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Abstract – We implement and evaluate a method infer po-
sition from Doppler measurements in a multistatic sonar
scenario and present a likelihood approach for doing so.
Doppler measurements are used to create likelihood sur-
faces for each of the transmitter-receiver pairs. The like-
lihood surfaces are combined and can then be used as-is or
combined with additional position measurements. The final
likelihood surface is usable in a Bayesian-style tracker or
can be used to estimate position of a contact for use in a
contact-based tracker. We show how the estimate improves
with the addition of multiple receivers and show how the use
of Doppler information can improve tracking results.
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1 Introduction
In a multistatic sonar environment, a single Continuous
Wave (CW) waveform transmission yields a measurement
of bistatic range r, bearing b, and bistatic Doppler d for each
contact that is within range of any receiver. It is standard to
use bistatic range and bearing measurements to estimate the
position of the contact. Bistatic Doppler is the average of
the target’s velocity v towards the transmitter and towards
the receiver. This allows a single measurement of bistatic
Doppler to estimate the target’s velocity.

In this paper, we propose the inference of position from
multiple bistatic Doppler measurements and propose a like-
lihood approach for doing so. The method is based on the
likelihood surfaces used in Bayesian-style trackers as de-
scribed by Stone [1]. The likelihood surfaces created from
each of the bistatic Doppler measurements are combined,
allowing for an improved estimate of position. Section 2
will contrast our usage of Doppler information to other work
with similar measurements. Section 4 will give a brief moti-
vation for our approach under simple conditions. Section 5
will derive the estimation method. Section 6 will discuss the
performance of the position estimation under different num-
bers of receivers and show results in a tracking framework.
Section 7 will discuss the overall results and suggest future
research directions.

2 Related Work
Doppler measurements are available in a variety of sonar
and radar scenarios and configurations. In passive sonar
or radar, tonal frequencies can be tracked to obtain an es-
timate of Doppler, and then the Doppler and bearing infor-
mation can be used to track a target [2, 3, 4]. Recently it has
been shown that under various conditions (stationary trans-
mitter, for example) moving receivers can apply a signal
processing-based approach to improve the estimate of tar-
get position provided that the entire raw signal can be trans-
mitted [5]. Other techniques use a mean-square error fitting
technique to track a CW-radiating projectile over time [6].
These methods all require a series of passive measurements
taken over time to localize or track a target. Active sonar
configurations allow for estimation of range and bearing to
target, and these are directly used to either estimate posi-
tion or create a likelihood surface for use in a Bayesian-style
tracker. Wang et al. show how Doppler can be combined
with an estimate of position to improve the initial estimate
of velocity in a tracker [7]. Also, Doppler can be used as
a feature in classification to potentially discard contacts as
clutter. La Cour uses Doppler measurements in a Bayesian
tracking framework, however our work differs in that we at-
tempt to estimate position from multiple measurements at a
single time [8].

Our work focuses on the use of Doppler in a multistatic,
active sonar configuration. Each receiver will measure the
bistatic Doppler shift of the signal, and these measurements
of Doppler will be combined into a single likelihood surface
that can be used to form estimates of position (and/or ve-
locity), and combined with likelihood surfaces from bearing
and bistatic range measurements.

3 Term Definition
We define the following terms:

di : measurement of Doppler for receiver i
c : contact position; [x, y]
v : contact velocity; [dx, dy]



t : ping transmission location; [x, y]
ri : receiver i location; [x, y]
ĉ : estimate of contact position
~utc : unit vector from transmitter to contact
~uric : unit vector from receiver i to contact
L() : a likelihood surface
P () : a probability

4 Motivation
In a multistatic active sonar geometry, every receiver ri

will obtain a measurement of bistatic Doppler, di on each
transmitted ping. Each measurement of di is the average of
components of the contact’s velocity v in the direction of the
transmitter t and the receiver ri. Under the assumption that
the transmitter and receiver are stationary, Equation 1 is the
vector form of the bistatic Doppler equation:

di =
vT

2
(~utc + ~uric) , (1)

where ~utc and ~uric are the unit vectors in the from the trans-
mitter and receiver to the contact as defined in Equation 2:

~utc =
t− c
‖t− c‖2

~uric =
ri − c
‖ri − c‖2

.
(2)

Even if the velocity is known, the unit vectors are under-
constrained in Equation 1. Given di, the position of the con-
tact is restricted to a curve. A second simultaneous Doppler
measurement similarly constrains the position to a different
curve. The contact must lie on one of the intersections of the
two curves. Figure 1 gives a simple example, where both the
velocity and Doppler are known exactly.

Note that the two curves still overlap at multiple points.
Addition of more receivers would remove this ambiguity. In
a scenario where the velocity is not known exactly, we treat
the velocity as a random variable with a known probability
distribution. With a distribution on velocity, each receiver
has an area in which the contact must lie. When multiple
measurements with uncertainty are combined, the contact
must lie in the overlapping area. Figure 2 shows four like-
lihood surfaces for four different receivers of a single trans-
mitted ping. When the likelihood surfaces are combined in
the (x, y, dx, dy) space, the true contact location (the white
dot) has a high likelihood, as shown in Figure 3. In the next
section, we will derive the equation for the likelihood sur-
face in the more realistic case that there is also uncertainty
in the Doppler measurements (e.g. due to noise) and contact
velocity.
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Figure 1: A simple example with known velocity and
Doppler, where the white lines indicate possible locations
of the target. The top two subfigures show the possible lo-
cations of the target (white circle) given a measurement of
Doppler at a receiver (red plus). Note the different receiver
locations in the top two figures. The bottom subfigure shows
the possible locations of the target when the two measure-
ments are combined.
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Figure 2: Four individual likelihood surfaces, with a uni-
form prior on target velocity, and σd = 0.1. The transmitter
is centrally located, indicated by the white triangle. Four
different likelihood surfaces are formed using receivers at
different locations marked by the white squares. The con-
tact is marked with a white circle.
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Figure 3: The position likelihood surface formed when
the surfaces shown in Figure 2 are combined in the
(x, y, dx, dy) state space.



5 Likelihood Surface and Position In-
ference

Given n independent Doppler measurements a likelihood
function can be formed over the state space [c, v]. Given n
Doppler measurements, the position and velocity likelihood
function is defined as follows:

L(c, v|d1...n, t, r1...n) = P (c, v|d1...n, t, r1...n). (3)

By Bayes’ rule:

L(c, v|d1...n, t, r1...n) =
γ−1P (d1...n|t, r1...n, c, v)P (c, v|t, r1...n),

(4)

where γ is the normalizing constant:

γ = P (d1...n|t, r1...n). (5)

Assuming the errors on the Doppler measurements are inde-
pendent,

L(c, v|d1...n, t, r1...n) =

γ−1

(
n∏

i=1

P (di|t, ri, c, v)

)
P (c, v|t, r1...n).

(6)

Integrating out velocity gives the contact position likeli-
hood surface,

L(c|d1...n, t, ri) =

γ−1
∫ ∏

i

P (di|t, ri, c, v)P (c, v|t, r1...n) dv.
(7)

The prior, P (c, v|t, r1...n) in Equation 7, can be uniform
when no information about the contact’s state is available,
can take into account any other available measurements
(such as range or bearing), or can include kinematic infor-
mation from a tracker. One of the main motivations for this
method is that you will always be able to constrain the ve-
locity prior - there is no need to consider velocities greater
than the maximum possible velocity of your target.

We assume iid additive zero mean Gaussian error on the
Doppler measurements, resulting in the likelihood function,

L(c|d1...n, t, ri) =

γ−1
∫ ∏

i

N (
vT

2
(~utc + ~uric); di, σ

2
d)P (c, v) dv.

(8)

If a single estimate of position is necessary, rather than
the likelihood surface, the estimate of the contact’s position
is simply

argmax
c

L(c|d1...n, t, ri) =

argmax
c

∫ ∏
i

P (di|t, ri, c, v)P (c, v) dv.
(9)

At first glance, Equation 8 appears to be readily analyz-
able (or possibly simplifyable) using the product of Gaus-
sian rule. However, recalling that the terms ~utc and ~uric
both have L2 norms in the denominator that are functions of
c, one finds that in general the non-linearity of the bistatic
Doppler equation makes an analytic solution intractable. To
evaluate the performance of our Doppler position estimation
technique, we will sample the likelihood surface in the state
space (x, y, dx, dy) and compute the results using numeric
techniques. The approach taken is described in the next sec-
tions.

6 Simulations
The following simulations were designed to evaluate the
performance of combining Doppler measurements in posi-
tion estimation of a single ping and also how the inclusion
of Doppler affects tracking in a multistatic scenario. In prac-
tice, these estimates are combined with the independent in-
formation provided by contact position estimation, and these
simulations are designed to understand how much and what
kind of information multistatic Doppler can add. In both of
the simulations, we create a grid over the state space and
calculate the likelihood at each of the grid locations. The
position state is uniformly sampled in x and y. Velocity is
uniformly sampled in |v| and 6 v.

6.1 Position Estimation Simulation
This simulation is designed to evaluate the effectiveness of
using Doppler alone to estimate position. The contact is
placed at the center of a circle of radius R. A transmit-
ter is placed directly ‘north’ of the contact. Receivers are
uniformly spaced around the circle with a uniformly ran-
dom rotation. The target is assigned a random velocity with
|v| ≤ vmax. Figure 4 shows the a single random instance of
the simulation.
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Figure 4: One instance of a random simulation with 16
equally spaced receivers, centered around the target. The
transmitter is located directly north of the target. The blue
line is proportional to the target’s velocity.



Several metrics were used to evaluate different properties
of the position estimation, and each of the metrics was av-
eraged over 1500 random runs. The likelihood surface was
normalized to sum to one (making it a probability mass func-
tion), allowing comparison between simulations with differ-
ent numbers of receivers. The likelihood of the true contact
position and the entropy, H , is calculated for each number
of receivers.

H = −
xmax∑

x=xmin

ymax∑
y=ymin

p(x,y) log p(x,y), (10)

where p(x,y) is the value of the normalized likelihood sur-
face at contact position (x, y).

The distance from the maximum of the likelihood surface
to the true contact location was used to evaluate the accuracy
of the maximum likelihood position estimate.

6.2 Position Estimation Results
Simulations were run with the following parameters:

N = [2, 3, 4, 8, 16, 32] receivers, R = 500m, xstep =
ystep = 10m, vmax = 5m/s, |v|step = 0.2m/s, 6 vstep =
10◦, σd = 0.5m/s.
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Figure 5: Average error from true position to maximum like-
lihood estimate of position.

Figure 5 shows the mean error between the true contact
position and the maximum likelihood position. Figure 6
shows the normalized likelihood of the true position, and the
entropy of the likelihood surface as the number of receivers
increases.

As the number of receivers increases, the likelihood of the
true contact position increases and the entropy decreases.
This is the desired result: decreasing entropy means that the
likelihood surface is becoming more peaked. The increasing
likelihood of the true position is useful in scenarios where
additional information is know about position (bearing or
range, for example).

6.3 Tracking Scenario
We propose the following simulation to evaluate the im-
pact of including Doppler-based position estimation in a
Kalman filter based tracker. A target is moving in a semi-
circle through an array of receivers, with a single transmit-
ter in the center of the scenario. Interping interval is 3m,
and the target is moving with |v| = 3.491m/s. There
are a total of 41 pings in each simulation. Each transmit-
ted ping results in a detection at all receivers (pD = 1),
and there are no false detections (clutter). The bearing b,
bistatic range r, and Doppler d measurements are corrupted
with zero mean additive Gaussian noise: σb = 5◦, σr =
600m,σd = 0.5m/s. The Kalman filter underlying the
tracker is a nearly-constant-velocity model. Note that this
means the tracker will not be able to correctly predict the
next position due to the constant velocity assumption being
violated. This is by design to ensure that the tracker is rely-
ing on the maximum likelihood position estimates.

Figure 7 shows all the measurement data from a single
random simulation, with the true track marked in red.

To combine the contacts from all receivers, we use Equa-
tion 8. The bearing and bistatic range information is incor-
porated in the prior, p(c, v):

p(c, v) =

N∏
i=1

N (b(x,y,i); bi, σ
2
b )N (r(x,y,i); ri, σ

2
r), (11)

where b(x,y,i) is the bearing from receiver i to point c (x, y),
r(x,y,i) is the bistatic range from receiver i to point c, bi is
the bearing measurement, and ri is the bistatic range mea-
surement.

The likelihood function is evaluated over a grid of (c, v),
and the maximum likelihood position is the measurement
that is passed to the tracker. The likelihood function
was evaluated at xstep = ystep = 100m, 6 vstep =
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Figure 6: Entropy (dashed blue line) and likelihood of true
contact (solid green line) for increasing number of receivers.
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Figure 7: Measurement data from a single random tracking
scenario.

4.5◦, |v|max = 5m/s, |v|step = 0.25. The same process
is repeated using only Doppler information (uniform prior
p(c, v)) and without Doppler information (the likelihood
surface is proportional to Equation 11).

6.4 Tracking Results
To evaluate the impact that the inclusion of Doppler infor-
mation is having, 400 randomizations of the simulation were
run, and the resulting tracks averaged. In this case, there
is only one target and no clutter, so the tracker is simply a
Kalman Filter which smooths the position data.

To compare the accuracy of the BRD (Bearing, Range,
and Doppler), BRD with filter, D (Doppler alone), BR
(Bearing and Range) and BR with filter, we use the mean
squared error of the entire track of length T as calculated in
Equation 12.

TSEn =

T∑
t=1

‖truePost − estPost‖22

MTSE =
1

N

N∑
n=1

TSEn,

(12)

where TSEn is the Track Squared error for a single track n
and the TSE is averaged over N = 400 independent runs.

Results are shown in table 1 for two different values of σd.
Note that a decrease in σd results in an improved MTSE.

Figure 8 shows the results for a run of the tracker on the
random scenario in Figure 7. The unfiltered bearing and
range maximum likelihood estimates (BR MLE) and the fil-
tered BR MLE estimates are in blue. The unfiltered bear-
ing, range, and Doppler MLE (BRD MLE) estimates are in
black. It is immediately apparent that at this level of Doppler

σd BR BRD D BR Filt BRD Filt
0.5 2.85e6 2.76e6 7.46e8 1.65e6 1.60e6
0.2 2.84e6 2.39e6 1.46e8 1.62e6 1.42e6

Table 1: MTSE (m2) for position estimation with and with-
out the tracker’s Kalman filter. The inclusion of Doppler
information into the position estimate improves the perfor-
mance with and without the Kalman filter.
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Figure 8: Results from a single tracking run, σd = 0.5.

measurement noise, Doppler information alone is not suffi-
cient for position estimation. The results with BRD and BR
are very similar, and for a single randomization it is diffi-
cult to compare the two. The ML estimates from both the
BR and BRD appear to be converging to the true track, sug-
gesting that the ML estimator is unbiased in both cases. The
filtered data is biased outside the true track, due to the in-
correct nearly constant velocity assumption of the Kalman
filter. The Doppler-only position data is high variance.

7 Conclusions and Future Work
In this paper we began to study whether multistatic Doppler
contains orthogonal information about position than the
bearing and range, and whether multistatic Doppler data can
be used to add value to position estimates. The estimate of
position could be used on its own or appropriately combined
with other independent information.

Using Doppler as the sole source of information yields a
poor estimate of position. Once included with other position
information (bearing, bistatic range), it improves the accu-
racy both of single-ping position estimation and of tracking
results using a simple Kalman filter slightly in the simula-
tions we ran. We plan to investigate further through simu-
lations in what conditions the addition of Doppler measure-
ments will be most valuable, and how much value it can add.



In our approach, we chose to use Doppler only to gain an
estimate of position, however it is straightforward to use this
technique to estimate velocity as well. The likelihood func-
tions would be derived in the same way, and rather than inte-
grating over velocity, the argmax

c,v
would be taken of Equa-

tion 7.
Additionally, the Doppler estimate of position could in-

corporate information from the tracker, in the form of a pre-
diction of the current target position and velocity. Once in-
corporated into the prior in Equation 9, the performance of
this estimator would likely improve.
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