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ABSTRACT

When building a classifier from clean training data for a par-
ticular test environment, knowledge about the environmental
noise and channel should be taken into account. We propose
training a support vector machine (SVM) classifier using a
modified kernel that is the expected kernel with respect to a
probability distribution over channels and noise that might
affect the test signal. We compare the proposed expected
SVM to an SVM that ignores the environment, to an SVM
that trains with multiple random samples of the environment,
and to a quadratic discriminant analysis classifier that takes
advantage of environment statistics (Joint QDA). Simulations
classifying narrowband signals in a noisy acoustic reverbera-
tion environment indicate that the expected SVM can improve
performance over a range of noise levels.

Index Terms— support vector machine, classification,
quadratic discriminant analysis, sonar, speech

1. INTRODUCTION

A common problem in building classifiers for signals is that
the environment the classifier will be used in is not known
when the training samples are being collected, and thus it can
be difficult to collect training samples subjected to the same
channel and additive noise that the test signals will encounter.
For example, speech recognition systems may be used in an
office, car or street environment, each with different reverber-
ation and ambient noise effects on the test signals input to the
classifier. Sonar signals are subject to a channel and noise
that depends on the ocean geometry and weather. To make it
possible to build classifiers for many environments, one can
collect or create training signals that are as clean as possible,
for example by using high-quality recording equipment for
speech, or by modeling acoustic signatures for sonar. Then
the problem becomes, “Given clean training signals, what is
the best way to train a classifier for a given test environment?”

Here, we assume that the test environment is unknown but
can be characterized as a linear time-invariant system with
additive noise, where the channel h and noise w are random,
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and the classifier receives a test signal

z[k] = h[k] ∗ x[k] + w[k], (1)

where the channel h is assumed to be drawn from a distri-
bution over channels with a known mean and covariance, the
true test signal x is unknown but we assume its distribution
depends on its true class label y and that it is drawn iid with n
training example signals {xi}ni=1, and we assume zero-mean
additive noise w with power E[wwT ] = σ2I .

Performance can be very poor if one classifies a noisy test
signal z[k] with a classifier optimized for clean training pairs
{xi, yi}ni=1, where yi is the class label of the ith training sig-
nal. One solution, common in speech processing and recently
investigated for sonar [1], is to simulate example channels and
noise for the given test environment and train a classifier with
simulated corrupted training signals {xi ∗hv +wt} generated
from training signals {xi}ni=1, channels {hv}Vv=1, and noise
signals {wt}Tt=1. Thus, to capture the environment variability
may require a large number n×V ×T of simulated corrupted
training signals; this may be problematic for the support vec-
tor machine, whose training cost may be as severe as O(n3).

Recently, Anderson and Gupta proposed taking the chan-
nel and noise statistics into account when building a classifier
from clean training data [2]. They showed how to derive a
quadratic discriminant analysis classifier termed Joint QDA
that incorporates the mean and covariance of the unknown
channel and noise, and showed improved performance for two
sonar signal classification problems.

In this paper, we propose a method to incorporate infor-
mation about the channel and noise statistics into the training
of a support vector machine (SVM) classifier given clean
training signals. We derive closed-form solutions for the
SVM using the popular linear kernel and radial basis function
(RBF) kernel for classifying the original signals (which can
be easily generalized to classifying any linear transform of
the original signals such as wavelet or Fourier coefficients),
and for classifying based on Fourier subband energies, which
is a common feature in sonar applications.

Experiments compare the accuracy and runtime of the de-
rived Expected SVM to Joint QDA and to the more standard
approach of training an SVM with simulated corrupted train-
ing signals.



2. EXPECTED SVM

An SVM classifies a sample x based on the sign of a discrim-
inant function f(x) = α0 +

∑
i αiyiK(x, xi), where the ith

training sample class label yi ∈ {−1, 1}, K(·, ·) is the kernel
(an inner product function in the implicit reproducing kernel
Hilbert space), and α0 and the αi’s are scalars that are learned
by the SVM to minimize the (regularized) training error for
the training pairs {xi, yi}ni=1.

A kernel K measures the similarity of its two arguments.
Two standard kernels are the linear kernel:

K(x, xi) = xTxi, (2)

and RBF kernel with bandwidth γ, which can equivalently be
expressed as a Gaussian function evaluated at x with mean xi

and spherical covariance γ2I:

K(x, xi) = N (x;xi, γ
2I). (3)

The key insight of this paper is that one can view the prob-
lem of classifying corrupted test samples as a question of how
to best define the similarityK(z, xi) between a corrupted test
sample z and a clean training sample xi. We propose answer-
ing this question by defining a random corrupted training sig-
nal zi for each deterministic training signal x such that

zi = xi ∗ hi + wi, (4)

where we assume that hi and wi are a random channel and
random noise drawn from the test environment’s distribution
of random channels and noise. Then we propose to test the
SVM classifier using the expected corrupted test kernel:

K(z, xi)
4
= Ezi

[
K̃(z, zi)

]
, (5)

where K̃ is any kernel function, such as the linear kernel (2)
or RBF kernel (3).

To take the test environment into account when training
the SVM with the clean data, we propose training with the
expected corrupted training kernel:

K(xi, xj)
4
= Ezi,zj

[
K̃(zi, zj)

]
, (6)

where zi, zj are given by (4).
The expected corrupted training kernel can be interpreted

as simulating all possible corruptions of xi and xj and con-
sidering the average similarity between all possible corrupted
versions. The expected test kernel (5) can be expressed as (6)
by treating the deterministic z as random with a Dirac distri-
bution on z. Because the set of kernels is convex, the expected
kernel is also a kernel.

In the next sections we derive the expected kernels for
four common cases: classifying signals directly or classifying
subband energy features derived from the signals, and using
either the expected linear kernels or the expected RBF ker-
nels. Throughout we assume all random channels are iid and
all noise is iid.

3. CLASSIFYING SIGNALS DIRECTLY

Given signals, we derive the expected test and training kernels
for the linear kernel and the RBF kernel.

3.1. Expected Linear Kernels for Time Signals

The expected test kernel (5) for linear kernel (2) is:

Ehi,wi [z
T (xi ∗ hi + wi)] = zT (xi ∗ µh),

where µh is the expected channel Eh[h].
The expected training kernel (6) is:

Ehi,hj ,wi,wj [(xi ∗ hi + wi)T (xj ∗ hj + wj)]

= (xi ∗ µh)T (xj ∗ µh).

These expected kernels only use information about the ex-
pected impulse response µh of the channel.

3.2. Expected RBF Kernels for Time Signals

To calculate the expected kernels for the RBF kernel (3) we
model the additive noise as Gaussian: wi ∼ N (0, σ2I), and
the random channel as Gausssian: hi ∼ N (µh,Σh). Let Xi

be the convolution matrix such that Xihi = xi ∗hi. It follows
that p(zi|xi) = N (zi; Xiµh,XiΣhXT

i + σ2I).
Then the expected test kernel (5) for the RBF kernel (3)

evaluated at z is

Ezi

[
N (zi; z, γ2I)

]
=
∫

z̃i

N (z̃i; z, σ2I)p(z̃i|xi)dz̃i

= N
(
z; Xiµh,XiΣhXT

i + γ2I + σ2I
)
,

by the product of Gaussians rule [3].
The expected training kernel (6) for the RBF kernel (3) is:∫

z̃i

∫
z̃j

N (z̃i; z̃j , σ
2I)p(z̃i, z̃j |xi, xj)dz̃idz̃j

=
∫

z̃i

∫
z̃j

N (z̃i; z̃j , σ
2I)p(z̃i|xi)p(z̃j |xj)dz̃idz̃j

= N (Xiµh; Xjµh,XiΣhXT
i + XjΣhXT

j + γ2I + 2σ2I),

by successive application of the product of Gaussians rule,
where we have assumed that p(zi, zj |xi, xj) = p(zi|xi)p(zj |xj).

These RBF expected kernels take into account more infor-
mation about the noise environment than the expected linear
kernels.

4. CLASSIFYING SUBBAND ENERGY FEATURES

In this section, we consider the case that the linear or RBF
kernel acts on a feature vector Uxi

whose components are the
energies in specified Fourier subbands of xi. The expected



energy of the noise signal in any subband is taken to be the
noise power σ2 times the length L of the test signal z.

Because zi = hi ∗ xi +wi, we can characterize the mean
and covariance of the random vector Uzi

in terms of the statis-
tics of the random channel and noise:

µUzi
= Uxi

· µUh
+ Lσ21 (7)

ΣUzi
= (Lσ2)2I + ΣUh

· Uxi
UT

xi
+ 2Lσ2diag (Uxi

· µUh
) ,
(8)

where · denotes the component-wise product of its left and
right arguments, and 1 is a vector of ones.

4.1. Subband Energy Features: Expected Linear Kernels

The expected test kernel K(Uz, Uxi) for linear kernel (2) is:

Ehi,wi [U
T
z Uzi ] = UT

z Ehi,wi [Uzi ] = UT
z µUzi

.

The corresponding expected linear training kernelK(Uxi , Uxj )
is:

Ehi,wi,hj ,wj [UT
zi
Uzj ] = µT

Uzi
µUzj

.

As seen in (7), these expected linear kernels only take into
account the expected subband energies of the channel and the
expected noise energy.

4.2. Subband Energy Features: Expected RBF Kernels

To calculate the expected RBF kernels between subband en-
ergy feature vectors, we make the maximum entropy assump-
tion that the random corrupted subband energy feature vector
Uzi

is drawn from a Gaussian distribution with the mean and
covariance stated in (7) and (8). Then the expected RBF test
kernel K(Uz, Uxi) is:∫

Ũzi

N (Ũzi ;Uz, γ
2I)p(Ũzi |xi)dŨzi

=
∫

Ũzi

N (Ũzi ;Uz, γ
2I)N (Ũzi ;µUzi

,ΣUzi
)dŨzi

= N (Uz;µUzi
,ΣUzi

+ γ2I), (9)

where the last line follows by the product of Gaussians rule,
and µUzi

, ΣUzi
are given in (7) and (8).

The expected RBF training kernel K(Uxi
, Uxj

) is:∫
Ũzi

∫
Ũzj

N (Ũzi
; Ũzj

, γ2I)p(Ũzi
; Ũzj
|Uxi

, Uxj
)dŨzi

dŨzj

=
∫

Ũzi

∫
Ũzj

N (Ũzi ; Ũzj , γ
2I)N (Ũzi ;µUzi

,ΣUzi
)

N (Ũzj ;µUzj
,ΣUzj

)dŨzidŨzj

= N (µUzi
;µUzj

,ΣUzi
+ ΣUzj

+ γ2I) (10)

by successive application of the product of Gaussians rule.
These expected RBF kernels take into account the covari-

ance of the channel subband energies, as well as the mean
channel subband energies and the noise power.

5. EXPERIMENTS AND RESULTS

Experiments were run with the proposed expected SVM clas-
sifier using the RBF kernel on subband features as given in
(9) and (10). The simulation is the same as in Anderson et
al. [2] except we use 20 training signals rather than 1000 train-
ing signals, and subband energy features are used in place of
power features. Narrowband signals from two classes were
simulated by randomly perturbing the placement of poles in
the z-transform domain; three choices of pole separation to
three classification problems ranging from easy to hard; en-
ergies for two frequencies were used as subband energy fea-
tures. At test the signals were propagated through a shallow
water channel before being classified, where the channels h
were drawn iid using the CASS Eigenray routine in the Sonar
Simulation Toolset for the bathymetry.

The expected SVM classifier was compared to joint QDA
[2] and to three RBF SVMs: blind, informed [2], and simu-
lated corrupted blind (SCB) [1]. The blind RBF SVM trains
on the clean training data and treats the corrupted test sample
as though it was clean. The informed RBF SVM trains on
the clean training data, but before testing subtracts off the ex-
pected noise energy and divides by the channel energy. SCB
SVM trains on simulated corrupted training samples that are
created by selecting N random channels (different draw of
channels for each run of the simulation), then corrupting each
of the clean training samples with each of theN channels and
a random draw of the noise. Thus the SCB SVM trains on N
times as many training samples as any of the other considered
classifiers. Preliminary experiments with N = 5 to N = 12
did not show a difference in performance. For the results re-
ported here we used N = 10, which takes 104 minutes for a
complete run of the simulation on a 2.4GHz machine. (The
SCB method is similar to the method of virtual examples in
[4] for invariant SVMs, however, the simulated corrupted ex-
amples are generated from a stochastic model is rather than
deterministically.)

Each run of the simulation was performed on 2000 ran-
domly drawn signals. For each run, n = 20 training sam-
ples were randomly selected, and the other 1980 signals were
treated as test samples. Each test sample was convolved with
an iid random draw from the 2000 simulated channel impulse
responses, and subjected to iid Gaussian noise over a range of
SNR’s.

The bandwidth γ parameter in (3) was independently se-
lected for each RBF SVM classifier and for each SNR using
leave-one-out cross validation (LOOCV) on the 20 training
samples. For SCB SVM, the cross validation is performed for
each of the 10 random channels, leaving each cv split with



180 training signals and 20 test signals. To make the com-
parison similar time-wise to SCB SVM, for the LOOCV the
expected SVM takes left-out training sample in the LOOCV
and corrupts it 100 times with a set of 100 randomly drawn
channels, so that the γ is chosen to minimize error on the en-
vironment. This LOOCV makes the expected SVM take 105
minutes on average for a run of the simulation (mostly due
to time to perform convolutions), compared with SCB SVM
taking 104 minutes to complete a run.

Results averaged over 75 runs of the experiment are
shown in Figure 1. The proposed expected SVM is consis-
tently the best for SNRs greater then 0 dB. At lower SNR
all classifiers performed poorly, although joint QDA and the
informed SVM appear to be the most robust.

6. DISCUSSION

We presented an expected kernel method to take into account
the test environment when using and training an SVM from
clean training samples. We showed that for an RBF kernel the
expected kernel will take into account the expected channel,
channel covariance, and noise power. Experimental results
showed that the expected SVM can work better than simu-
lating corrupted training samples for the same total training
time, and our experiments lead us to hypothesize that the ex-
pected SVM can work better with much shorter training time
for many practical situations.

Here we treated zi and zj as encountering independent
random corruptions, which is analogous to the common prac-
tice of simulating example channels independently. However,
we hypothesize that better results are possible if one treats the
zi and zj as sharing the same unknown random channel h and
noise w, but we leave this for future work.
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Fig. 1. Results of classifying subband energy features where
the classes range from difficult to separate (top) to easy to
separate (bottom).


