1999.

[40] Kristen Grauman and Trevor Darrell. The pyramid match kernel: Efficient learning
with sets of features. Journal of Machine Learning Research, 8:725–760, April 2007.

[41] Arjun K. Gupta and Daya K. Nagar. Matrix Variate Distributions. CRC Press, Boca
Raton, FL, 1999.

[42] Maya R. Gupta, Robert M. Gray, and Richard A. Olshen. Nonparametric supervised
learning by linear interpolation with maximum entropy. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28(5):766–781, May 2006.

[43] Bernard Haasdonk. Feature space interpretation of SVMs with indefinite kernels.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(4):482–492, April
2005.

[44] Nicholas J. Higham. Computing a nearest symmetric positive semidefinite matrix.
Linear Algebra and its Applications, 103:103–118, May 1988.

[45] Sepp Hochreiter and Klaus Obermayer. Support vector machines for dyadic data.
Neural Computation, 18(6):1472–1510, June 2006.

[46] Thomas Hofmann and Joachim M. Buhmann. Pairwise data clustering by deter-
ministic annealing. IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(1):1–14, January 1997.

[47] Roger A. Horn and Fuzhen Zhang. Basic properties of the Schur complement. In The
Schur Complement and Its Applications. Springer, 2005.

[48] Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multiclass support
vector machines. IEEE Transactions on Neural Networks, 13(2):415–425, March 2002.

[49] Tsuyoshi Kato, Koji Tsuda, and Kiyoshi Asai. Selective integration of multiple bio-
logical data for supervised network inference. Bioinformatics, 21(10):2488–2495, May
2005.

116

[50] Taishin Kin, Tsuyoshi Kato, and Koji Tsuda. Protein classification via kernel ma-
trix completion. In Bernhard Schölkopf, Koji Tsuda, and Jean-Philippe Vert, editors,
Kernel Methods in Computational Biology, chapter 12, pages 261–274. MIT Press, Cam-
bridge, MA, 2004.

[51] Ariel Kleiner, Ali Rahimi, and Michael I. Jordan. Random conic pursuit for semidef-
inite programming. Submitted for publication.

[52] Tilman Knebel, Sepp Hochreiter, and Klaus Obermayer. An SMO algorithm for the
potential support vector machine. Neural Computation, 20(1):271–287, January 2008.

[53] Risi Kondor and John Lafferty. Diffusion kernels on graphs and other discrete struc-
tures. In Proceedings of the 19th International Conference on Machine Learning, 2002.

[54] Gert R. G. Lanckriet, Tijl De Bie, Nello Cristianini, Michael I. Jordan, and William S.
Noble. A statistical framework for genomic data fusion. Bioinformatics, 20(16):2626–
2635, November 2004.

[55] Gert R. G. Lanckriet, Nello Cristianini, Peter Bartlett, Laurent El Ghaoui, and
Michael I. Jordan. Learning the kernel matrix with semidefinite programming. Jour-
nal of Machine Learning Research, 5:27–72, January 2004.

[56] Gert R. G. Lanckriet, Minghua Deng, Nello Cristianini, Michael I. Jordan, and
William S. Noble. Kernel-based data fusion and its application to protein function
prediction in yeast. In Proceedings of the Pacific Symposium on Biocomputing, pages
300–311, 2004.

[57] Julian Laub and Klaus-Robert Müller. Feature discovery in non-metric pairwise data.
Journal of Machine Learning Research, 5:801–808, July 2004.

[58] Julian Laub, Volker Roth, Joachim M. Buhmann, and Klaus-Robert Müller. On the
information and representation of non-Euclidean pairwise data. Pattern Recognition,
39(10):1815–1826, October 2006.

[59] Li Liao and William S. Noble. Combining pairwise sequence similarity and support
vector machines for detecting remote protein evolutionary and structural relation-
ships. Journal of Computational Biology, 10(6):857–868, 2003.

[60] Hsuan-Tien Lin and Chih-Jen Lin. A study on sigmoid kernels for SVM and the
training of non-PSD kernels by SMO-type methods. Technical report, National Tai-
wan University, March 2003.

[61] David J. Lipman and William R. Pearson. Rapid and sensitive protein similarity
searches. Science, 227(4693):1435–1441, March 1985.

117

[62] Miguel Sousa Lobo, Lieven Vandenberghe, Stephen Boyd, and Hervé Lebret. Ap-
plications of second-order cone programming. Linear Algebra and its Applications,
284:193–228, November 1998.

[63] David G. Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 60(2):91–110, November 2004.

[64] Ronny Luss and Alexandre d’Aspremont. Support vector machine classification
with indefinite kernels. In Advances in Neural Information Processing Systems, vol-
ume 20, pages 953–960, 2007.

[65] Ronny Luss and Alexandre d’Aspremont. Support vector machine classification
with indefinite kernels. Mathematical Programming Computation, 1(2):97–118, Octo-
ber 2009.

[66] Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural Lan-
guage Processing. MIT Press, Cambridge, MA, 1999.

[67] Sanjay Mehrotra and Jie Sun. A method of analytic centers for quadratically con-
strained convex quadratic programs. SIAM Journal on Numerical Analysis, 28(2):529–
544, April 1991.

[68] Carl D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia, PA,
2000.

[69] Charles A. Micchelli and Massimiliano Pontil. Learning the kernel function via reg-
ularization. Journal of Machine Learning Research, 6:1099–1125, July 2005.

[70] Arkadi Nemirovski. Advances in convex optimization: Conic programming. In
Proceedings of the International Congress of Mathematicians, volume 1, pages 413–444,
2006.

[71] Arkadii Nemirovskii and Katya Scheinberg. Extension of Karmarkar’s algorithm
onto convex quadratically constrained quadratic problems. Mathematical Program-
ming, 72(3):273–289, March 1996.

[72] Yurii Nesterov. Smooth minimization of non-smooth functions. Mathematical Pro-
gramming, 103(1):127–152, May 2005.

[73] Cheng Soon Ong, Xavier Mary, Stéphane Canu, and Alexander J. Smola. Learning
with non-positive kernels. In Proceedings of the 21st International Conference on Machine
Learning, pages 81–88, 2004.

118

[74] Elzbieta Pekalska and Robert P. W. Duin. Dissimilarity representations allow for
building good classifiers. Pattern Recognition Letters, 23(8):943–956, June 2002.

[75] Elzbieta Pekalska, Pavel Paclı́k, and Robert P. W. Duin. A generalized kernel ap-
proach to dissimilarity-based classification. Journal of Machine Learning Research,
2:175–211, December 2001.

[76] Scott Philips, James Pitton, and Les Atlas. Perceptual feature identification for active
sonar echoes. In Proceedings of the IEEE Oceans Conference, 2006.

[77] John C. Platt. Fast training of support vector machines using sequential minimal
optimization. In Bernhard Schölkopf, Christopher J. C. Burges, and Alexander J.
Smola, editors, Advances in Kernel Methods – Support Vector Learning, pages 185–208.
MIT Press, 1998.

[78] John C. Platt. Using analytic QP and sparseness to speed training of support vector
machines. In Advances in Neural Information Processing Systems, volume 11, 1998.

[79] Alain Rakotomamonjy, Francis R. Bach, Stéphane Canu, and Yves Grandvalet. Sim-
pleMKL. Journal of Machine Learning Research, 9:2491–2521, November 2008.

[80] Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classification. Journal of
Machine Learning Research, 5:101–141, January 2004.

[81] Ryan M. Rifkin. Everything old is new again: A fresh look at historical approaches in
machine learning. PhD thesis, Massachusetts Institute of Technology, 2002.

[82] Volker Roth, Julian Laub, Motoaki Kawanabe, and Joachim M. Buhmann. Optimal
cluster preserving embedding of nonmetric proximity data. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 25(12):1540–1551, December 2003.

[83] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. The earth mover’s distance
as a metric for image retrieval. International Journal of Computer Vision, 40(2):99–121,
November 2000.

[84] Peter Sadowski, Luca Cazzanti, and Maya R. Gupta. Bayesian and pairwise local
similarity discriminant analysis. In Proceedings of the 2nd International Workshop on
Cognitive Information Processing, 2010.

[85] Simone Santini and Ramesh Jain. Similarity measures. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 21(9):871–883, September 1999.

[86] Bernhard Schölkopf, John C. Platt, John Shawe-Taylor, Alex J. Smola, and Robert C.
Williamson. Estimating the support of a high-dimensional distribution. Neural Com-
putation, 13(7):1443–1471, July 2001.

119

[87] Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, 2002.

[88] Maurice Sion. On general minimax theorems. Pacific Journal of Mathematics, 8(1):171–
176, 1958.

[89] Temple F. Smith and Michael S. Waterman. Identification of common molecular sub-
sequences. Journal of Molecular Biology, 147(1):195–197, March 1981.

[90] Alex J. Smola and Bernhard Schölkopf. A tutorial on support vector regression.
Statistics and Computing, 14(3):199–222, 2004.

[91] Alexander J. Smola and Risi Kondor. Kernels and regularization on graphs. In Pro-
ceedings of the 16th Annual Conference on Learning Theory, 2003.

[92] Sören Sonnenburg, Gunnar Rätsch, Christin Schäfer, and Bernhard Schölkopf. Large
scale multiple kernel learning. Journal of Machine Learning Research, 7:1531–1565, July
2006.

[93] Craig Stanfill and David Waltz. Toward memory-based reasoning. Communications
of the ACM, 29(12):1213–1228, December 1986.

[94] Jos F. Strum. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmet-
ric cones. Optimization Methods and Software, 11:625–653, 1999.

[95] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society, Series B (Statistical Methodology), 58(1):267–288, 1996.

[96] Koji Tsuda, Shotaro Akaho, and Kiyoshi Asai. The em algorithm for kernel matrix
completion with auxiliary data. Journal of Machine Learning Research, 4:67–81, May
2003.

[97] Reha H. Tütüncü, Kim-Chuan Toh, and Michael J. Todd. Solving semidefinite-
quadratic-linear programs using SDPT3. Mathematical Programming, 95(2):189–217,
February 2003.

[98] Amos Tversky. Features of similarity. Psychological Review, 84(2):327–352, July 1977.

[99] Amos Tversky and Itamar Gati. Similarity, separability, and the triangle inequality.
Psychological Review, 89(2):123–154, March 1982.

[100] Lieven Vandenberghe and Stephen Boyd. Semidefinite programming. SIAM Review,
38(1):49–95, March 1996.

120

[101] Liwei Wang, Cheng Yang, and Jufu Feng. On learning with dissimilarity functions.
In Proceedings of the 24th International Conference on Machine Learning, 2007.

[102] Daphna Weinshall, David W. Jacobs, and Yoram Gdalyahu. Classification in non-
metric spaces. In Advances in Neural Information Processing Systems, volume 11, pages
838–844, 1998.

[103] Kamil Wnuk and Stefano Soatto. Filtering Internet image search results towards
keyword based category recognition. In Proceedings of the 21st IEEE Conference on
Computer Vision and Pattern Recognition, 2008.

[104] Gang Wu, Edward Y. Chang, and Zhihua Zhang. An analysis of transformation on
non-positive semidefinite similarity matrix for kernel machines. Technical report,
University of California, Santa Barbara, March 2005.

[105] Zenglin Xu, Rong Jin, Haiqin Yang, Irwin King, and Michael R. Lyu. Simple and ef-
ficient multiple kernel learning by group lasso. In Proceedings of the 27th International
Conference on Machine Learning, 2010.

[106] Yiming Ying, Colin Campbell, and Mark Girolami. Analysis of SVM with indefinite
kernels. In Advances in Neural Information Processing Systems, volume 22, 2009.

[107] Ming Yuan. Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society, Series B (Statistical Methodology), 68(1):49–67,
February 2006.

[108] Hao Zhang, Alexander C. Berg, Michael Maire, and Jitendra Malik. SVM-KNN: Dis-
criminative nearest neighbor classification for visual category recognition. In Pro-
ceedings of the 19th IEEE Conference on Computer Vision and Pattern Recognition, vol-
ume 2, pages 2126–2136, 2006.

[109] Zhihua Zhang, James T. Kwok, and Dit-Yan Yeung. Model-based transductive learn-
ing of the kernel matrix. Machine Learning, 63(1):69–101, April 2006.

[110] Xiaojin Zhu and Andrew B. Goldberg. Introduction to Semi-Supervised Learning. Syn-
thesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool,
2009.

[111] Alexander Zien and Cheng Soon Ong. Multiclass multiple kernel learning. In Pro-
ceedings of the 24th International Conference on Machine Learning, 2007.

[112] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society, Series B (Statistical Methodology), 67(2):301–320,
April 2005.

121

Appendix A

PROOF OF PROPOSITION 4.1

Proof. Recall the eigenvalue decomposition Sclip = UΛclipUT. For Λclip = diag(λ1, . . . , λn),

assume that λ1 ≥ . . . ≥ λm > 0 and λm+1 = . . . = λn = 0. Let

D = diag(λ1, . . . , λm) ∈ Rm×m,

and

V =
[
u1 . . . um

]
∈ Rn×m,

where ui is the ith column of U, then we have Sclip = VDVT. The vector representation of

the training samples in Rm implied by Sclip is

X =
[

x1 . . . xn

]
= D1/2VT ∈ Rm×n.

Given a test similarity vector s ∈ Rn, the least-squares solution to the equation XTx = s

is x = (XXT)−1Xs. Let s̃ be the vector of the inner products between the embedded test

sample x and the embedded training samples X, then based on the fact that VTV = Im,

where Im denotes the m×m identity matrix, we have

s̃ = XTx

= XT(XXT)−1Xs

= VD1/2
(

D1/2VTVD1/2
)−1

D1/2VTs

= VD1/2D−1D1/2VTs

= VVTs

= UDclipUTs

= Pclips.

This ends the proof.

122

Appendix B

PROOF OF LEMMA 5.3

Proof. For y ≥ 0 and z ≥ 0, we have∥∥∥∥∥∥
 2x

y− z

∥∥∥∥∥∥
2

≤ y + z ⇔

∥∥∥∥∥∥
 2x

y− z

∥∥∥∥∥∥
2

2

≤ (y + z)2.

Since ∥∥∥∥∥∥
 2x

y− z

∥∥∥∥∥∥
2

2

=
[
2xT y− z

] 2x

y− z

 = 4xTx + y2 − 2yz + z2,

and

4xTx + y2 − 2yz + z2 ≤ (y + z)2 ⇔ xTx ≤ yz,

we can conclude that for y ≥ 0 and z ≥ 0, we have∥∥∥∥∥∥
 2x

y− z

∥∥∥∥∥∥
2

≤ y + z ⇔ xTx ≤ yz.

This ends the proof.

Geometrically, for x ∈ Rn and y, z ∈ R, the following restricted hyperbolic constraints1

xTx ≤ 2yz, y ≥ 0, z ≥ 0, (B.1)

represent a second-order cone rotated 45 degrees in the (y, z)-plane. To see this, we know

by Lemma 5.3 that (B.1) is equivalent to∥∥∥∥∥∥
 x

1√
2
y− 1√

2
z

∥∥∥∥∥∥
2

≤ 1√
2

y +
1√
2

z, y ≥ 0, z ≥ 0. (B.2)

1The constraints in (B.1) are slightly different from those stated in Lemma 5.3 in that here we have xT x ≤
2yz instead of xT x ≤ yz.

123

Now we just need to rotate it back by 45 degrees in the (y, z)-plane:
x′

y′

z′

 =

In 0 0

0 cos π
4 − sin π

4

0 sin π
4 cos π

4

x

y

z

 =

In 0 0

0 1√
2
− 1√

2

0 1√
2

1√
2

x

y

z

 , (B.3)

where In is the n× n identity matrix. By substituting (B.3) into (B.2), we obtain∥∥∥∥∥∥
x′

y′

∥∥∥∥∥∥
2

≤ z′,

which represents a second-order cone in Rn+2.

124

Appendix C

WISHART AND INVERSE WISHART DISTRIBUTIONS

Definition C.1 (Wishart Distribution). A p× p random symmetric positive definite matrix

S is said to have a Wishart distribution with parameters p, ν and Σ for ν > p− 1, Σ ∈ Rp×p

and Σ � 0, written as S ∼ Wp(ν, Σ), if its probability density function (p.d.f.) is given by

p(S) =
(det S)

1
2 (ν−p−1)

2
1
2 νpΓp

(1
2 ν
)
(det Σ)

1
2 ν

exp
(
−1

2
tr
(

Σ−1S
))

,

where Γp(·) is the multivariate gamma function defined as

Γp(x) = π
1
4 p(p−1)

p

∏
i=1

Γ
(

x− 1
2
(i− 1)

)
.

Theorem C.2. Let S ∼ Wp(ν, Σ), then E(S) = νΣ, and Cov(Sij, Skl) = ν(ΣikΣjl + ΣilΣjk).

Theorem C.3. Let X1, . . . , Xn ∈ Rp be i.i.d. random vectors drawn from a multivariate Gaussian

distribution Np(0, Σ) with n ≥ p. Let X =
[

X1 . . . Xn

]
∈ Rp×n, then XXT ∼ Wp(n, Σ).

Theorem C.4. Let X1, . . . , Xn ∈ Rp be i.i.d. random vectors drawn from Np(µ, Σ) with n > p.

Define µ̂ = 1
n ∑n

i=1 Xi and S = ∑n
i=1(Xi − µ̂)(Xi − µ̂)T. Then (i) µ̂ and S are independently

distributed, (ii) µ̂ ∼ Np(µ, 1
n Σ), and (iii) S ∼ Wp(n− 1, Σ).

Theorem C.5. Let S ∼ Wp(ν, Σ). Then for any A ∈ Rq×p with rank(A) = q ≤ p, we have

ASAT ∼ Wq(ν, AΣAT).

Theorem C.6. Let S1, . . . , Sk be independently distributed with Sj ∼ Wp(νj, Σ), j = 1, . . . , k.

Then ∑k
j=1 Sj ∼ Wp(∑k

j=1 νj, Σ).

Definition C.7 (Inverse Wishart Distribution). A p × p random symmetric positive defi-

nite matrix V is said to have an inverse Wishart distribution (also called inverted Wishart

distribution) with parameters p, ν and Ψ for ν > p− 1, Ψ ∈ Rp×p and Ψ � 0, written as

V ∼ IW p(ν, Ψ), if its p.d.f. is given by

p(V) =
(det Ψ)

1
2 ν

2
1
2 νpΓp

(1
2 ν
)
(det V)

1
2 (ν+p+1)

exp
(
−1

2
tr
(

V−1Ψ
))

.

125

Theorem C.8. Let V ∼ IW p(ν, Ψ) with ν > p + 1, then E(V) = 1
ν−p−1 Ψ.

Theorem C.9. Let S ∼ Wp(ν, Σ), then S−1 ∼ IW p(ν, Σ−1). Similarly, let V ∼ IW p(ν, Ψ),

then V−1 ∼ Wp(ν, Ψ−1).

126

VITA

Yihua Chen received the B.Sc. and M.Sc. degrees both in electrical engineering from

Shanghai Jiao Tong University, China, in 2003 and 2006. He joined the Electrical Engineer-

ing Department of the University of Washington in 2006, and has since been working with

Prof. Maya R. Gupta on statistical learning problems. He has also interned at Microsoft

Research Redmond, Microsoft Research Asia and Windows Live China.

