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Abstract

Regression Strategies for Low-Dimensional Problems
with Application to Color Management

Eric K. Garcia

Chair of the Supervisory Committee:
Professor Maya R. Gupta

Department of Electrical Engineering

Nonparametric regression is the task of estimating a relationship between predictor vari-

ables and response variables from a set of training examples while making no a priori

assumptions about its functional form. It is useful in applications where a model is ei-

ther unknown, transient, or too difficult to characterize, and it has proven useful in a wide

variety of applications including earth sciences, meteorology, computer vision, and digital

color management. This dissertation introduces concepts and algorithms for use in non-

parametric regression, and while much of the inspiration and validation of the proposed

techniques stem from estimating color transformations – involving three to four predictor

variables – they are applicable to more general regression problems as well. We present two

new concepts in nonparametric regression that – due to computational considerations – are

applicable only in low-dimensional problems (1–6 predictor variables). First, we introduce

enclosing neighborhoods: a definition of locality for local linear regression that provides esti-

mates with bounded variance; we propose the enclosing kNN neighborhood as the smallest

(and thus lowest bias) such neighborhood along with an algorithm for its construction. Sec-

ond, we present a technique, lattice regression, for estimating look-up tables (suitable for

applications where fast test throughput is required) where the estimation minimizes the

training error of the overall estimated function. The proposed methods are tested in the

color management of printers as well as a variety of other low-dimensional applications.
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Chapter 1

INTRODUCTION

Nonparametric regression is the task of estimating a relationship between predictor

variables and response variables from a set of training examples while making no a priori

assumptions about the functional form of this relationship. This is in contrast to parametric

regression in which one imposes a model of the underlying function (i.e. linear, polynomial,

gaussian) and attempts to fit the parameters of this model. Nonparametric regression is

useful in applications where such a model is either unknown, transient, or too difficult to

characterize, and has proven useful in a wide variety of applications including earth sciences,

meteorology, computer graphics, computer vision, robotic control, image processing, and

digital color management. This dissertation introduces concepts and algorithms for use in

nonparametric regression, and while much of the inspiration and validation of the proposed

techniques stem from work on the empirical characterization of color transformations for

digital color management – typically involving three to four predictor variables – they

are applicable to more general regression problems as well. However, the computational

tractability of the proposed techniques limit their application to low-dimensional domains

consisting of roughly six or fewer predictor variables. Further, the proposed techniques

align into two categories, the first focuses on local (i.e. nearest-neighbor) regression and is

suited to a general class of problems while the second is primarily suitable for applications

where the desired function representation must be evaluated efficiently at test time (i.e.

implemented as a look-up-table).

To analyze regression algorithms, it is instructive to decompose the source of error into

bias and variance. When the relationship between predictors and responses is estimated

from a randomly drawn training set (a set of discrete pairs of predictors and responses),

bias quantifies the accuracy of the average estimate over random draws of the training set
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while variance quantifies the variability of the estimate over random draws of the training

set.

Consider a space of real-valued predictor variables X ⊆ Rd and that of real-valued

response variables Y ⊆ Rp. Suppose that there is an unknown relationship between variables

f : X → Y that is corrupted by white Gaussian noise such that Y = f(X) + ε where

ε ∼ N (0, σ2) for the random variable X ∈ X . We’d like to estimate f using a random

training set D = {Xi, Yi}ni=1 of n examples where Xi ∈ X are drawn independently and

identically distributed (iid) and Yi = f(Xi) + εi. The generalization error – the error on a

test point x ∈ X drawn from the same distribution as the training set – of the estimated

function f̂ is

err(f̂(x)) = ED,ε
[
f(x)− f̂(x)

]2
= ED,ε

[(
f̂(x)− ED,ε

[
f̂(x)

])2]+
(
f(x)− ED,ε

[
f̂(x)

])2

= var
(
f̂(x)

)
+ bias2

(
f̂(x)

)
.

We see that the generalization error is a sum of the variance of the estimated function (the

expected squared-difference between the estimated response and the expected estimated

response) and the squared-bias (the squared-difference between the true response and the

expected estimated response).

Regression algorithms typically have a complexity parameter that trades bias for vari-

ance. A larger complexity allows the model to fit the training data more accurately – leading

to a low bias at the cost of increased variance – while a smaller complexity adapts a rigid

model to fit the data as best as possible – leading to low variance at the cost of high bias. To

illustrate this phenomenon, consider the local linear regression algorithm (see section 2.1 for

a full description). For a test sample x ∈ X , k-local linear regression fits – via least-squares

– a linear function to the k nearest training samples in D and estimates the response as this

linear function evaluated at x. This process can be repeated ad infinitum for any point in

the domain. In this model, the complexity is controlled by k. At one extreme, when k is

large, local linear regression becomes traditional linear regression and incurs a large model
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bias if the underlying function is not truly linear. At the other extreme, when k is small,

the local behavior of the estimate depends on only a few points from the training set, and

thus small changes to this training set will cause relatively large changes in the estimate.

k = 2 k = 3 k = 4
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Figure 1.1: Local linear regression (LLR) applied to n=20 samples drawn with noise σ2 = .1.
Shown in dotted lines are the empirical mean and standard deviation of 10,000 LLR esti-
mates computed on 10,000 randomly drawn training sets and noise for various neighborhood
sizes: k = 2 (left), k=3 (middle), and k=4 (right).

Figure 1.1 illustrates this effect by plotting the sample mean and sample standard deviation

of the local linear estimate for a range of neighborhood sizes. In this example, X = [0, 1],

Y ⊆ R, Y = f(x) + ε where ε ∼ N (0, .1). Each plot shows the true function f in solid blue

as well as the sample mean and sample standard deviation in dotted orange (calculated

from 10,000 uniform draws of 20 training samples and additive Gaussian noise) of the local

linear regression estimate with the neighborhood size k. At k = 2, the mean estimate tracks

the true function very closely (low bias) but the standard deviation of this estimate is quite

large (high variance) while at k = 4, the mean estimate strays from the true function but

the standard deviation is much smaller.

Figure 1.2 shows the generalization error of the estimates (averaged across 101 uniformly-

spaced points in [0,1]). In this example, bias and variance conspire to produce a minimum

generalization error when a neighborhood size of k = 5 is used. One can imagine that

this value is highly application dependent and it may be useful to arrive at an optimal

complexity in an automated way.
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Generalization Error vs. k

2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

neighborhood size k

ge
ne

ra
liz

at
io

n 
er

ro
r

Figure 1.2: Generalization error of local linear regression from n=20 samples drawn with
noise σ2 = .1 for varying neighborhood sizes k. Computed from 101 uniformly spaced
samples in [0,1].

1.1 Outline of Thesis

This dissertation presents two approaches for achieving low generalization error in nonpara-

metric regression. A review of necessary concepts for the presentation of these techniques

is provided in Chapter 2 and the chapter need not be read linearly, but rather used as a

reference. Chapter 3 discusses an approach to limiting the variance of local linear regression

by using neighborhoods that form a convex hull around the test sample. Theoretical results

are discussed as well as the properties of the minimal such neighborhood – termed enclosing

k-NN – which is meant to balance bias and variance in a straightforward manner. We then

shift gears in Chapter 4 when we discuss lattice regression – a nonparametric regression

technique that is aimed at minimizing the bias in estimating a function that is to be stored

as look-up-table. Chapter 5 concludes the dissertation with a summary of findings and

possible extensions of this work.
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Chapter 2

RELATED WORK AND APPLICATIONS

We begin this chapter with a review of local linear regression and prior work on deter-

mining locality automatically (i.e. adaptively choosing a neighborhood). Then we go on

to introduce applications that will serve as testing grounds for the algorithms presented in

chapters 3 and 4. The reader is advised to read through section 2.1 and to continue to

chapter 3, referring to the rest of this chapter as the individual applications are introduced

in the experiments sections of chapters 3 and 4.

2.1 Local Linear Regression

Global linear regression – aka linear regression – is a classical statistical technique that is

widely used in estimation [36, 37, 39, 49, 68]. The benefits of a linear model are its simplicity

and ease of use, while its major drawback is high model bias: if the underlying function is

not well approximated by an affine function, then linear regression produces poor results.

Local linear regression exploits the fact that, over a small enough subset of the domain,

any sufficiently nice function can be well-approximated by an affine function as is done in

a first-order Taylor series expansion [61].

Suppose that for an unknown function f : Rd → R, we are given a set of input samples

X = {x1, x2, . . . , xn} and corresponding output samples Y = {y1, y2, . . . , yn} where xi ∈ Rd

and yi ∈ R. The goal is to estimate the output f̂(g) for an arbitrary test point g ∈ Rd. To

form this estimate, local linear regression relies only on k “local” training samples indexed

by the neighborhood Jg ⊆ {1, . . . , n} where |Jg| = k; this can be either the k nearest points

in Euclidean distance or some adaptive notion of locality as is discussed in Section 2.1.1 and

Section 3. Given this neighborhood, denote the relevant training data as YJg = {yj | j ∈ Jg}
and XJg = {xj | j ∈ Jg}.
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Local linear regression fits the least-squares hyperplane to the local neighborhood Jg of

the test point, forming the estimate f̂(g) = β̂T
[g

1

]
where

β̂ = arg min
β∈Rd+1

∑
j∈Jg

(
yj − βT

[xj
1

])2

. (2.1)

The size of the neighborhood Jg plays a significant role in the estimation result. A

neighborhood that includes too many training points can result in a fit that is too smooth

while a neighborhood with too few points can result in a fit with incorrectly steep extrapo-

lation. One approach to reducing the estimation variance incurred by small neighborhoods

is to regularize the regression, as is done in Tikhonov regression [39, 43]. Tikhonov regres-

sion also forms a hyperplane fit f̂(g) = β̂Tt

[g
1

]
but the coefficients β̂t instead minimize a

penalized least-squares criteria that regularize the local linear fit toward the global linear

trend of the data. Let βg be the least-squares hyperplane coefficients for the entire dataset:

βg = arg min
β∈Rd+1

n∑
i=1

(
yi − βT

[xi
1

])2

, (2.2)

then

β̂t = arg min
β∈Rd+1

∑
j∈Jg

(
yj − βT

[xj
1

])2

+ λ (β − βg)T I0(β − βg), (2.3)

where I0 = diag
(

[1T , 0 ]
)

and 1 is the d× 1 vector of ones. The parameter λ controls the

trade-off between minimizing the error and penalizing the deviation of the coefficients from

the global trend; larger λ results in lower estimation variance, but higher estimation bias.

Setting λ = 0 corresponds to traditional local linear regression. The closed-form solution

to (2.3) is given by

β̂t = (XXT + λI)−1(Xy + λβg). (2.4)

An alternative form of regularization is ridge regression [39, 41] which penalizes the

slope of the local hyperplanes rather than their deviation from a global linear trend. This

amounts to setting βg = 0 in (2.3) and (2.4), discouraging fits with large values for ‖β‖22
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and thus discouraging fits with steep slopes. Explicitly,

β̂r = arg min
β∈Rd+1

∑
j∈Jg

(
yj − βT

[xj
1

])2

+ λβT I0β, (2.5)

and the closed-form solution to (2.5) is given by

β̂r = (XXT + λI)−1Xy. (2.6)

2.1.1 Neighborhood Definitions for Local Learning

A fundamental question regarding local linear regression is: Which neighbors should one

choose for a given test sample? In fact, this is an important question for all local learning

methods, such as k-NN classification, local support vector machines [74], or local similarity-

based learning [10].

The most common approach for local learning is to use some k nearest-neighbors, where

the neighborhood size k is cross-validated and nearest is defined by either Euclidean distance

or by a distance that is learned globally or locally [16, 18, 25, 26, 27, 38, 46, 53, 66, 71].

Using a fixed neighborhood size k, the nearest-neighbors algorithm can produce consis-

tent local classifiers as the number of training samples n→∞ [17]. However, for finite data

sets, we argue that it is not intuitive nor theoretically-motivated that the best estimation

will arise from using a fixed neighborhood size everywhere in the domain. We hypothesize

that the ideal neighborhood size may change as the density of samples changes throughout

the domain, and that an ideal neighborhood would adapt to the spatial distribution of the

training samples surrounding estimation point of interest.

This concept has been investigated by many researchers, though mostly in the context of

k-NN classification. One approach is to adapt a neighborhood so that it surrounds the test

point. This is the approach of Nock et al. [55] in defining the “symmetric nearest neighbors”

which to be the i) nearest neighbor to the test sample and ii) all training samples for which

the test sample is the nearest neighbor. A similar proposal was put forth by Gowda and

Krishna in 1979, that they called mutual nearest neighbor [31]. And yet another related

method is the k-SN neighbors in which a fixed number of neighbors k are selected in pairs:
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first the nearest neighbor xi not yet in the neighborhood is selected, then the next nearest

neighbor xj is selected that satisfies d(xi, xj) > d(g, xj) where g is the test point and

d is a distance metric [75]. In order to choose neighbors that surround the test point,

Chaudhuri proposed that a test point’s neighbors should be near, but that also the mean

of the neighbors should be close to the test point [12]. He proposed a greedy algorithm to

meet this objective which requires specification of the number of neighbors k. Chaudhuri’s

neighbors have been shown by others to work consistently better than k-NN [62, 63]. Our

Corollary 2 provides theoretical motivation for Chaudhuri’s neighborhood definition.

Other approaches have been based on proximity-graphs from computational geometry.

In 1981, Sibson proposed the natural neighbors for linear interpolation [67, 56]. The natural

neighbors of g are defined to be those training points {xi} whose Voronoi cells [4] are

adjacent to the cell containing g. An example is shown in the left diagram of Fig. 3.1. We

discuss the natural neighbors further in Section 3.2.1.

The following sections in this chapter introduce applications that will be tested in the

experiments of sections 3.4 and 4.3. When reading this document linearly, it is advised to

skip now to chapter 3.

2.2 Color Management and Device Characterization

Digital color management allows for a consistent representation of color information among

diverse digital imaging devices such as cameras, displays, and printers; it is a necessary

part of many professional imaging workflows and popular among semi-professionals as well.

An important component of any color management system is the characterization of the

mapping between the native color space of a device (RGB for many digital displays and con-

sumer printers), and a device-independent space such as CIE L∗a∗b∗ — abbreviated herein

as Lab — in which distance approximates perceptual notions of color dissimilarity [64].

Device characterization can involve estimation of either the forward mapping from a

device’s native color space to a device-independent color space (i.e. RGB → Lab) or the

inverse mapping from a device-independent color space to the device’s native color space to

(i.e. Lab → RGB). For display devices such as printers, one is generally interested in the

inverse device characterization. With this, one can predict, for a given perceptual (Lab)
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color one wishes to render, which device (RGB) input will produce this color. There are two

common approaches to obtain an inverse device characterization: The first is to learn the

parameters of a physical model of the device, such as the Neugebauer model of printers [5]

and then to invert this model [51, 59]. The second is to fit a nonparametric function to

empirical data (i.e. printed and measured color patches). Although the former approach

commonly requires less data due to built-in (and hopefully appropriate) model bias, the

latter is more common as it is applicable to a diverse set of devices and is less sensitive to

ongoing improvements in the underlying technology.

Printer color management serves as the primary test bed for the strategies presented in

this paper. Due to the complicated nature of the “display” process in printing (discussed

above), printers exhibit among the most nonlinear and unpredictable color mappings among

digital imaging devices, making them suitable for the nonparametric techniques that are the

focus of this thesis. For printers, the empirical approach to inverse device characterization

begins with printing a page of color patches for a set of input RGB values that span the

gamut (range of displayable colors) of the device. In this thesis, we use the Gretag MacBeth

TC9.18 RGB chart shown in Fig. 2.2. These patches are then measured with a spectropho-

tometer under standard illumination conditions, producing a single 3-dimensional Lab value

for each patch. From these training pairs of (Lab, RGB) colors, one estimates the inverse

mapping f : Lab → RGB that specifies what RGB inputs to send to the printer in order

to reproduce a desired Lab color. Estimating f is challenging for a number of reasons: 1)

f is often highly nonlinear; 2) although it can be expected to be smooth over regions of the

colorspace, it is affected by changes in the underlying printing mechanisms (for example,

undercolor removal) that can introduce discontinuities [5]; and 3) device instabilities and

measurement error introduce noise into the training data.

Fig. 2.1 shows a typical color-managed system. The Learned Device Characterization

is most often implemented by a three-dimensional look-up table (3D LUT) with nodes

{gi} ⊂ Lab that are regularly spaced in each dimension. This is followed by an array of

one-dimensional look-up tables (1D LUTs) used for calibration (more on this below). Once

estimated, the entire set of LUTs can be stored in an ICC profile – a standardized color

management format, developed by the International Color Consortium (ICC). Input Lab
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colors that are not a node of the 3D LUT are interpolated and – although interpolation

technique is not specified in the standard – the most commonly used method is trilinear

interpolation [44], a three-dimensional version of the common bilinear interpolation. This

interpolation technique is computationally fast, and optimal in that it weights the neigh-

boring nodes of the lattice as evenly as possible while still solving the linear interpolation

equations.1

Device

Learned Device 
Characterization

R
G
B

1D LUT
1D LUT
1D LUT

R'
G'
B'

Printer
L̂

b̂

â

b

a

L

Characterization Calibration

Figure 2.1: A color-managed printer system. For evaluation, errors are measured between
(L, a, b) and (L̂, â, b̂) for a given device characterization.

The following subsections introduce the typical process by which a device is color man-

aged. This is the process that is used in the color management experiments in section 3.4.3

and section 4.3.3. As shown in Fig. 2.1, the inverse device characterization is split into two

stages: characterization and calibration. The purpose of this dichotomy is twofold: First

to reduce the amount of work in maintaining a color managed system; second to reduce

the amount of data (number of printed patches) needed to build an accurate inverse de-

vice characterization. The details of calibration and characterization are presented in the

following sections.

2.2.1 Gray-Balanced Calibration

In contrast to characterization, device calibration uses a smaller set of data and is performed

more often in maintaining the color accuracy of a device over time. An added benefit con-

veyed by the most typical form of calibration, gray-balanced calibration, is that it transforms

the data used in the device characterization in a way that linearizes the exponential nature

1It does so by choosing the maximum entropy solution to the linear interpolation equations [36, Theorem
2, p. 776]
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(the gamma curve) of the color transform along the neutral axis. This amounts to shifting

the training data to be more evenly distributed in the RGB color space when performing

the second step of characterization. This redistribution of data effectively allows one to

estimate a good characterization with fewer total samples. In this section we describe the

details of gray-balanced device calibration as applied in section 3.4.3 and section 4.3.3.

As shown in Fig. 2.1, calibration is performed by three one-dimensional look-up tables

(1D LUTs), often referred to as tone reproduction curves [65, Chapter 5.2.1]. The job of

these 1D LUTs is to linearize each RGB channel independently, enforcing that input neutral

RGB color values (R=G=B) will print neutral gray patches (as measured in Lab). That

is, if one inputs the RGB color R= x, G= x, B= x for x ∈ {0, . . . , 255}, the 1D LUTs

will output the R’G’B’ values that, when printed, correspond approximately to uniformly-

spaced neutral gray steps in Lab space. The calibration step is commonly done with a set of

specifically chosen RGB inputs that aim to characterize the neutral axis of the printer (these

“gray ramps” can be seen on the upper-right of the TC9.18 chart in Fig. 2.2). Since fewer

patches are needed to characterize the neutral axis than the entire color space (in the TC9.18

chart, there are seven ramps of length 18, for a total of 126 patches), calibration can be done

with fewer measurements – and therefore with less expense – than full characterization.

The following outline illustrates the process of gray-balanced calibration as done in the

experiments of section 3.4.3 and section 4.3.3. Again, the goal of the calibration is to

find a set of 256 RGB values that print to a set of 256 evenly spaced neutral Lab values

(L ∈ {Lmin, 1∆L, 2∆L, . . . , Lmax} , a = 0 , b = 0) where Lmin and Lmax are the minimum

and maximum luminance outputs of the device, respectively and ∆L = (Lmax −Lmin)/255.

The RGB values corresponding to this equally spaced luminance ramp are used to construct

the 1D LUTs which will map RGB → RGB.

The TC9.18 chart has eighteen clusters of neutral RGB values. Each cluster consists of

seven RGB values that are intended to print Lab values near (preferably surrounding) the

neutral axis (a = 0, b = 0). Of course, the actual Lab values printed are beyond the control

of the user. The 1D LUTs (RGB → RGB) will be estimated from anchor points whose Lab

values are estimated from these clusters (one anchor per cluster) as well as an estimated

white point and black point of the device.
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Figure 2.2: The Gretag MacBeth TC9.18 RGB image consists of 918 color patches that
span the RGB colorspace. Of the patches, 729 are laid out in a grid covering the entire
RGB cube (left), 126 form a set of seven neutral ramps (upper-right), and 63 form a set of
saturated primaries (lower-right).

1) Print the Test Chart: Print the TC9.18 test chart and denote the jth RGB (j =

1, 2, . . . , 7) value in the ith (i = 1, 2, . . . , 18) neutral cluster by {Rij , Gij , Bij}. Denote

the corresponding printed and measured Lab values by {Lij , aij , bij}.

2) Estimate the Neutral Anchors: For each of the i = 1, 2, . . . , 18 clusters, set L̄i =

(1/7)
∑7

j=1 Lij and set āi = b̄i = 0. Use a regression algorithm to estimate – from

the entire set of measured TC9.18 patches including the non-neutral clusters – the

{R̄i, Ḡi, B̄i} that correspond to each {L̄i, āi, b̄i}. This forms the set of neutral anchors

from which the 1D LUTs will be estimated. Note that the choice of regression in this

step will be varied in the experiments.
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3) Estimate the White Point and Black Point: Set the black point luminance L̄0 to

be the minimum L value in the entire measured TC9.18 target, set ā0 = b̄0 = 0, and

set R̄0 = Ḡ0 = B̄0 = 0. Set the white point luminance L̄19 to be the maximum L value

in the entire measured TC9.18 target, set ā19 = b̄19 = 0, and set R̄19 = Ḡ19 = B̄19 = 0.

4) Linearly interpolate the 1D LUTs: Construct a set of 256 evenly spaced Lab values

{
x0 = (L̄0, 0, 0), x1 = (∆L, 0, 0), x2 = (2∆L, 0, 0), . . . , x255 = (L̄19, 0, 0)

}
where ∆L = (L̄19− L̄0)/255. Denote the corresponding outputs for each color channel

C ∈ R,G,B as {yCi }i=0:255. For each color channel C ∈ R,G,B, use linear interpola-

tion from the anchor pairs {L̄i, C̄i}i=0:19 to estimate {yCi }i=0:255.

The pairs {i, yCi }i=0:255 form the three 1D calibration LUTs. As intended, these LUTs

map the RGB values {(i, i, i)}i=0:255 to the RGB values that produce a uniform lumi-

nance ramp at the output of the device.

5) Clip the LUTs: If any of the values {yCi }i=0:255 are outside the range [0, 255], clip

them to this range.

Once constructed, the device calibration must be inverted in order to provide training

data for the characterization stage. This is because the characterization and calibration

will be applied serially to data sent to the printer (see Fig. 2.1). Inversion can be done by

simply applying the calibration LUTs with inverted inputs (i.e. use the values {yCi , i}i=0:255

instead of {i, yCi }i=0:255). We will use this technique in the following section in order to

prepare the TC9.18 data for estimating the 3D characterization LUT.

2.2.2 Characterization

In contrast to calibration, the characterization stage of inverse device characterization is

performed less often and with more training data (i.e. more printed color patches). Whereas

the calibration teases out non-linearities in the neutral behavior of the device, character-

ization is intended to estimate everything else that is necessary to ensure accurate color
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reproduction. It is in this stage where the non-parametric techniques developed in this

thesis will find a testing ground.

Characterization begins with a printed and measured test chart; in our case we use

the Gretag MacBeth TC9.18 RGB chart shown in Fig. 2.2 which consists of 918 RGB

color patches. Denote the RGB values of the patches as
{

(ỹRi , ỹ
G
i , ỹ

B
i )
}
i=1:918

⊂ RGB and

the measured Lab values of these patches as {xi}i=1:918 ⊂ Lab. Before estimating the

characterization of the device, one must account for the effect of calibration on the RGB

values. This is done, as described in section 2.2.1, by swapping the input/output values of

the 1D LUTs and applying these inverted LUTs to the RGB values
{

(ỹRi , ỹ
G
i , ỹ

B
i )
}
i=1:918

,

producing
{

(yRi , y
G
i , y

B
i )
}
i=1:918

. It is from the data
{
xi, (yRi , y

G
i , y

B
i )
}

that we build the

characterization.

As mentioned in section 2.2, the characterization is typically implemented and stored as

a three-dimensional look-up table (3D LUT). That is, a lattice of regularly-spaced nodes in

the CIE L*a*b* domain Lab = [0, 100]× [−100, 100]× [−100, 100]. Such a lattice typically

has m̃ ∈ {9, 17, 33} lattice nodes per dimension2 for a total of m = m̃3 nodes each with a

corresponding RGB output. Thus, the task of estimation boils down to determining the m

RGB outputs of the lattice that best represent the training data.

2.3 Geospatial Interpolation

Geospatial interpolation refers to the task of interpolating a quantity (such as elevation,

average temperature, quantity of mineral deposits, annual rainfall, etc.) from a discrete set

of measurements taken at known locations. On a small enough scale (i.e. not accounting

for the curvature of the earth), this can be posed as a two-dimensional non-parametric re-

gression task. In sections 4.3.2 and 3.4.2 we test the proposed techniques on the Spatial

Interpolation Comparison 97 (SIC97) dataset [20] from the Journal of Geographic Informa-

tion and Decision Analysis. This dataset is composed of 467 rainfall measurements made at

2Corresponding to 23, 24, 25 lattice cells per each dimension, respectively. This arrangement eases the
computational burden of trilinear interpolation as the interpolation weights for incoming Lab values can
be calculated via binary operations such as bit-shifting when the data is encoded as fixed-point.
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distinct locations across Switzerland. Of these, 100 randomly chosen sites were designated

as training to predict the rainfall at the remaining 367 sites.

2.4 Omni-directional Image Super-resolution

This section describes the application of super-resolving (forming high-resolution images

from multiple low-resolution images) omni-directional images. In section 4.3.4 we apply the

proposed lattice regression as part of the registration procedure for super-resolution. Here,

notation, application details, and related work on this topic are discussed to provide context

for the experiments in section 4.3.4.

Modern advances in imaging technology and camera systems are driving many applica-

tions in computer vision and related areas. Omni-directional cameras provide a 360-degree

view with catadioptric systems which capture the 3D scene on a convex mirror (parabolic

or hyperbolic) that can be mapped onto a regular spherical grid [73]. An omni-directional

scene may also be captured on the sphere using a pair of fisheye lenses [47]. These vision

systems find applications in robotics, video surveillance, medical imaging and automatic

face recognition. However, low-cost omnidirectional cameras may not provide sufficient

image resolution for computer vision applications due to the wide field of view [54]. One

solution is to super-resolve a higher-resolution image from multiple low-resolution images,

but obtaining accurate registration information for the low-resolution images is costly.

Until recently, most of the efforts on image super-resolution with planar images focused

on the scenario where perfect registration is known [23, 57]. Early efforts in super-resolution

for omni-directional images also focused on reconstruction with full registration [45, 54]. In

the last decade, there have been several important contributions that have advanced the

research in super-resolution to the more realistic scenario where image-registration is not

known a priori. A nonlinear least-squares approach was presented in [40] for simultaneous

registration and reconstruction of planar images. In [69], a subspace-projection method

was developed for bandlimited images to first learn image-registration and then perform

reconstruction.

However, extension of existing super-resolution methods for planar images to omni-

directional images is not straightforward. Omni-directional images are captured on a sphere
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and require a signal-processing framework that respects that geometric structure. A novel

method based on processing images in the spherical Fourier transform (SFT) domain was

proposed in [2]. The authors extend the previous work in [40] to formulate a nonlinear least-

squares optimization problem which is solved via the Levenberg-Marquardt algorithm. The

work in [2] was further extended in [1, 3] by including an l1-regularization term, thereby

improving average picture-to-signal-ratio (PSNR) for the reconstructed image by around 1

dB. The spherical harmonics method [3] is based on previous work [2] which was awarded

the best paper award at ICPR 2008 and is used as a benchmark for the experiments in

section 4.3.4.

2.4.1 Problem Formulation

Let S2 denote the unit sphere in R3, i.e. S2 = {z ∈ R3 : ||z||2 = 1}. In spherical coordinates,

each point on the unit sphere can be represented by a unique pair (θ, φ) ∈ Ωθφ where

Ωθφ = [0, π]× [−π, π) and where θ is the co-latitude angle and φ is the longitude angle.

We parameterize the 3D rotation group3 with Euler angles (α, β, γ) ∈ Ωg where Ωg =

[−π, π)× [0, π]× [−π, π) which represent angle of rotation (in radians) about the Z,Y and

Z axis, serially. Let g = (α, β, γ); the corresponding rotation matrix can be written as

R(g) = RZ(α) RY(β) RZ(γ). (2.7)

Given N low-resolution spherical images of size M ×M , we would like to reconstruct a

single high-resolution image of size L× L. To achieve this, we consider that there exists a

square-integrable real-valued function Z : S2 → R on the unit sphere. A spherical image is

defined to be the quantized and discretized version of the underlying function Z sampled

on a spherical grid. Consider the following regular spherical grid with M points in each

coordinate direction:

G0 =
{

(θj , φk) =
(

(π/M)(j + 1/2), (2π/M)(k −M/2)
)

: j, k = 0 : M − 1
}
. (2.8)

3A rotation in R3 about the origin can be described by a matrix of dimensions 3× 3 such that RT R = I,
RRT = I and det(R) = 1.
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Note that G0 ∈ ΩM×M
θφ ; it can be thought of as a matrix with (j, k)th entry given by the

pair (θj , φk) in (2.8).

We consider that each of the N low-resolution images has undergone an unknown rota-

tion and that the true registration of each image corresponds to a rotated version of G0. Let

Ggi denote the spherical grid obtained by rotating the reference grid by arbitrary rotation

gi,

Ggi =
{

(θ′, φ′) ∈ S2 : τ(θ′, φ′) = R(gi) τ(θ, φ) for (θ, φ) ∈ G0

}
, (2.9)

where τ : S2 → R3 is the conversion from spherical to Cartesian coordinates that maps

Ωθφ → R3.

Let Zi = Z(Gg̃i) denote the ground-truth spherical function Z : Ωθφ → R sampled on

grid Gg̃i that has been rotated by some unknown ground-truth rotation g̃i. Note that Zi

can be represented by an M ×M matrix of pixel values. Given a subset I ⊆ {1 : N} of

the low-resolution images, let ZI = {Zi}i∈I and let gI = {gi}i∈I be a corresponding set of

rotations.

For an estimated spherical function Ẑ : Ωθφ → R, let Ẑgi = Ẑ
(
Ggi) denote the recon-

struction of the ith image under rotation gi for i = 1, . . . , N . The error in the estimate of

the ith low-resolution image is then given by the Frobenius norm

||Zi − Ẑgi ||F = tr
[
(Zi − Ẑgi)

T (Zi − Ẑgi)
]
, (2.10)

which is the total squared pixel-wise error between the two images. This is the same cost

function as used in [3, 40].

The objective in joint-registration and super-resolution of omni-directional images is to

estimate the function Z on a L× L higher resolution spherical grid from multiple M ×M
low-resolution images without any prior information about the corresponding rotations of

images. We are given N low-resolution omni-directional images Zi, i = 1, . . . , N , each of

size M ×M on grid-locations Gg̃i that are unknown.
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2.4.2 Super-Resolution using Spherical Harmonics

Here we describe the state-of-the-art method for super-resolution with omni-directional

images presented by Arican and Frossard [1, 2, 3] which we use as benchmark. The estimate

of the true spherical function is given by the spherical harmonic series,

Ẑ(θ, φ) =
B∑
l=0

l∑
m=−l

âl,m Yl,m(θ, φ), (2.11)

where Yl,m are associated Legendre functions [13, 19], B is the assumed bandwidth of

the spherical function Z [2], and âl,m are spherical Fourier coefficients estimated from the

unregistered low-resolution images as described below.

Let Y0(θ, φ) denote the B2×1 vector of spherical harmonics (of all degrees and order up

to B) evaluated at a point (θ, φ) on the unit sphere. Let Y0 = [Y0(θ1, φ1) · · ·Y0(θM2 , φM2)]

denote the B2 ×M2 matrix of spherical harmonics evaluated at all points on the reference

canonical grid G0. Similarly, let Yk denote the matrix of spherical harmonics evaluated on

the rotated grid Ggk . A closer examination of the matrices Y0 and Yk reveals the following

linear relationship (see [13]),

YT
k = Uk(R(gk)) YT

0 , (2.12)

where Uk(R(gk)) is a B2×B2 matrix which depends only on the rotation matrix connecting

the two grids. Consequently, the pixel values of given low-resolution images can be described

by a system of linear equations,

z = Y U a, (2.13)

where z is the vector of all pixel values from all low-resolution images, a are spherical

Fourier coefficients, matrix U is built from matrices Uk(R(gk)) and depends on rotations

of spherical images and matrix Y is a block-diagonal matrix comprising Y0. Please refer to

[3] for more details.

The system of linear equations z = Y U a needs to be solved for spherical Fourier coef-

ficients a as well as unknown rotations that determine the matrix U. This is accomplished
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via an iterative conjugate gradient approach [3]. The vector a can be used in (2.11) to

compute the estimate of the true spherical function on a higher resolution grid.
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Chapter 3

ENCLOSING NEIGHBORHOODS

Linear regression and local linear regression are standard methods for estimating a func-

tion given sample input/output pairs (see section 2.1). Here, we consider the question:

Under what conditions are linear regression and local linear regression guaranteed to work

well? Clearly, if the true underlying function f is linear or locally linear then these meth-

ods are well-suited. For analysis, we consider the slightly more general model that the

underlying function f is locally linear but we are given measurements of the output val-

ues corrupted by iid noise. The local linear approximation is equivalent to a first-order

Taylor series expansion [61] and although in practice we do not expect the error of this

approximation (applied to an arbitrary continuous function) to be zero, it will be related

to the size of the neighborhood to which the linear approximation is fit. It is posited that,

given sufficient training samples, the error incurred by this first-order approximation can

be arbitrarily reduced by reducing the size of the neighborhood used in estimation.

Given a test point g and a neighborhood Jg, assume that the true function f is such

that for x ∈ g ∪XJg , we have f(x) = βT
[x

1

]
for β ∈ Rd+1. Recall that Jg ⊆ {1, . . . , n} and

XJg = {xj | j ∈ Jg} as discussed in section 2.1. We will consider local linear estimates of f

that are of the form f̂(g) = β̂T
[g

1

]
where β̂ is determined by local linear regression (2.1).

In evaluating the quality of the estimate f̂ , the overall squared-error can be decomposed

into estimation variance and squared estimation bias [39] (as discussed in section 1),

E
[
f(x)− f̂(x)

]2 =E
[(
f̂(x)− E

[
f̂(x)

])2]+
(
f(x)− E

[
f̂(x)

])2

= var
(
f̂(x)

)
+ bias2

(
f̂(x)

)
,

and it is useful to analyze each independently. Under this noisy-linear model, the bias of the

linear regression is determined by the average of the regression coefficients with respect to

the noise. If the noise is zero-mean, then the expected least-squares regression coefficients
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are equal to the true hyperplane coefficients, and therefore there is no bias. However, in

general, the overall estimation error can still be unbounded due to estimation variance. We

show that for the noisy-linear model, the estimation variance is in fact bounded by the noise

power for those test samples that lie in the closure of the convex hull of the training samples

and a corollary establishes which test sample faces the minimum estimation variance.

3.1 Bounding the Estimation Variance

This section provides the main result motivating our approach to constructing an adaptive

neighborhood for local linear regression: For local linear regression – in which the estimated

output for a test point g is constructed from the neighborhood Jg – the estimation variance

is bounded if g lies within the convex hull of the neighborhood Jg.

For the following analysis, we will assume that the underlying true function f is locally

linear over the neighborhood of the test sample g. That is, there exists some β ∈ Rd+1

such that f(x) = βT
[x

1

]
for x ∈ g ∪ XJg . Under these assumptions, we establish that the

estimation variance is bounded if g ∈ conv(XJg), where conv(XJg) denotes the closure of

the convex hull of XJg :

Theorem 1. Let f be a locally linear function such that there exists β ∈ Rd+1 for which

f(x) = βT
[x

1

]
for all x ∈

{
g,XJg

}
. Let the points g ∪ XJg be in general position and

suppose that the training labels {yi}i=1:n are corrupted by independent additive noise such

that yi = f(xi) + ωi where ω = [ω1, ω2, . . . , ωm]T is drawn from a distribution with finite

mean and covariance Σω = σ2I. If g ∈ conv(XJg) then, for the estimate f̂(g) = β̂T
[g

1

]
where β̂ are given by linear least-squares regression (2.1), the estimation variance is bounded

by σ2:

var(f̂(g)) = Eω
[(
f̂(g)− Eω[f̂(g)]

)2] ≤ σ2. (3.1)

Proof of Theorem 1:

Let y be the 1× k vector with elements YJg , let X be the d× k matrix with columns XJg
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and let X̃ =
[X
1T
]
. The least-squares regression coefficients which solve (2.1) are,

β̂ = (X̃X̃T )−1X̃y

= (X̃X̃T )−1X̃(X̃Tβ + ω)

= β + (X̃X̃T )−1X̃ω .

If we define A = (X̃X̃T )−1X̃, the covariance matrix of the regression coefficients can be

expressed as

cov(β̂) = Eω
[
(β̂ − Eω[β̂])(β̂ − Eω[β̂])T

]
= Eω

[
(Aω −AEω[ω])(Aω −AEω[ω])T

]
= AEω

[
(ω − Eω[ω])(ω − Eω[ω])T

]
AT

= (X̃X̃T )−1X̃ σ2I X̃T (X̃X̃T )−1

= σ2(X̃X̃T )−1.

Define g̃ =
[g

1

]
. The estimation variance is

var(f̂(g)) = Eω
[(
β̂T g̃ − Eω

[
β̂T g̃

])2]
= Eω

[
g̃T
(
β̂ − Eω[β̂]

)(
β̂ − Eω[β̂]

)T
g̃
]

= g̃T cov(β̂)g̃

= σ2g̃T (XXT )−1g̃. (3.2)

Thus, the proof is finished by showing that g̃T (XXT )−1g̃ ≤ 1 if g̃ ∈ conv(XJg).

Define W = {v ∈ Rk | Xv = g}, W̃ = {v ∈ Rk | X̃v = g̃} and the set of convex weights

C = {v ∈ [0, 1]k | vT1 = 1}. Note that v ∈ W ∩ C ⇒ v ∈ W̃ ∩ C. To see this, consider that

if v ∈ W ∩ C it holds that Xv = g and 1T v = 1 and therefore

X̃v =
[X
1T
]
v =

[Xv
1T v

]
=
[g

1

]
= g̃.
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Also, for any v ∈ C, it holds that

0 ≤ vT v ≤ vT1 = 1.

Since g ∈ conv(XJg), the set C ∩W is non-empty and thus W̃ ∩ C is non-empty as well.

Therefore, there exists some ṽ ∈ W̃ such that ṽT ṽ ≤ 1. However, of all elements of W̃, the

least-squares solution

v̂ = X̃T
(
X̃X̃T

)−1
g (3.3)

has the minimum norm [9]. Thus, it follows that

v̂T v̂ = gT
(
X̃X̃T

)−1
X̃X̃T

(
X̃X̃T

)−1
g

= gT
(
X̃X̃T

)−1
g

≤ ṽT ṽ

≤ 1,

completing the proof.

Corollary 2. Assume the same conditions of Theorem 1. The estimation variance is min-

imized for the test point that is the mean of the training samples:

g = x̄Jg =
1
k

∑
j∈Jg

xj . (3.4)

Proof of Corollary 2:

Let X be the d× k matrix with columns XJg . We can rewrite (3.2) as

cov(β̂) = σ2

 XXT X1

1TXT 1T1

−1

.
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By defining the matrix,

 V11 V12

VT
12 V22

 =

 XXT X1

1TXT 1T1

−1

,

the estimation variance can be expressed as

var(f̂(g)) = σ2

 g

1

T  V11 V12

VT
12 V22

 g

1


= σ2(gTV11g + 2gTV12 + V22).

The point of minimum variance will be the g∗ that satisfies

0 =
∂f̂(g)
∂g

= σ2(2V11g + 2V12),

and therefore g∗ = −V−1
11 V12.

Applying the block matrix inverse [58]:

 A11 A12

AT
12 A22

−1

=

 C−1
1 −C−1

1 A12A−1
22

−A−1
22 AT

12C
−1
1 C−1

2

 =

 V11 V12

VT
12 V22


where

C1 = A11 −A12A−1
22 AT

12 and C2 = A22 −AT
12A

−1
11 A12,

we find that

−V−1
11 V12 = C1C−1

1 A12A−1
22 = A12A−1

22 .

Thus,

g∗ = X1(1T1)−1 =
X1
k

=
1
k

∑
j∈Jg

xj ,

completing the proof.
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In practice, regularized estimates of the regression coefficients are often used. If regu-

larization results in lower (or equal) estimation variance for all g than the unregularized

coefficients, then the bounded variance result of Theorem 1 will hold. This variance re-

duction should occur with any regularization that penalizes the regression coefficients for

deviating from the zero vector (as in lasso and ridge regression).

3.2 Enclosing Neighborhood Definitions

As a formal criteria for a bounded-variance neighborhood, we define an enclosing neigh-

borhood to be a set of training samples Jg such that the test sample g is contained in the

convex hull of its neighborhood. That is, Jg ⊆ {1, . . . , n} is an enclosing neighborhood if

g ∈ conv(XJg).

This property formalizes previous researchers’ intuitive goal of “a neighborhood that

would surround the test point,” as discussed in Section 2.1.1. For instance Sanchez et al.

noted that although it was intuitive to them to choose a neighborhood that surrounds a

test point, they knew of no theoretical justification for this [62]. Theorem 1 provides a first

theoretical justification by showing that enclosing neighborhoods have bounded estimation

variance under a noisy-linear model. In preliminary experiments, we also considered min-

imizing (rather than bounding) the estimation variance by forming a neighborhood Jg for

which g is near the mean. We found however, that this often induces significant bias in

the estimate as the diameter of Jg increases to accommodate this goal. Thus, we limit the

scope of this work to bounded variance, aiming to achieve a better balance of the error

contributions of bias and variance.

In the next few sections we consider two constructive neighborhood definitions that yield

the enclosing neighborhood property for g ∈ conv(X ). We note that such a construction

is not possible in situations where the test sample is outside the convex hull of the entire

training set, g 6∈ conv(X ), and while the theoretical results presented do not hold for such

g, the following neighborhoods are still well-defined when g 6∈ conv(X ).
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(a) Natural Neighbors (b) Enclosing k-NN

Figure 3.1: In the left figure, the natural neighbors neighborhood J NN
g is marked with solid

circles. For reference, the Voronoi diagram of this set is dashed. In the right figure, the
enclosing k-NN neighborhood J ekNN

g is marked with solid circles.

3.2.1 Natural Neighbors

Natural neighbors form enclosing neighborhoods when possible [56, 67]. The natural neigh-

bors are defined by the Voronoi tessellation V [4] of the training set and the test point g∪X .

Given V, the natural neighbors of g are defined to be those training points xj whose Voronoi

cells are adjacent to the cell containing g. An example of the natural neighbors is shown in

Fig. 3.1.

The local coordinates property of the natural neighbors can be used to prove that the nat-

ural neighbors form an enclosing neighborhood when g ∈ conv(X ) [67]. Although the nat-

ural neighbors were designed for use with a specific generalized linear interpolation method

called natural neighbors interpolation [67], Theorem 1 suggests that this neighborhood may

be successful when applied to linear regression as well.

One issue with natural neighbors for general learning tasks is that the complexity of

computing the Voronoi tessellation of n points in d dimensions is O(n log n) when d < 3

and O((n/d)d/2) when d ≥ 3 [7]. Another concern is whether the natural neighbors are
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sufficiently “local” as they do not form a radial neighborhood. That is, the natural neighbors

neighborhood can include training points that are quite far (in Euclidean distance) from the

test point while excluding others that are closer. This leads to a growth in the diameter of the

neighborhood and thus an increase in the bias incurred from the local linear approxiamtion.

3.2.2 Enclosing k-NN Neighborhood

The bias incurred from the linear approximation in local linear regression will grow with

the diameter of the neighborhood Jg (i.e. as neighbors become far from the test point

g). To reduce this risk, we propose – and this is the main contribution of this section –

choosing the k nearest neighbors with the smallest k such that g ∈ conv({Xg}1:k), where

{Xg}1:k ⊆ X denotes the k nearest neighbors of g in the training set X . Note that this is

ill-defined when g 6∈ conv(X ) is not in the convex hull of the training set; a more complete

definition requires a bit more care in its exposition. To this end, denote the distance from

g to the convex hull of the k nearest neighbors in X as

DX (g, k) = min
x∈conv({Xg}1:k)

‖g − x‖2. (3.5)

Note that DX (g, k) = 0 if g ∈ conv({Xg}1:k).

The enclosing k-NN neighborhood of g is defined as J ekNN
g = {Xg}1:k∗ where

k∗ = min
k

{
k
∣∣ DX (g, k) = DX (g, n)

}
. (3.6)

This can be interpreted as follows: For any g ∈ conv(X ), k∗ is the smallest k ∈ {1, 2, . . . , n}
such that g ∈ conv({Xg}1:k), while if g 6∈ conv(X ) then k∗ is the smallest k ∈ {1, 2, . . . , n}
such that g is as close as possible to the convex hull of {Xg}1:k. An example of the enclosing

k-NN neighborhood is shown in Fig. 3.1 and an algorithm for its computation is provided

below.
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Algorithm for Computing the Enclosing k-NN Neighborhood

We include a slack term ε for which a test point g within distance ε of the convex hull of

XJg is considered inside the hull. Setting ε = 0 corresponds to the strict definition of the

enclosing k-NN neighborhood. We found that, in practice, using non-zero values of ε led

to increased performance by allowing smaller neighborhoods (i.e. less bias) at a marginal

cost to variance. However, setting ε to an appropriate value is highly dependent on the

application.

Let us begin the description of the algorithm by defining a few variables. Let S ⊆ X
be a temporary set of neighbors and denote its complement by Sc = X\S. We will assume

that the complement set Sc is updated automatically without directly stating so in the

algorithm.

1) Initialize: Let xmin = arg min
x∈X

‖g − x‖2 and set S = xmin.

2) Project onto the Neighbors: Let gS = arg min
x∈conv(S)

‖g−x‖2 be the projection of g onto

the convex hull of S. If ‖gS − g‖2 < ε go to Step 4.

3) Partition the Training Set: Let d = ‖gS − g‖22 and partition Sc into the following

two sets:

Sc0 =
{
x ∈ Sc | (gS − g)T x ≤ d

}
and Sc1 =

{
x ∈ Sc | (gS − g)T x > d

}
.

Note that adding points in Sc1 to S will not bring the convex hull of S any closer to

g. If Sc0 = ∅ go to Step 4.

3) Add a Neighbor and Iterate: Add to the set S the training point x∗ ∈ Sc0 nearest

to g. That is, let

x∗ = arg min
x∈Sc

0

‖g − x‖2,

and set S = S ∪ x∗. Go to Step 2.



29

4) Add all Radial Neighbors: Let xmax = arg max
x∈S

‖g − x‖2 and set

J ekNN
g =

{
x ∈ X | ‖g − x‖2 ≤ ‖g − xmax‖2

}
.

3.3 Sizes of Enclosing Neighborhoods

Enclosing k-NN and natural neighbors adapt the size of the neighborhood to the local spatial

distribution of the training and test sample. Smooth nonlinear functions may be effectively

modeled as locally linear, where the approximation will tend to be better the more local the

neighborhood choice. Thus, in general the more local the neighborhood choice, the lower the

model bias will be. As a proxy for analyzing the expected bias for each of the three enclosing

neighborhood constructions, we will consider the expected size of the neighborhood.

3.3.1 Expected Neighborhood Size

Asymptotically, the expected number of natural neighbors is equal to the expected number

of edges of a Delaunay triangulation [56]. A common stochastic spatial model for analyzing

Delaunay triangulations is the Poisson point process, which assumes that points are drawn

randomly and uniformly such that the average density λ is m points per volume S. Given

this model, the expected number of natural neighbors is known for low dimensions: 6

neighbors for two dimensions, 48π2/35 + 2 ≈ 15.5 neighbors for three dimensions, and

340/9 ≈ 37.7 neighbors for four dimensions [56].

The following theorem establishes that the expected number of neighbors in the enclosing

k-NN neighborhood is 2d+1 if the training samples are sampled from a uniform distribution

within a hypersphere centered on the test sample, or in fact from any distribution that is

invariant to rotations about the test sample.

Theorem 3. Suppose n training samples are sampled independently and identically from a

distribution that is symmetric around a test sample in Rd. Then, in the limit that n→∞,

the expected number of neighbors in the enclosing k-NN neighborhood is 2d+ 1.

Proof of Theorem 3:

The proof requires the following lemma:
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Lemma 4. Let X ∈ Rd×n have ith column xi, and denote the convex hull of the columns of

X by conv(X), then scaling the data X will not affect the event 0 ∈ conv(X). That is, if

and only if the origin 0 ∈ conv(X), then 0 ∈ conv(XA) for any positive definite diagonal

n× n matrix A.

Proof. Suppose 0 ∈ conv(X). By definition, there exists a weight vector w such that

1Tw = 1, w � 0, and Xw = 0. If X is scaled by the positive definite diagonal matrix A,

then it must be shown that there exist a set of weights w′ with the properties that 1Tw′ = 1,

w′ � 0, and XAw′ = 0. Denote the normalization scalar z = 1TA−1w, then it can be seen

that one such weight vector that satisfies this condition is w′ = (A−1w)/z and we conclude

that 0 ∈ conv(XA). Next, suppose that 0 6∈ conv(X), then it must be shown that scaling

X by any positive definite diagonal matrix A does not form a convex hull that contains

the origin. The proof is by contradiction: assume that 0 ∈ conv(XA) but 0 6∈ conv(X).

The first part of this proof could be applied, scaling XA by A−1, which would lead to the

conclusion that 0 ∈ conv(X), thus forming a contradiction.

Without loss of generality, assume the test point is the origin g = 0. Let X be the

random d × n matrix with columns {xi}i=1:n drawn independently and identically from

a symmetric distribution over Rd centered a the origin. Rearrange the columns of X so

that they are sorted such that ||xk−1||2 ≤ ||xk||2 ≤ ||xk+1||2 for all k. As established in

the lemma, without a loss of generality with respect to the event 0 ∈ conv(X), scale all

columns such that ||xj ||2 = 1 for all j. Then 0 ∈ conv(X) if and only if the column vectors

are not all contained in some hemisphere [42].

Let Hn indicate the event that n vectors lie on the same hemisphere, and let H̄n denote

the complement of Hn. Wendel [72] showed that for n points chosen uniformly on a the

surface of a hypersphere in Rd,

P(Hn) = 2−n+1
d−1∑
k=0

(
n− 1
k

)
∀ n ≥ 1. (3.7)



31

Let Fn be the event that: the first n ordered points enclose the origin, but the first n − 1

ordered points do not enclose the origin. The probability of the event Fn is

P(Fn) = P(H̄n, Hn−1)

= P(H̄n|Hn−1)P(Hn−1)

= (1− P(Hn|Hn−1)) P(Hn−1)

= P(Hn−1)− P(Hn, Hn−1)

= P(Hn−1)− P(Hn). (3.8)

Because one or zero points cannot complete a convex hull around the origin, P(F0) = 0 and

P(F1) = 0. Combining (3.7) and (3.8), and using the recurrence relation of the binomial

coefficient (
n

k

)
+
(

n

k + 1

)
=
(
n+ 1
k + 1

)
, (3.9)

P(Fn) = 2−n+2
d−1∑
k=0

(
n− 2
k

)
− 2−n+1

d−1∑
k=0

(
n− 1
k

)

= 2−n+1
d−1∑
k=0

[
2
(
n− 2
k

)
−
(
n− 1
k

)]

= 2−n+1
d−1∑
k=0

[
2
(
n− 2
k

)
−
(
n− 2
k − 1

)
−
(
n− 2
k

)]
= 2−n+1

[(
n− 2
d− 1

)
−
(
n− 2
d− 2

)
+
(
n− 2
d− 2

)
−
(
n− 2
d− 3

)
+ . . .+

(
n− 2

0

)
−
(
n− 2
−1

)]
= 2−n+1

[(
n− 2
d− 1

)
−
(
n− 2
−1

)]
= 2−n+1

(
n− 2
d− 1

)
for all n ≥ 2,

where the last line follows because
(
r
−1

)
= 0 for all r [32, p. 154].
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Then the expectation E[Fa] is given by

E[Fa] =
∞∑
a=2

aP(Fa) =
∞∑
a=2

a2−a+1

(
a− 2
d− 1

)
.

To simplify, change variables to b = a− 2,

E[Fa] =
∞∑
b=0

2−b−1

[
(b+ 1)

(
b

d− 1

)
+
(

b

d− 1

)]

=
∞∑
b=0

2−b−1

[
d

(
b+ 1
d

)
+
(

b

d− 1

)]

=
∞∑
b=0

2−b−1

[
d

(
b+ 1
d

)
+
(
b+ 1
d

)
−
(
b

d

)]
(3.10)

=
∞∑
b=0

2−b−1

[
(d+ 1)

(
b+ 1
d

)
−
(
b

d

)]

where (3.10) is an application of (3.9).

Expanding the summation,

E[Fa] = lim
n→∞

(
2−1(d+ 1)

(
1
d

)
− 2−1

(
0
d

)
+ 2−2(d+ 1)

(
2
d

)
− 2−2

(
1
d

)
. . .

+ 2−n−2(d+ 1)
(
n

d

)
− 2−n−2

(
n− 1
d

)
+ 2−n−1(d+ 1)

(
n+ 1
d

)
− 2−n−1

(
n

d

))

= lim
n→∞

(
2−1

(
0
d

)
+ 2−2

(
2(d+ 1)− 1

)(1
d

)
. . .

+ 2−n−1
(
2(d+ 1)− 1

)(n
d

)
+ 2−n−1(d+ 1)

(
n+ 1
d

))

= lim
n→∞

(
2−1

(
0
d

)
+

n∑
i=1

2−i−1(2d+ 1)
(
i

d

)
+ 2−n−1(d+ 1)

(
n+ 1
d

))
.
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The first term in the last line is zero from the identity
(

0
d

)
= 0 [32, p. 155]. The third term

converges to zero as n→∞. The remaining term can be re-written,

E[Fa] = (2d+ 1)(.5)
∞∑
i=1

(
i

d

)
(.5)i.

Using the summation [32, p. 199],

∞∑
i=0

(
i

d

)
zi =

zd

(1− z)d+1

with z = .5, establishes the result: E[Fa] = 2d+ 1.

3.3.2 Simulated Neighborhood Sizes

To gain intuition about the distribution of neighborhood sizes, we simulated drawing train-

ing samples uniformly, calculated the neighborhood sizes, and plotted them in Fig. 3.3. For

each run of the simulation, three hundred points were drawn independently and uniformly

over the interior of the unit hypersphere. The enclosing k-NN and natural neighbors were

calculated for a test point at the origin. For each dimension the simulation was run twenty

times, and each neighborhood size is marked on the plot of Fig. 3.3. The natural neighbors

simulations were run only up to six dimensions due to memory restrictions (run with 2 GB

of RAM) for the larger number of total training samples needed to estimate neighborhood

sizes for higher dimensions.

One sees that the enclosing neighborhood sizes do increase linearly as roughly 2d + 1,

and that the distribution of neighborhood sizes does not appear to broaden. The average

natural neighbors’ sizes also appear to match the known low-dimensional analytical expected

mean sizes, but the distribution of sizes broadens as the dimension increases, and appears

to increase roughly exponentially as the dimension increases.

3.4 Enclosing Neighborhood Experiments

In this section we compare the performance of local linear regression on an enclosing neigh-

borhood to local linear regression on a fixed neighborhood size and to other regression
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Figure 3.2: Shown are the neighborhood sizes for the natural neighbors and the enclosing
k-NN neighborhoods over dimension.

techniques as well. Section 3.4.1 presents experiments on simulated data that are aimed at

evaluating the theoretical claims presented in section 3.1. This is followed in section 3.4.2

by a similar set of experiments on a real geospatial interpolation problem (see section 2.3).

Finally, in section 3.4.3, we apply local linear regression using enclosing neighborhoods to

the task of estimating color transformations for the color management of digital printers.

For a complete description of this application, see section 2.2.

3.4.1 Simulated Data

We consider approximating a two-dimensional sinusoidal function by local linear regression

given uniformly drawn random samples with additive Gaussian noise. The simulation is

designed to match the conditions of Theorem 1. Since Theorem 1 is only applicable for

test samples that lie in the convex hull of the set of all training samples, the test points

are regularly spaced over the unit square while the training samples are uniformly and

randomly drawn over the square [−.5, 1.5]2. For each of one hundred runs of the simulation,

independent and identically drawn Gaussian noise with mean zero and variance .01 is drawn

and added to the sinusoidal function values of the fixed training samples.
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Figure 3.3: Shown are the average variance and mean squared error of local linear regression
vs. neighborhood for different sizes of fixed k, enclosing k-NN, and natural neighbors.

Results are shown in Fig. 3.3. In the top plot of Fig. 3.3, note that the variance of

the local linear estimate decreases as a function of k. In fact, as k increases the k-NN

neighborhood becomes an enclosing neighborhood, and can achieve lower variance than

that of our adaptive enclosing neighborhoods because it is larger. However, note that in the

bottom plot of Figure 3.3, the mean square error for the k-NN estimate begins to increase

after k = 7, as the bias incurred by using a such a large neighborhood begins to affect the

error. We see that the adaptive size of the enclosing neighborhoods manages a nice balance

between this estimation bias and variance, and achieves a lower average error than the k-NN

estimate for any fixed choice of k.
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3.4.2 Geospatial Interpolation

Geospatial interpolation refers to the regression of measurements that are tied to geographic

coordinates such as elevation, rainfall, forest cover, wind speed, etc (see section 2.3). For

a small enough area – that is, if the curvature of the earth can be ignored – this amounts

to a two-dimensional regression problem; thus, suitable for enclosing k-NN method. As a

representative example from this class of data, we applied the proposed technique on the

Spatial Interpolation Comparison 97 (SIC97) dataset [20] from the Journal of Geographic

Information and Decision Analysis. This dataset is composed of 467 rainfall measurements

made at distinct locations across Switzerland. Of these, 100 randomly chosen sites were

designated as training to predict the rainfall at the remaining 367 sites.

We test three local regression techniques: local Tikhonov regression, local ridge regres-

sion, and local linear regression (see section 2.1) each with two neighborhoods: enclosing

k-NN and a fixed radial neighborhood of varying size k. The regularization parameter λ

of Tikhonov and ridge regression was chosen from the set {10−6, 10−5, . . . , 101} via ten-fold

cross-validation on the n = 100 training points. Shown in Fig. 3.4 are the RMS error of the

predictions at the 367 test sites.

One can see that enclosing k-NN does a reasonable job of matching the lowest test

error produced by a fixed neighborhood size. Importantly, for a fixed neighborhood size,

computing the value k that produces the lowest test error is not possible in practice as

one does not typically have access to the true measurements at the test locations. To see

just how well enclosing k-NN matched these optimistic results for the fixed neighborhood

size, we computed the statistical significance of the individual test errors via a one-sided

Wilcoxon significance test (p=0.05). The results of this test showed no significant difference

between enclosing k-NN and the best possible fixed k for any of the regression methods.

3.4.3 Color Management Experiments

As discussed in section 2.2, color management refers to the task of controlling how colors

are rendered across diverse image display and capture devices, such as scanners, monitors,

and printers. The goal is to ensure that the displayed (or captured) colors in the image are
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Figure 3.4: Shown is the RMS test error of enclosing k-NN and fixed k-NN for three local
regression methods: (a) local Tikhonov regression,(b) local ridge regression, and (c) local
linear regression. Enclosing k-NN is shown as a horizontal dashed line while the performance
of fixed k-NN is shown for a sequence of neighborhood sizes k; the value of k chosen by
ten-fold cross-validation for fixed k-NN is circled.
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perceptually consistent across color representations (RGB, CMYK) and technologies (LCD,

CRT, Inkjet, Laserjet, etc). The color management of printers is especially difficult because

the color response is nonlinear, and the colors they produce depend on the printer hardware,

the halftoning method, the ink or toner, paper type, humidity, and temperature [5, 24].

In estimating color transformations for printers from empirical data, local linear re-

gression has been shown to work better than neural networks, polynomial regression, and

splines [5], and better than color management techniques using models of ink-substrate in-

teractions [65]. Thus, this application provides a useful and relevant testbed for local linear

regression on enclosing neighborhoods.

The proposed technique of local linear regression on enclosing neighborhoods was tested

for color accuracy on three printers: an Epson Stylus Photo 2200 (ink jet) with Epson Matte

Heavyweight Paper and Epson inks, an Epson Stylus Photo R300 (ink jet) with Epson Matte

Heavyweight Paper and third-party ink from Premium Imaging, and a Ricoh Aficio 1232C

(laser engine) with generic laser copy paper. Color measurements of the printed patches

were done with a GretagMacbeth Spectrolino spectrophotometer at a 2◦ observer angle with

D50 illumination.

Both linear and ridge regression were tested in order to assess the compatibility of the

variance reduction provided by the enclosing neighborhood with that provided by a more

standard regularization technique. The ridge regression regularization parameter λ (see

Eqn. (2.5)) was fixed at λ = 0.1 for all the experiments. This value was chosen based on

a small set of preliminary experiments which suggested that values of λ from λ = .001 to

λ = 2 would produce similar results.1

The accuracy of each method was tested on reproducing 918 new randomly-chosen in-

gamut2 test Lab colors. All errors are computed via the ∆E∗94 standard3. Tables 3.1,3.2

and 3.3 show the average ∆E∗94 error and 95th-percentile error for the three printers for

1It is common wisdom that a small amount of regularization can be very helpful in reducing estimation
variance, but larger amounts of regularization can cause unwanted bias, resulting in oversmoothing [39].

2We drew 918 samples iid uniformly over the RGB cube and printed these, measuring the resulting Lab
values; these Lab values were as test samples. This is a standard approach to assuring that the test
samples are Lab colors that are in the achievable color gamut of the printer [35].

3The ∆E∗94 error metric is one standard way to measure color management error [5].
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each neighborhood definition with local linear regression (2.1) and local ridge regression

(2.5). As a baseline, we compared to a fixed neighborhood size of k = 15 neighbors with

local linear regression which was found to work well in practice [34]. Small errors may not

be noticeable; although actual human perception of color differences varies throughout the

color space and between people, errors under 2∆E∗94 are generally not noticeable.

On the Ricoh laser printer, both local ridge and local linear regression on the enclosing

neighborhoods produce lower average and lower 95th-percentile error than the corresponding

baseline regression on k = 15 neighbors. The case is strengthened with the results from the

Epson 2200, where results produced using the enclosing neighborhoods have lower average

and 95th-percentile error than any of the baseline of k = 15 neighbors.

However, the outlier in this set of experiments is the Epson R300 inkjet printer. For

un-regularized linear regression, there is increased error when using the enclosing neigh-

borhoods. Combined with ridge regression, there is little difference in performance, save

a lower 95th-percentile error with natural neighbors. Since the enclosing neighborhoods in

three dimensions typically have fewer than 15 points (see Section 3.3), it is not surprising

that ridge regression provides more of a benefit when used with these neighborhoods than

on the baseline.

Overall, the results indicate that, when used in conjunction with regularized local linear

regression, an enclosing neighborhood can provide device characterizations that are often

more accurate but certainly no worse than than using a regularized local linear regression

on a fixed neighborhood size. Thus showing local linear regression on enclosing neighbor-

hoods to be a promising contender in estimating inverse device characterizations for color

management.

3.5 Conclusions

In this section, we have proposed a strategy for determining locality in local linear regres-

sion. Namely, to choose a neighborhood that encloses the test sample within its convex

hull. We showed that, under a true linear model with additive zero-mean iid noise, such a

neighborhood will produce an estimate with bounded variance. In order to keep the bias

low as well, we proposed the enclosing k-NN neighborhood, defined to be the smallest ra-
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Table 3.1: Ricoh Aficio 1232C

∆E∗94 Error
Neighborhood Regression Mean 95 %-ile

Enclosing k-NN
Linear 4.27 8.47
Ridge 3.66 7.38

Natural Neighbors
Linear 3.74 7.55
Ridge 3.69 7.10

15 Neighbors
Linear 4.41 9.84
Ridge 4.16 8.61

Table 3.2: Epson Photo Stylus 2200

∆E∗94 Error
Neighborhood Regression Mean 95 %-ile

Enclosing k-NN
Linear 2.32 5.01
Ridge 2.20 5.03

Natural Neighbors
Linear 2.40 5.48
Ridge 2.20 5.16

15 Neighbors
Linear 2.44 6.52
Ridge 2.43 6.46

Table 3.3: Epson Photo Stylus R300

∆E∗94 Error
Neighborhood Regression Mean 95 %-ile

Enclosing k-NN
Linear 1.67 3.65
Ridge 1.55 3.32

Natural Neighbors
Linear 1.71 3.49
Ridge 1.54 2.87

15 Neighbors
Linear 1.55 3.32
Ridge 1.55 3.34
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dial neighborhood that encloses the test sample within its convex hull. Experiments on

simulated and real data demonstrated that enclosing neighborhoods achieve similar perfor-

mance to the minimum possible error achieved by a fixed neighborhood size. That is, even

if one were to choose a fixed neighborhood size for local linear regression that minimizes the

test error, enclosing k-NN can match this performance. This is an impressive result as the

neighborhood size is typically chosen less optimistically by minimizing the cross-validation

error on the training set.
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Chapter 4

LATTICE REGRESSION

For high-throughput regression applications, one is concerned with the computational

time required to evaluate an estimated function as well as its accuracy. However, most

regression techniques do not produce models that have an efficient implementation, par-

ticularly in hardware. For example, kernel-based methods such as Gaussian process re-

gression [60] and support vector regression require kernel computations between each test

sample and a subset of training examples, and local smoothing techniques such as weighted

nearest neighbors [39] require a search for the nearest neighbors.

For functions with a known and bounded domain, a standard efficient approach to func-

tion approximation is to store a regular lattice of function values spanning the domain,

then linearly interpolate1 each test sample from the lattice nodes surrounding it. Evalu-

ating the lattice is independent of the size of any original training set, but exponential in

the dimension of the input space making it best-suited to low-dimensional applications. For

instance, this approach is used ubiquitously in color management where real-time perfor-

mance often requires millions of evaluations every second and it has been standardized by

the International Color Consortium (ICC) with a file format called an ICC profile [70].

A lattice {ai, bi}i=1:m consists of m lattice nodes ai ∈ Rd and m corresponding lattice

outputs bi ∈ R (see Fig. 4.1 for an example). The node locations are typically chosen a

priori in a regular grid (though this need not be the case) and the final result of a learning

procedure will be the estimation of the lattice outputs bi. For applications where one begins

with a set of training data {xi, yi}i=1:n, the standard approach is to first estimate a function

f̂ that fits the training data, then evaluate f̂ at the lattice points. That is, the estimated

output value for ai is b̂i = f̂(ai). Mathematically, the estimated function f̂ is chosen to

1Here, linear means that the interpolation is a linear combination of the outputs at lattice nodes; the result
can be a nonlinear function of the input variables as is the case for tetrahedral or trilinear interpolation.
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minimize the sum of some loss function L : R×R→ R+:

f̂ = arg min
f∈F

n∑
i=1

L(f(xi)− yi), (4.1)

where F is a set of allowed functions. For example, standard least-squares linear regression

is (4.1) with F being the set of all linear functions f(x) = βTx+β0 and L(·) = (·)2. Neural

nets, decision trees, and support vector machine regression and other standard approaches

to regression can be written as (4.1) for different choices of F and L, and sometimes with

additional regularization terms that are independent of the data but add a preference for

smoother functions in the function class F (see subsection 4.1).

However, this approach is suboptimal because the effect of interpolation from the lattice

is not considered when estimating the function in (4.1). For example, if one used the lattice

to estimate the appropriate output for a training sample xi, the output is not f̂(xi), rather

it is the interpolation of xi from the subset of
{(
ai, f̂(ai)

)}
that surround xi. Thus, the error

being minimized in (4.1) is not the error that we wish to minimize; we would like to directly

minimize the error of f̂ on the training data. If one knows a priori what interpolation

technique will be applied to the lattice, one could instead learn lattice outputs that – upon

interpolation – minimize the error on the training data.

This is precisely what the proposed lattice regression [28, 29, 30] aims to do by estimating

lattice outputs that minimize the regularized interpolation error on the training data. The

key to this estimation is that the linear interpolation operation can be inverted to solve for

the node outputs that minimize the squared error of the training data. However, unless there

is ample training data, the solution will not necessarily be unique. Also, to lower estimation

variance it may be beneficial to avoid fitting the training data exactly. For these reasons,

we additionally maximize the smoothness of the estimated function via regularization; a

collection of techniques for quantifying smoothness on a lattice are explored.

4.1 Lattice Regression Formulation

A widely used principle in machine learning is that of regularized empirical risk minimization

(also known as structural risk minimization). For instance, support vector machines (and



44

support vector regression), Tikhonov regression, splines, and Gaussian process regression

all apply this principle. Regularized empirical risk minimization is one approach to solving

a basic paradox of machine learning: one should approximate a function f̂ that accurately

predicts the training data {xi, yi}i=1:n but, at the the same time, does not overfit (i.e.

merely memorize) the training data. Instead, it should generalize to unseen data drawn

from the same distribution. To achieve this balance, empirical risk algorithms optimize the

following cost function

f̂ = arg min
f∈F

n∑
i=1

L(f(xi), yi) + λJ(f), (4.2)

where L : R×R → R+ is a loss function that penalizes differences between the estimated

outputs f(xi) and the known outputs yi and J : F → R is a regularization function that

typically measures the ‘smoothness’ of the function f . Adjusting the trade-off parameter

λ balances the empirical risk (accuracy on the training data) with the ‘smoothness’ of

estimate. The usage of the term ‘smoothness’ is purposefully vague because it is highly

context dependent. In the context of regression (learning a real valued function from discrete

samples), smoothness in the Lipschitz sense is typically appropriate. In section 4.1.2 we will

investigate a number of regularization functions and their effects on estimation.

4.1.1 Lattice Regression: The Empirical Risk Term

The lattice regression empirical risk term solves for lattice outputs that accurately interpo-

late the training data. For a bounded input space D ⊂ Rd, let {aj ∈ Rd} for j = 1, . . . ,m

be the nodes of a regular lattice in Rd such that D lies within the convex hull of the lattice

{aj}. Let the training data be a n × d matrix of inputs X =
[
x1, . . . , xn

]T where xj ∈ D
and a n × 1 matrix of outputs y=

[
y1, . . . , yn

]T where yj ∈ R. A training point xi ∈ Rd

falls in a cell of the lattice with 2d vertices; the jth vertex in the lattice is given a linear

interpolation weight wij ≥ 0, where wij = 0 if aj is not a vertex of the cell containing xi,

and otherwise wij is set so that linear interpolation equations hold:
∑

j wijaj = xi, and∑
j wij = 1. The input value xi is then interpolated as ŷi =

∑
j wijbj .
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To minimize the post-interpolation error on the training data, the empirical risk term

chooses the m× 1 vector of output values b̂ that solve,

b̂ = arg min
b∈Rm

n∑
i=1

(ŷi − yi)2 .

= arg min
b∈Rm

n∑
i=1

∑
j

wijbj

− yi
2

. (4.3)

To write (4.3) more compactly, let W ∈ [0, 1]n×m denote the matrix with ith-jth element

wij . Then given n training inputs {xi} and their corresponding linear interpolation weights

W, the lattice interpolates a vector of n output values ŷ = Wb. The empirical risk objective

(4.3) can be succinctly expressed as

b̂ = arg min
b∈Rm

‖ŷ − y‖22.

= arg min
b∈Rm

‖Wb− y‖22. (4.4)

Conveniently, (4.4) has a closed-form solution:

b̂ = (WTW)−1WT y, (4.5)

and because W is sparse, the matrix inversion can be computed efficiently by sparse

Cholesky factorization (for instance the ldivide command in Matlab).

Though conceptually straightforward, deriving the matrix W for a particular interpola-

tion technique is is somewhat involved. Here we provide the details via a set of functions

that annotate lattice operations. A guiding example that illustrates some of the necessary

notation is shown in Fig. 4.1.

Without loss of generality, assume that the domain is scaled and translated such that

the lattice sits at the origin with nodes at integer coordinates in Rd. Further, let the d-

dimensional vector m̃ = [m̃1, m̃2, . . . , m̃d]T denote the number of nodes in each dimension

where m =
∏d
k=1 m̃k. In Fig. 4.1 m̃ = [3, 3].
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c3(x) = 8 c4(x) = 9

Figure 4.1: The 3 × 3 lattice with test point x = [1.8, 1.4]T . The shaded area shows the
function domain D, which is contained in the convex hull of the lattice.

Now, let us define the function Nm̃ : N→ Zd that returns the d-dimensional coordinates

of the jth node in a lattice aj . The `th element of Nm̃(j) is

Nm̃(j)` =
⌊

j − 1∏`−1
k=1 m̃k

⌋
mod m̃` for ` = 1, . . . , d.

For example, on the lattice shown in Fig. 4.1,

N[3,3](2) =
[
b1c mod 3, b1/3c mod 3

]T = [1, 0]T

and

N[3,3](6) =
[
b5c mod 3, b5/3c mod 3

]T = [2, 1]T .

Checking Fig. 4.1, one sees that these are indeed the coordinates of a2 and a6, respectively.

As shorthand, when all entries of the m̃ are identical (i.e. m̃ = α1 where 1 is a d-dimensional

vector of ones) let Nα(·) = Nα1(·) for α ∈ Z+.

Next, interpolating a test point x ∈ D requires the ability to index the nodes of the cell

in which it is contained. To that end, define the function cj(x) : Rd → N that returns the

index of the jth vertex (j = 1, . . . , 2d) of the lattice cell that contains x. The function cj(x)
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can be computed as follows:

cj(x) = 1 +
d∑

k=1

(
bxkc+N2(j)k

)( k−1∏
i=0

m̃k

)
(4.6)

where we define m̃0 = 1 for notational convenience. For example, in Fig. 4.1, we have

c1(x) = 1 + (b1.8c+ 0)(1) + (b1.4c+ 0)(3) = 5

c2(x) = 1 + (b1.8c+ 1)(1) + (b1.4c+ 0)(3) = 6

c3(x) = 1 + (b1.8c+ 0)(1) + (b1.4c+ 1)(3) = 8

c4(x) = 1 + (b1.8c+ 1)(1) + (b1.4c+ 1)(3) = 9,

which are indeed the indices of the four lattice nodes surrounding x.

Given the nodes that enclose x, there are a number of linear interpolation methods

corresponding to weights on these nodes. For example, in three dimensions, trilinear, pyra-

midal, and tetrahedral interpolation are all linear interpolations that result in different

weights [6]. Lattice regression can accommodate all of these interpolation techniques, but

here we present only the case of d-linear interpolation (e.g. bilinear/trilinear interpolation)

because it is arguably the most popular variant of linear interpolation, can be implemented

efficiently, and has the theoretical support of being the maximum entropy solution to the

underdetermined linear interpolation equations [36].

Computing the d-Linear Interpolation Weights

Let wj(x) be the weight associated with the jth vertex acj(x) (for j = 1, . . . , 2d) of the lattice

cell that contains x. For d-linear interpolation, wj(x) can be computed as

wj(x) =
d∏

k=1

λ(x)N2(j)k

k

(
1− λ(x)k

)1−N2(j)k ,

where N2(j)k denotes the kth component of N2(j), λ(x) = x − bxc, and b·c is performed

component-wise. Note that in the above weight equation N2(j)k is either 1 or 0, and thus
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acts like a selector of either the λ(x)k or (1−λ(x)k) term, automatically selecting whichever

of the two is positive.

Let W (x) be the 1×m sparse vector with kth element

W (x)k =


wj(x) if k = cj(x) for j = 1, . . . , 2d

0 otherwise

and for the m × 1 matrix of lattice outputs b, the function value at x is interpolated as

W (x)b. Likewise, given the matrix of n training vectors X =
[
x1, . . . , xn

]
, let W be the

n×m matrix W =
[
W (x1), . . . ,W (xn)

]
.

4.1.2 Lattice Regression: The Regularization Term

Minimizing the empirical risk term given in (4.4) does not dictate how to set the value of the

lattice nodes that do not contribute to the interpolation of training samples. Mathemati-

cally, one can say that the empirical risk objective is underdetermined. That is, any choice

of values for those lattice nodes will result in the same objective value. Prior knowledge

about the nature of the underlying function should be added in order to set the value for

such nodes. Specifically, one expects the function to be somewhat smooth, and we encode

this information as a regularization term that prefers to give lattice nodes that are near one

another output values that are also close, in some sense. Adding such a regularization term

will also reduce the probability of over-fitting any noise in the training data measurements.

But how exactly should one measure the ‘smoothness’ of a function that is to be interpo-

lated from a lattice? The answer to this question is likely to be highly application-dependent

and thus the choice for the regularization term J in (4.2) may require careful consideration

the function that is to be estimated. Here, we investigate three possibilities for regular-

ization. The first, Laplacian regularization, is a first-order measure of smoothness in the

sense that it penalizes absolute differences in output values for adjacent lattice nodes. The

second, thin-plate regularization, is a second-order method that penalizes the integral of the

second derivative of the estimated function (and penalizing deviations from linearity). The
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third, global bias regularization, measures the adherence of the estimated function to a bias

function supplied by some side information about the application.

Laplacian Regularization

A lattice can be represented as a graph with edges connecting adjacent nodes in the lattice.

A standard approach to enforcing smoothness on the nodes of a graph is to minimize the

graph Laplacian [50, 8], which can be expressed as the sum of squared differences between

the values at adjacent nodes in a graph, that is:

JL(b) =
∑

adjacent ai,aj

(bi − bj)2

= bTLb, (4.7)

where the normalized graph Laplacian [15] L is defined as follows. Given the m × m

lattice adjacency matrix A where Aij = 1 for nodes directly adjacent to one another and 0

otherwise,

L = 2
diag(1TA)−A

1TA1

where 1 is the md × 1 all-ones vector and diag(·) maps a vector to the diagonal of a square

all-zeros matrix.

Solving for a lattice that minimizes the empirical risk (4.3) and also minimizes the

Laplacian given by (4.7) forces the values chosen for adjacent nodes in the lattice to be

close, and is expressed as:

b̂ = arg min
b∈Rm

‖Wb− y‖22 + λJL(b), (4.8)

where the regularization parameter λ > 0 trades-off the two goals. Just as with (4.5), the

solution to (4.8) has a closed form that can be efficiently computed via sparse Cholesky

factorization

b̂ = (WTW + λL)−1WT y. (4.9)
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Discrete Second-order Regularization

As mentioned in the introduction of this subsection, thin-plate regularization is a second-

order method that operates on the second derivative of the estimated function. Before

going into the details of this regularization technique, we address the natural question that

arises from considering Laplacian regularization: Why not penalize the discrete second-

order differences of the lattice values, analogous to a higher-order form of the Laplacian

regularizer? Let us consider this approach briefly.

Consider the case of a one-dimensional lattice with outputs b = [b1, b2, . . . , bm] and

inputs ai = i for i = 1, . . . ,m such that lattice nodes are spaced at integer distances in the

domain. An un-normalized Laplacian regularization applies the following penalty on the

lattice outputs:

bTLb =
m−1∑
i=1

(bi − bi+1)2. (4.10)

This is the sum of the squared discrete first-order differences. The Laplacian matrix L is

positive definite and thus lends itself naturally as a regularizer.

Let us now consider the natural extension of this regularization to the second-order.

That is,

bTMb =
m−1∑
i=2

(bi−1 − 2bi + bi+1)2. (4.11)

for some matrix M. We can solve for the matrix M that satisfies this relationship by

decomposing the summation.

bTMb =
m−1∑
i=2

(b2i−1 − 2bi + bi+1)2

=
m−1∑
i=2

b2i−1 − 4bi−1bi + 2bi−1bi+1 + 4b2i − 4bibi+1 + bi+1

= b21 + 5b22 + 6
m−2∑
i=3

b2i + 5b2m−1 + b2m +
m−1∑
i=2

bi−1bi+1 − 4bi−1bi − 4bibi+1 + bi−1bi+1
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Rewriting this relationship, one sees that M has the following structure

M =



1 −2 1 0 0 0 0 0 0

−2 5 −4 1
. . . . . . . . . . . . 0

1 −4 6 −4
. . . . . . . . . . . . 0

0 1 −4 6
. . . . . . . . . . . . 0

0
. . . . . . . . . . . . . . . . . . . . . 0

0
. . . . . . . . . . . . 6 −4 1 0

0
. . . . . . . . . . . . −4 6 −4 1

0
. . . . . . . . . . . . 1 −4 5 −2

0 0 0 0 0 0 1 −2 1



,

and is ill-defined when m < 5. Inspection of the eigenstructure of this matrix shows that it

is not positive definite (it has two eigenvalues that are zero). Since positive definiteness is

a prerequisite for regularization this approach was not explored further.

Thin-plate regularization

The thin-plate regularizer [33] borrows its name from an analogous physical process. Imagine

you were to take an thin, flat plate of aluminum and bend it into a wiggly shape. The thin-

plate regularizer captures the amount of ‘bending energy’ required to keep the plate in

this wiggly position. The tighter the kinks in the plate, the more energy needed to hold

the position. Holding the plate flat and rotating it in space requires no energy at all.

This is mathematically identical to a form of second-order regularization. Note that the

mathematical description of the thin-plate regularizer is relatively simple to grasp but the

precise form as used in this work (the details of the matrix K to be used as bTKb) is

difficult to arrive at. Therefore, we will begin by focusing on the definition before providing

the implementation details.

Let f̂ be the function which results interpolating the lattice {aj , bj}j=1:m, let c1, c2, . . . , cd

denote the unit vectors of Rd, and let Ω ⊂ Rd denote the convex hull of the lattice in Rd.
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The thin-plate regularizer JK can be written as

JK(f̂) =
∫

Ω

( d∑
i=1

d∑
j=1

∂

∂ci

∂

∂cj

)
f̂2(x) dx (4.12)

=
∫

Ω
1T
(
∇f̂(x)

)(
∇f̂(x)

)T1 dx (4.13)

This can be thought of as the “roughness” of the function in the domain Ω [33].

In order to incorporate such a penalty into the lattice regression framework, we would

like to rewrite JK as

JK(b) = bTKb (4.14)

for some (sparse) matrix K, where b is the vector of {bj}s from which f̂ emerges. Luckily,

such a form exists. The rest of this section is devoted to the computation of K.

In order for (4.12) to be well-defined, the function f̂ must be twice-differentiable. This

precludes the computation of (4.12) for the case of d-linear interpolation (which we would

like to employ for its computational efficiency). However, we posit that penalizing of (4.12)

for d-cubic interpolation (the lowest order interpolation that produces an f̂ that is twice-

differentiable) will result in a function that exhibits the desired smoothness properties re-

gardless of whether d-cubic or d-linear interpolation is used to interpolate the lattice.

The transformation of (4.12) into (4.14) relies on the fact that f̂ has a basis representa-

tion. That is, for an arbitrary point x ∈ Ω,

f̂(x; {aj , bj}j=1:m) =
m∑
j=1

k(x, aj) bj (4.15)

where k : Ω × Ω → R is the basis function associated with the function class of f̂ (see

Fig. 4.3). For d-cubic interpolation, this basis function can be expressed as the tensor

product of d one-dimensional basis functions centered at each lattice node:

k(x, aj) =
d∏
i=1

δij

(
(x)i

)
(4.16)
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where (·)i extracts the ith dimension of a vector and with

δij(u) = δ̃

( |u− (aj)i|
hi

)
(4.17)

for u ∈ R where hi ∈ R is the spacing of the lattice in the ith dimension. This is the

centering and scaling of the following one-dimensional cubic interpolation basis function

about the jth lattice node:

δ̃(u) =


1.5u3 − 2.5u2 + 1 if 0 ≤ u < 1

−.5u3 + 2.5u2 − 4u+ 2 if 1 ≤ u < 2

0 otherwise,

(4.18)

where, again, u ∈ R.

Now, with the basis functions defined, the (i, j)-entry of the matrix K can be computed

as follows

Ki,j =
d∑

k=1

Dk
(2)
i,j

(∏
r 6=k

Dr
(0)
i,j

)
+ Dk

(1)
i,j

∑
`6=k

D`
(1)
i,j

( ∏
r 6=k,`

Dr
(0)
i,j

)
(4.19)

=

D1
(2)
i,jD2

(0)
i,j . . . Dd

(0)
i,j + D1

(1)
i,jD2

(1)
i,j . . . Dd

(0)
i,j + · · · + D1

(1)
i,jD2

(0)
i,j . . . Dd

(1)
i,j + · · ·

D1
(1)
i,jD2

(1)
i,j . . . Dd

(0)
i,j + D1

(0)
i,jD2

(2)
i,j . . . Dd

(0)
i,j + · · · + D1

(0)
i,jD2

(1)
i,j . . . Dd

(1)
i,j + · · ·

...
...

. . .
...

D1
(1)
i,jD2

(0)
i,j . . . Dd

(1)
i,j + D1

(0)
i,jD2

(1)
i,j . . . Dd

(1)
i,j + · · · + D1

(0)
i,jD2

(0)
i,j . . . Dd

(2)
i,j

where

Dk
(s)
i,j =

∫
δ

(s)
ki (u)δ(s)

kj (u)du (4.20)

with f (s)(u) denoting the sth derivative of the function f(u).

Because δ is piecewise-polynomial, (4.20) can be computed algebraically. Furthermore,

the computation of K is decoupled from the lattice values b, and can thus be pre-computed

once for a particular combination of lattice size, dimension, and spacing. Once computed,

it can be stored and reused indefinitely.
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Global Bias

So far, we have focused on regularization techniques that penalize the “smoothness” of the

function f̂ as measured by local differences or derivatives. Here, we offer the alternative

(and at times complementary) approach of regularizing the estimated function toward a

bias function g̃ : Rd → R. Ideally, such a bias function is derived from the data {xi, yi} and

some prior knowledge about the application.

Given a bias function g̃, the simplest way to regularize the lattice output toward this

function is to penalize the divergence of bi from g̃(ai) for i = 1, . . . ,m. Letting g =

[g̃(a1), g̃(a2), . . . , g̃(am)]T , we may write

Jg(b) =
m∑
i=1

(
bi − gi

)2 (4.21)

= (b− g)T (b− g). (4.22)

This technique can be used to adapt an existing lattice to new data in an incremental way,

or as we will see in the experiments section, it can be used to correct for negative effects

of other regularizers. For instance, Laplacian regularization rewards smooth transitions

between adjacent lattice outputs but there is no incentive to extrapolate the function beyond

the boundary of the cells that contain training samples. This can result in clipping of the

output function (see Fig. 4.2 left) which can be corrected somewhat by applying Laplacian

regularization along with a bias regularization toward a global trilinear fit of the data (see

Fig. 4.2 center). Further, we see that the second-order nature of the thin-plate regularizer

naturally encourages extrapolation (see Fig. 4.2 right).

4.2 Choice of Interpolation Function

When the thin-plate regularizer is used with lattice regression, it bears a striking resem-

blance to a smoothing tensor cubic b-spline with fixed knot locations. In this section, we

explore the similarities and differences between these two approaches. In the interest of

brevity, the term splines herein will refer to smoothing tensor cubic b-splines with

fixed knot locations. Note that the knot locations for a tensor b-spline consist of the
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LatReg with JL LatReg with JL and Jg LatReg with JK

Figure 4.2: Figure illustrates the extrapolation effect of the different regularizers when
combined with the lattice regression empirical risk minimization. The training data (blue
dots) used to fit each of the models was the same in all cases, and the true function is a
sum of Gaussian pdfs.

tensor product of (not necessarily uniform) knots along each dimension, producing a (not

necessarily uniform) grid. This is in contrast to the more common thin-plate spline which

can have arbitrary knot locations (usually coincident with the training data) within the

domain.

The connection between lattice regression and splines is best exposed via the basis func-

tion interpretation of these regression techniques. That is, each method can be interpreted

as fitting a function that can be represented as the linear combination of a basis function k

that is repeated and shifted to the lattice node (knot) locations:

f̂(x) =
m∑
i=1

wi k(x, xi) (4.23)

where wi is the weight given to the ith basis function centered at the lattice node xi.

The relevant basis functions for the one dimensional domain are shown in the top row

of Fig. 4.3. These basis functions can be expanded to an arbitrary dimension via the tensor

product of multiple 1-d bases. That is, a d-dimensional basis kd can be constructed as

kd(x, xi) =
d∏
j=1

k
(
(x)j , (xi)j

)
(4.24)
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where the operator (·)j : Rd → R takes a vector and returns the jth element. The corre-

sponding bases in two dimensions are shown in the bottom row of Fig. 4.3.

(a) Linear Interpolation k` (b) Cubic Interpolation kc (c) Spline ks
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Figure 4.3: Linear interpolation, cubic interpolation and spline basis functions. Each basis
function is plotted with one argument set at the origin k(·,0).

The primary benefit of lattice regression is the speed of test evaluations provided by

linear interpolation on the lattice. Due to the local support of the linear interpolation basis

function, in d dimensions only 2d lattice points are involved in calculating the response for

a given test point. The larger support of the cubic interpolation basis function and the

b-spline basis function result in longer test evaluation. Further efficiency can be gained by

exploiting the arithmetic involved in the calculation of linear interpolation in fixed point

computations [70]. That is, linear interpolation weights for a test point can be computed

by binary operations such as bit-shifting on fixed-point numbers; this is not possible for

the computation of cubic interpolation and spline weights. This property is particularly

beneficial in applications such as printer color management where dedicated hardware is

used to perform test evaluations. A comparison of the test-evaluation speeds of these basis
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functions in two and three dimensions is shown in Fig. 4.4. All three methods were imple-

mented in the same code and no hardware speedups were exploited, so this is a somewhat

pessimistic comparison for linear interpolation.
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Figure 4.4: Shown is the test-evaluation time vs. the number of test samples on a log-scale
for Lattice Regression optimized for d-linear interpolation (Lattice Regression (linear), Lat-
tice Regression optimized for d-cubic interpolation (Lattice Regression (cubic), and Splines.

In the proposed lattice regression we use the linear interpolation in order to optimize

the test-evaluation speed. One might expect greater accuracy from applying the cubic

interpolation basis function or the spline basis function (at the aforementioned cost of

reduced test-evaluation speed due to the larger support of the basis) and this is indeed

the case in many situations. We now examine two questions that probe the nature of this

trade-off. First, if one were willing to compromise the test-evaluation time, how much

accuracy can be gained by cubic interpolation or splines compared to the proposed lattice
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regression? Second, if one learns the lattice by optimizing a larger basis (such as cubic

interpolation or splines) but then simply linearly interpolates this lattice to reduce the test-

evaluation time, what is the loss in accuracy that is incurred compared to the proposed

lattice regression? Since in practice it is far more common to linearly interpolate a lattice

the practitioner might take the following perspective on these questions: The latter question

illuminates what we gain by learning the lattice with the linear-interpolation basis function

(that is, using lattice regression) compared to learning the lattice with cubic convolution or

splines while the former question provides an optimistic performance baseline (in terms of

estimation accuracy) that would be unacceptable to implement in practice.

The following set of experiments were performed on the domain [0, 1]d using a real-valued

function f(x) =
∑10

i=1 fi(x) where each fi is a Gaussian pdf with uniformly drawn mean

µi ∼ U([−.5, 1.5]d) and variance σ2
i = .1. In all experiments, a training sample of size n

was drawn such that xi ∼ U([0, 1]d) and yi = f(xi) for i = 1, . . . , n. Lattices with m = m̃d

total nodes were constructed with inputs aj ∈
∏
d

[
0, 1

m̃−1 ,
2

m̃−1 , . . . , 1
]

and outputs bj ∈ R
estimated by each algorithm; here

∏
dX = X × X × . . . × X denotes the d-dimensional

Cartesian product. The root mean square error (RMSE) between the true function f and

the estimated f̂ (interpolated from the lattice) was then computed for each method at k

uniformly drawn locations in [0, 1]d.

4.2.1 Matched Interpolation and Estimation

In this subsection, we address the first of the questions posed: What is the difference in

accuracy between (i) optimizing the lattice nodes for linear interpolation and using linear

interpolation at test time, and (ii) optimizing the lattice nodes for a higher-order basis

function method like splines and using that same higher-order basis function method at test

time? Regardless of the basis-function used, all three methods share the same regularization

parameter λ (c.f. (4.2)) which is typically set via cross-validation on the training data

(because an appropriate value for this will depend on the smoothness of the true function

f that is to be estimated). To reduce the number of variables for the comparison, we chose

to fix λ to a ‘reasonable’ value for these experiments. In order to find a suitable value, we
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analyzed the test error (for k=10,000 locations) in the estimation of the Gaussian mixture

function; the results are shown in Fig. 4.5. Please note that in the following figures, the

solid lines correspond to accuracy (left axes) and dotted lines correspond to test-evaluation

times (right axes).
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Figure 4.5: Typical plot of RMSE vs. Smoothness Parameter λ. Computed from n = 1, 000
training points with m = 16d lattice nodes. Though the specific results vary with choice of
n and m, the value λ = 10−6 gives reasonable performance for the ranges investigated in
two and three dimensions.

With the value of λ fixed, a comparison of the performance of the algorithms for a range

of training set sizes n and lattice sizes m is made. A comparison on d = 2 dimensions is

shown in Fig. 4.6 and a comparison on d = 3 dimensions is shown in Fig. 4.7.

As the figures demonstrate, all three methods perform comparably in accuracy when

the number of training samples n is small and the number of lattice nodes m is large. The
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(c) m = 322 lattice nodes (f) n = 10, 000 training points

Figure 4.6: Matched Interpolation and Estimation. Estimation of a d = 2 dimensional
Gaussian mixture. Shown are RMS test error for k = 10, 000 uniformly drawn locations in
[0, 1]2 and the test-evaluation time (seconds) for varying lattice sizes m and training sample
sizes n.
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(c) m = 322 lattice nodes (f) n = 10, 000 training points

Figure 4.7: Matched Interpolation and Estimation. Estimation of a d = 3 dimensional
Gaussian mixture. Shown are RMS test error for k = 10, 000 uniformly drawn locations in
[0, 1]3 and the test-evaluation time (seconds) for varying lattice sizes m and training sample
sizes n.
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latter is to be expected because, as the spacing of lattice nodes decreases, the fit provided

by linear interpolation becomes more flexible.

The left-most columns of Fig. 4.6 and Fig. 4.7 show the effect that the number of training

samples n has on test-error and test-evaluation time. In all cases, one sees a monotonic

downward trend in test-error. This is to be expected because an estimate based on more

samples of the true function will naturally be more accurate. The three methods perform

comparably in test error for the smaller training sets and diverge as the set grows with

splines besting cubic interpolation besting linear interpolation. However, for larger lattice

sizes, it takes more training samples to see a difference between the methods. We see in all

cases that the linear interpolation takes much less time to evaluate than cubic interpolation

or splines.

The right-most columns of Fig. 4.6 and Fig. 4.7 show the effect that lattice size m has

on test-error and test-evaluation time. On all three methods, we see negligible difference

in test-evaluation time for increasing grid sizes. The test error, however, exhibits a few

interesting trends to be examined. First, when the number of training samples n is small

(Fig. 4.6d, and Fig. 4.7d,e), increasing the resolution of the lattice does not reduce the

test error. This is most likely due to over-fitting on a small training sample and could be

mitigated in practice by adjusting the smoothness parameter λ. On the larger training sets,

linear interpolation performs worse than the other two methods, but seems to converge in

performance as the grid size m is increased.

4.2.2 Mismatched Interpolation and Estimation

In this subsection, we investigate the second question posed: What is the difference in

accuracy between optimizing the lattice for spline, cubic, or linear interpolation, if at test-

time – for efficiency – the lattice is interpolated with linear interpolation?

It should be noted that a lattice optimized for the spline basis function (see Fig. 4.3c)

requires a pre-filtering step before applying linear interpolation. This is because the basis

function is not ‘interpolating’ in the sense that the value at a lattice node is not identical

to the value of the estimated function at that location. The actual value of the function
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will be a linear combination of the lattice value and the adjacent lattice values (weighted

according to Fig. 4.3c). This is not the case for the linear and cubic interpolation basis

functions. This fact can be seen graphically by noting that the interpolation basis functions

are identically zero at integer distances from the center while the spline basis function is

not (c.f. Fig. 4.3). All evaluations with splines in this subsection have been pre-filtered to

arrive at the estimated function values at the lattice nodes prior to interpolation and the

time required to do so was not counted against the method in the test-time evaluation.

We fix λ for each of the regression problems and compare of the performance in both

test-evaluation time and accuracy on the same Gaussian mixture regression problem of the

previous subsection. Again, a range of training set sizes n and lattice sizes m are tested to

explore the behavior of each of the basis functions. A comparison on d = 2 dimensions is

shown in Fig. 4.8 and a comparison on d = 3 dimensions is shown in Fig. 4.9.

As expected, the test times for all three methods are comparable, since they all use

linear interpolation on the lattice to evaluate test samples. We see similar trends in which

a difference in accuracy is notable when the training set size is large relative to the lattice

size. Again, the methods converge for larger lattice sizes. In most of the cases evaluated,

we see that lattice regression optimized for linear interpolation outperforms the regressions

optimized for spline and cubic interpolation basis functions. This is exactly as expected.

4.3 Lattice Regression Experiments

In this section, we test lattice regression first on simulated data and then in three diverse

application domains. In the first application, functions of the form R3 → R are estimated

in the color management of digital printers (as outlined in Section 2.2). In this domain,

linear interpolation from a lattice is the preferred function representation because the func-

tion is typically implemented in hardware and millions of pixels must be processed for each

image sent to the printer. The second application is the regression of annual rainfall mea-

surements over a geographic area. This was chosen as a typical example of the R2 → R

functions learned for geospatial interpolation applications (elevation, rainfall, wind speed,

temperature, etc). In this domain, look-up speed is typically not as important but it is

nonetheless standard in geographic information systems to express the estimated geospa-
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(c) m = 322 lattice nodes (f) n = 10, 000 training points

Figure 4.8: Mismatched Interpolation and Estimation. Estimation of a d = 2 dimensional
Gaussian mixture. Shown are RMS test error for k = 10, 000 uniformly drawn locations in
[0, 1]2 and the test-evaluation time (seconds) for varying lattice sizes m and training sample
sizes n.
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(c) m = 322 lattice nodes (f) n = 10, 000 training points

Figure 4.9: Mismatched Interpolation and Estimation. Estimation of a d = 3 dimensional
Gaussian mixture. Shown are RMS test error for k = 10, 000 uniformly drawn locations in
[0, 1]3 and the test-evaluation time (seconds) for varying lattice sizes m and training sample
sizes n.
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tial function as a regular grid. The final application is the registration of omni-directional

images for super-resolution (as outlined in Section 2.4). In this application, we use lattice

regression to learn a real-valued function on the surface of a sphere [0, π] × [−π, π] → R.

This function is used in the inner loop of a greedy optimization procedure, placing a pre-

mium on test-evaluation performance and motivating the choice of lattice regression for its

estimation.

In many of the experiments, Laplacian regularization JL is used in conjunction with

global bias regularization in order to provide extrapolation outside of the convex hull of the

training data conv({xi}i=1:m). For this, we modify (4.2) to be

b̂ = arg min
b∈Rm

‖Wb− y‖22 + λL JL(b) + λg Jg(b), (4.25)

now with two regularization parameters λL and λg that must be trained by cross-validation.

Many experiments compare to Gaussian process regression (GPR). To implement GPR,

we used the MATLAB code provided by Rasmussen and Williams at

http://www.GaussianProcess.org/gpml. The covariance function was set as the sum of a

squared-exponential with an independent Gaussian noise contribution and all data were

demeaned by the mean of the training outputs before applying GPR. The hyperparameters

for GPR were set by maximizing the marginal likelihood of the training data (for details, see

Rasmussen and Williams [60]). To mitigate the problem of choosing a poor local maxima,

gradient descent was performed from 20 random starting log-hyperparameter values drawn

uniformly from [−10, 10]3 and the maximal solution was chosen. The parameters for all

other algorithms were set by minimizing the 10-fold cross-validation error using the Nelder-

Mead simplex method, bounded to values in the range [10−3, 103]. The starting point for

this search was set at the default parameter setting for each algorithm: λ = 1 for local

ridge regression2 and λL = 1, λg = 1 for lattice regression. Experiments on the simulated

dataset comparing this approach to the standard cross-validation over a grid of values

2Note that no locality parameter is needed for this local ridge regression as the neighborhood size is
automatically determined by enclosing k-NN [35].
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[10−3, 10−2, . . . , 103] × [10−3, 10−2, . . . , 103] showed no difference in performance, and the

former was nearly 50% faster.

4.3.1 Simulated Data

To begin, the effectiveness of the proposed method was analyzed with simulations on

randomly-generated functions. We compared the proposed method to Gaussian process

regression (GPR) applied directly to the final test points (no lattice), and to estimating test

points by interpolating a lattice where the lattice nodes are learned by the same GPR. The

first-order Laplacian regularization JL was evaluated in conjunction with three different

types of global bias to test the effectiveness of this strategy: 1) An “accurate” bias g̃ was

learned by GPR on the training samples; 2) An “inaccurate” bias g̃ was learned by a global

d-linear interpolation3; and 3) The no bias case (setting λg = 0 in (4.25)).

We analyzed the proposed method with simulations on randomly-generated piecewise-

polynomial functions f : Rd → R constructed from the sum of one-dimensional splines.

These functions are smooth but have features that occur at different length-scales; two-

dimensional examples are shown in Fig. 4.10. To construct each function, we first drew ten

iid random points {si} from the uniform distribution on [0, 1]d, and ten iid random points

{ti} from the uniform distribution on [0, 1]. Then for each of the d dimensions we first fit

a one-dimensional spline f̃k : R → R to the pairs {
(
si)k, ti)}, where (si)k denotes the kth

component of si. We then combined the d one-dimensional splines to form the d-dimensional

function f̃(x) =
∑d

k=1 f̃k
(
(x)k

)
, which was then scaled and shifted to have range spanning

[0, 100]:

f(x) = 100
(
f̃(x)−minz∈[0,1]d f̃(z)

maxz∈[0,1]d f̃(z)

)
.

For input dimensions d ∈ {2, 3}, a set of 100 functions {f1, . . . , f100} were randomly

generated as described above and a set of n ∈ {50, 1000} randomly chosen training inputs

{x1, . . . , xn} were fit by each regression method. A set of ` = 10, 000 randomly chosen test

3We considered the very coarse m = 2d lattice formed by the corner vertices of the original lattice and
solved (4.5) for this one-cell lattice, using the result to interpolate the full set of lattice nodes, forming
gi = g̃(ai) for i = 1, . . . , m
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Figure 4.10: Example random piecewise-polynomial functions created by the sum of one-
dimensional splines fit to ten uniformly drawn points in each dimension.

inputs {z1, . . . , z`} were used to evaluate the accuracy of each regression method in fitting

these functions. For the rth randomly-generated function fr, denote the estimate of the

jth test sample by a regression method as (ŷj)r. For each of the 100 functions and each

regression method we computed the root mean-squared errors (RMSE) where the mean is

over the m = 10, 000 test samples:

er =
(

1
`

∑̀
j=1

(
fr(zj)− (ŷj)r

)2)1/2

.

The mean and statistical significance (as judged by a one-sided Wilcoxon with p = 0.05) of

{er} for r = 1, . . . , 100 is shown in Fig. 4.11 for lattice resolutions of 5, 9 and 17 nodes per

dimension.

In interpreting the results of Fig. 4.11, it is important to note that the statistical sig-

nificance test compares the ordering of relative errors between each pair of methods across

the random functions. That is, it indicates whether one method consistently outperforms

another in RMSE when fitting the randomly drawn functions.

Consistently across the random functions, and in all 12 experiments, lattice regression

with a GPR bias performs better than applying GPR to the nodes of the lattice. At coarser

lattice resolutions, the choice of bias function does not appear to be as important: in 7 of

the 12 experiments (all at the low end of grid resolution) lattice regression using no bias

does as well or better than that using a GPR bias.
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Figure 4.11: Shown is the average RMSE of the estimates given by each regression method
on the simulated dataset. As summarized in the legend, shown is GPR applied directly
to the test samples (dotted line) and the bars are (from left to right) GPR applied to the
nodes of a lattice which is then used to interpolate the test samples, lattice regression with
a GPR bias, lattice regression with a d-linear regression bias, and lattice regression with
no bias. The statistical significance corresponding to each group is shown as a hierarchy
above each plot: method A is shown as stacked above method B if A performed statistically
significantly better than B.
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Interestingly, in 3 of the 12 experiments, lattice regression with a GPR bias achieves

statistically significantly lower errors (albeit by a marginal average amount) than applying

GPR directly to the random functions. This surprising behavior is also demonstrated on

the real-world datasets in the following sections and is likely due to large extrapolations

made by GPR and in contrast, interpolation from the lattice regularizes the estimate which

reduces the overall error in these cases.

4.3.2 Geospatial Interpolation

Interpolation from a lattice is a common representation for storing geospatial data (measure-

ments tied to geographic coordinates) such as elevation, rainfall, forest cover, wind speed,

etc (see section 2.3). To investigate the effectiveness of the proposed technique in this do-

main, we tested it on the Spatial Interpolation Comparison 97 (SIC97) dataset [20] from

the Journal of Geographic Information and Decision Analysis. This dataset is composed

of 467 rainfall measurements made at distinct locations across Switzerland. Of these, 100

randomly chosen sites were designated as training to predict the rainfall at the remaining

367 sites. The RMSE of the predictions made by GPR and variants of the proposed method

are presented in Fig. 4.12. Additionally, the statistical significance (as judged by a one-sided

Wilcoxon with p = 0.05) of the differences in squared error on the 367 test samples was

computed for each pair of techniques. In contrast to the previous section in which signif-

icance was computed on the RMSE across 100 randomly drawn functions, significance in

this section indicates that one technique produced consistently lower squared error across

the individual test samples.

Compared with GPR applied to a lattice, lattice regression with a GPR bias again

produces a lower RMSE on all five lattice resolutions. However, for four of the five lattice

resolutions, there is no performance improvement as judged by the statistical significance

of the individual test errors. In comparing the effectiveness of the bias term, we see that on

four of five lattice resolutions, using no bias and using the d-linear bias produce consistently

lower errors than both the GPR bias and GPR applied to a lattice.
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Additionally, for finer lattice resolutions (≥ 17 nodes per dimension) lattice regression

either outperforms or is not significantly worse than GPR applied directly to the test points.

Inspection of the maximal errors confirms the behavior posited in the previous section: that

interpolation from the lattice imposes a helpful regularization. The range of values produced

by applying GPR directly lies within [1, 552] while those produced by lattice regression

(regardless of bias) lie in the range [3, 521]; the actual values at the test samples lie in the

range [0, 517].

4.3.3 Color Management Experiments

Although the proposed lattice regression is applicable in a wide variety of applications, the

color management of printers has been the major driving application for its development.

As such, we present two sets of color management experiments here focused on slightly

different aspects of the color management problem. The first compares the color accuracy

of lattice regression with a Laplacian and global bias regularizer c.f. (4.25) to GPR and local

ridge regression using the enclosing k-NN neighborhood [35] (see also section 3.2.2). The

Legend
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GPR direct
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Figure 4.12: Shown is the RMSE of the estimates given by each method for the SIC97 test
samples. The hierarchy of statistical significance is presented as in Fig. 4.11.
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second experiment compares both color accuracy and color smoothness (see section 2.2)

of three methods: lattice regression with the thin-plate regularizer JK, lattice regression

with the Laplacian and global bias regularizers (JL,Jg), and local Tikhonov regression (a

state-of-the-art technique previously analyzed in color smoothness and accuracy [28]).

Lattice Regression with JL and Jg

The following printers were used for these experiments: an HP Photosmart D7260 ink jet

printer and a Samsung CLP-300 laser printer. As a baseline, we compared to a state-of-the-

art color regression technique used previously in this application [35]: local ridge regression

(LRR) using the enclosing k-NN neighborhood (see section 3.2.2). Training samples were

created by printing the Gretag MacBeth TC9.18 RGB image (Fig. 2.2), which consists of

918 color patches, of which 789 form a 9× 9× 9 grid in the RGB space, and the remaining

189 samples are neutral ramps and bright saturated colors. We then measured the printed

color patches with an X-Rite iSis spectrophotometer using D50 illuminant at a 2◦ observer

angle and UV filter. As shown in Fig. 2.1 and as is standard practice for this application, the

data for each printer is first gray-balanced using 1D calibration look-up-tables (1D LUTs)

for each color channel (see [35, 5] for details). We use the same 1D LUTs for all the methods

compared in the experiment and these were learned for each printer using direct GPR on

the training data.

We tested each method’s accuracy on reproducing 918 new randomly-chosen in-gamut4

test Lab colors. The test errors for the regression methods the two printers are reported in

Tables 1 and 2. As is common in color management, we report ∆E76 error, which is the

Euclidean distance between the desired test Lab color and the Lab color that results from

printing the estimated RGB output of the regression (see Fig. 2.1).

For both printers, the lattice regression methods performed best in terms of mean,

median and 95 %-ile error. Additionally, according to a one-sided Wilcoxon test of statistical

significance with p = 0.05, all of the lattice regressions (regardless of the choice of bias) were

4We drew 918 samples iid uniformly over the RGB cube, printed these, and measured the resulting Lab
values; these Lab values were used as test samples. This is a standard approach to assuring that the test
samples are Lab colors that are in the achievable color gamut of the printer [35].
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Table 4.1: Samsung CLP-300 laser printer

Euclidean Lab Error

Mean Median
95

%-ile Max

Local Ridge Regression (to fit lattice nodes) 4.59 4.10 9.80 14.59
GPR (direct) 4.54 4.22 9.33 17.36
GPR (to fit lattice nodes) 4.54 4.17 9.62 15.95
Lattice Regression (GPR bias) 4.31 3.95 9.08 15.11
Lattice Regression (Trilinear bias) 4.14 3.75 8.39 15.59
Lattice Regression (no bias) 4.08 3.72 8.00 17.45

Table 4.2: HP Photosmart D7260 inkjet printer

Euclidean Lab Error

Mean Median
95

%-ile Max

Local Ridge Regression (to fit lattice nodes) 3.34 2.84 7.70 14.77
GPR (direct) 2.79 2.45 6.36 11.08
GPR (to fit lattice nodes) 2.76 2.36 6.36 11.79
Lattice Regression (GPR bias) 2.53 2.17 5.96 10.25
Lattice Regression (Trilinear bias) 2.34 1.84 5.89 12.48
Lattice Regression (no bias) 2.07 1.75 4.89 10.51

The bold face indicates that the individual errors are statistically significantly
lower than the others as judged by a one-sided Wilcoxon significance test
(p=0.05). Multiple bold lines indicate that there was no statistically signifi-
cant difference in the bolded errors.

statistically significantly better than the other methods for both printers; on the Samsung,

there was no significant difference between the choice of bias, and on the HP using the using

no bias produced consistently lower errors. These results are surprising for three reasons.

First, the two printers have rather different nonlinearities because the underlying physical

mechanisms differ substantially (one is a laser printer and the other is an inkjet printer), so

it is a nod towards the generality of the lattice regression that it performs best in both cases.

Second, the lattice is used for computationally efficiency, and we were surprised to see it

perform better than directly estimating the test samples using the function estimated with
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GPR directly (no lattice). Third, we hypothesized (incorrectly) that better performance

would result from using the more accurate global bias term formed by GPR than using the

very coarse fit provided by the global trilinear bias or no bias at all.

Lattice Regression with JK

Since GPR and LRR with enclosing neighborhoods did not perform well in color accuracy,

we omitted these techniques from the following experiments with color accuracy and color

smoothness. Instead, accuracy and smoothness experiments were performed comparing

the following three techniques: lattice regression with JK regularization, lattice regression

with JL + Jg regularization, and Tikhonov-regularized local linear regression with enclosing

neighborhoods [35, 43] (see section 3.4.3).

Each of the three methods has a regularization parameter that must be trained to

determine how much the regularizer is weighted compared to the empirical error. Choices for

the cross-validation parameters were based on previously work and preliminary experiments,

and are detailed in Table 4.3.

Table 4.3: Cross-validation Parameter Choices

λ λg
Lattice JK {1e-8,1e-7,. . . ,1e0} n/a
Lattice JL+bias {1e-6,1e-5,. . . ,1e2}× {1e-8,1e-7,. . . ,1e0}
Tikhonov {1e-4,1e-3,. . . ,1e4} n/a

All lattices were 17 × 17 × 17 ranging from L ∈ [0, 100], a ∈ [−100, 100], and b ∈
[−100, 100]. Training data was produced for each printer by printing the Gretag MacBeth

TC9.18 RGB target (Fig. 2.2). All prints were measured with an X-Rite iSis spectropho-

tometer, using D50 illuminant at a 2o observer angle and UV filter.

All the 3D LUTS were preceded by the 1D gray-calibration LUTS for each color channel,

as described in section 2.2.1. The 1D LUTS were the same for all experiments for each

printer, and were estimated using Tikhonov-regularized regression method [35, 43] with a

regularization parameter λ = 1.
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For each printer, a randomly generated set of RGB values was printed and measured,

forming an independent set of RGB → CIELAB pairs. This set provided a dual purpose

in our experiments. The first role is as a test set; since the CIELAB values are guaranteed

to be within the gamut of each printer, we use the set to assess the color accuracy of the

constructed LUTs. That is, the LUT is applied to the CIELAB values, producing R̂GB

which is sent to the printer and measured, producing ̂CIELAB which can be compared in

∆E2000 to the original CIELAB values. Second, these set of values provided an independent

set on which the RGB error of the LUT built by an algorithm could be compared across

different parameter settings. Since cross-validation of the parameters for each algorithm in

terms of the actual CIELAB error is intractable in a realistic workflow, the absolute RGB

error was used as a proxy in order to find an appropriate parameter setting for the specific

device. Table 4.3 shows the compared parameter settings and those that were chosen as

optimal in terms of absolute RGB error are shown in Table 4.4.

Table 4.4: RGB-error Cross-validated Parameters

λ λg

Brother
Lattice (JK) 1e-5 n/a
Lattice (JL+bias) 1e0 1e-2
Tikhonov 1e2 n/a

HP
Lattice (JK) 1e-5 n/a
Lattice (JL+bias) 1e0 1e-2
Tikhonov 1e1 n/a

Starting with the parameters in Table 4.4, a range centered at these values was loga-

rithmically swept by two values in each direction in order to compare how the smoothness

and accuracy change with respect to the parameters. As described above, accuracy was

measured in the ∆E2000 error between the desired and measured CIELAB values. Addi-

tionally, the smoothness of each algorithm was assessed by perceptual evaluation of a target

consisting of circular ramps on a neutral (L∗ = 50, a∗ = 0, b∗ = 0) background. Examples of

the smoothness target are shown in Fig. 4.13, which shows that discontinuities in the color

show up as circular artifacts. We found in previous experiments that such circular artifacts
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are generally more noticeable than the banded artifacts produced by analogous rectangular

color ramps. All of the CIELAB ramps were adjusted to lie within the gamut of the intended

printer and this gamut was estimated by the alpha-shape [14] (with α = 2000) applied to

the measured values from the TC9.18 chart for that printer. For seven of the ramps, a

constant chroma was fixed at values lying at a constant radius in a∗b∗ (including one at

a∗ = 0, b∗ = 0) and the L∗ value was swept within the range of the gamut at this chroma.

The remaining two ramps were the lines (in [L∗, a∗, b∗]) {[100,-100,-100],. . . ,[0,100,100]}
and {[100,-100,100],. . . ,[0,100,-100]} clipped to the gamut and these provide an example of

smoothness in both lightness and hue.

Twenty adults with normal color vision subjectively ranked the smoothness of the printed

targets. Each person ranked fifteen targets separately for the inkjet and laser printer, with

ties not allowed. The lighting was produced by two 4700K Sollux lamps from Tailored

Lighting approximating D50 illumination.

The ranked data was treated as pairwise preference information, and Thurstone’s Law

(Case V) was applied for analysis [22], producing a smoothness scale value for each print

along with a increment ∆s by which values can be judged significantly different.

In Fig. 4.14, the performance of each algorithm was evaluated in both smoothness and

median ∆E2000 accuracy over a range of parameter settings. Here we see similar perfor-

mance between the two regularization techniques for lattice regression with no clear winner

between the two. However, we see that lattice regression outperforms local-linear Tikhonov

regression, as the results for the latter are to the lower-right. Additionally, a comparison of

the median and 95th-percentile ∆E2000 errors and smoothness in terms of ∆s, the smallest

significant smoothness difference, is shown in Table 4.5 for the cross-validated parameter

settings. Here, we see comparable errors but increased smoothness for lattice regression (vs.

Tikhovnov) on the Brother 4040CDN laser printer. For the HP Photosmart D7260 inkjet

printer, the errors are again comparable, and lattice regression with the JL + Jg produces

the smoothest result while the results produced by lattice regression with JK and Tikhonov

are not significantly different in smoothness.
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LR with JK HP Photosmart D7260 inkjet

LR with JK Brother 4040CDN laser

Figure 4.13: Figure shows examples of the color-managed prints that subjects ranked to
evaluate smoothness. Since the displayed RGB values are intended to be printed by the
respective printers, the actual smoothness and color is not reproduced accurately but, when
treated as SRGB, the images do effectively illustrate the kind of contours seen in the prints.

4.3.4 Omni-directional Image Super-resolution

Omni-directional image super-resolution requires the ability to register (align) a number of

unregistered low-resolution images prior to constructing a single high-resolution image from

this data. In this section, we propose a novel optimization strategy that uses lattice regres-
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Figure 4.14: Figure shows the psychometrically scaled smoothness obtained from the rank-
ing experiment plotted against median ∆E2000 error for varying algorithm parameters. The
”best” algorithms will have values in the upper-left (high smoothness and low error). The
data point indicated by the circle is the cross-validated algorithm setting. Legend: Red=LR
(JK), Blue=LR (JL+bias), Black=Tikhonov.
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Table 4.5: Cross-validated Algorithm Comparison

∆E∗2000 Error

Median 95%-ile Smoothness*

Brother
Lattice (JL+bias) 1.42 3.48 4.03 ∆s

Lattice (JK) 1.52 3.92 6.00 ∆s

Tikhonov 1.62 3.37 0.00 ∆s

HP
Lattice (JL+bias) 1.31 2.53 2.12 ∆s

Lattice (JK) 1.19 2.21 0.00 ∆s

Tikhonov 1.37 2.90 0.44 ∆s

Table 4.6: *Note the smoothness scores should not be compared across printers, as the scores are
based on relative assessments made for each printer separately.

sion at its heart to solve this registration problem. For notation, background information,

and related work on this topic, please refer to section 2.4.

Like previous research [3, 40], our approach is to jointly minimize the interpolation error

on the low-resolution images with respect to the registration parameters and the estimated

high resolution image. This requires a global optimization, and in order to make even an

approximate global optimization computationally feasible, the reconstruction must be fast to

learn and especially fast to evaluate. Since lattice regression is designed to yield efficient and

accurate low-dimensional regression, we adapt it in this application for learning images on

the sphere. Lattice regression learns a lattice of values that can be interpolated to estimate

the image intensity at any location on the sphere, and the lattice is chosen to minimize

the regularized error when interpolating the low-resolution images under a putative set of

registration parameters.
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Proposed Greedy Registration

Our registration strategy is to learn the set of image registration parameters g ∈ ΩN
g that

lead to the best reconstruction of the low-resolution images given a model fit by the other

N − 1 low-resolution images.

Let Ggi ∈ ΩM×M
θφ denote an arbitrarily rotated (by the Euler rotation gi ∈ Ωg) spherical

grid on which we will map the ith image Zi ∈ RM×M . Given a subset of the N indices of

images I ⊆ {1 : N}, let IC = {1 : N}\I denote its complement. Suppose that one has

trained an estimate of the underlying true spherical function using a set I of low-resolution

images ZI = {Zi | i ∈ I} under rotations g′I = {g′i | i ∈ I}; denote this estimate by

Ẑ( · | {Gg′I ,ZI} ) : ΩM×M
θφ → R, where Ẑ is deterministically estimated via some regression

technique given the input/output pairs {Gg′I ,ZI}. Let

Ẑgi|(g′,I) , Ẑ(Ggi |{Gg′I ,ZI}) (4.26)

be the reconstructed low-resolution image at Ggi .

We propose estimating the registration parameters ĝ that minimize the leave-one-out

reconstruction error over all N images. That is,

ĝ = arg min
g∈ΩN

g

N∑
i=1

∥∥Zi − Ẑgi|(g,iC)

∥∥
F
. (4.27)

This empirical risk minimization approach to learning the registration angles will work with

any method to estimate Ẑ, though in this paper we focus on the lattice regression estimate

because it enables fast creation and evaluation of Ẑ, which makes optimizing (4.27) more

computationally feasible.

The registration cost function given in (4.27) has many local minima and requires search-

ing a 3(N − 1) dimensional space. While full global optimization of (4.27) would be ideal,

the dimension of the search space is too high to confidently find a quality local optima

in finite time with present-day computational power. Thus, we present an efficient (and

approximate) greedy method for breaking the optimization into smaller problems:
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1) Initialize: Let the iteration index t = 1 and let the training image set I0 = 1 be ini-

tialized with the first image Z1 and initialize the registration parameter ĝ1 = (0, 0, 0).

2) Register: For each image not in the current training set, find the registration parameter

ĝi that minimizes the reconstruction of image Zi as learned from the current training

image set It−1 with previously estimated rotations ĝIt−1 . That is, for i ∈ ICt−1 set

ĝi = arg min
gi∈Ωg

∥∥Zi − Ẑgi|(ĝ,It−1)

∥∥
F
. (4.28)

3) Add an Image: Add the image that was reconstructed with the least error in Step 2

to the training set. That is, set It = It−1
⋃
i∗ where

i∗ = arg min
i∈IC

t−1

∥∥Zi − Ẑĝi|(ĝ,It−1)

∥∥
F
. (4.29)

4) Swap an Image: If there exists an image in It that at the time it was added to the train-

ing set had a larger reconstruction error than the image with the lowest reconstruction

error in ICt , swap these two images. That is, if j ∈ It has a larger reconstruction error

than k ∈ ICt , let It =
(
It\j

)⋃
k.

5) Repeat: Augment the iteration counter: t = t+ 1. Go to Step 2 until It = {1 : N}.

Note that, the greedy registration algorithm described above takes N − 1 iterations

to complete. To improve results, it can be run multiple times by using a subset of the

previously registered images as the seeding set I0. In the experiments, we perform a second

pass, setting I0 to the set of images with reconstruction error lower than the median;

this heuristic improved the resulting registration in most cases. If the global optimization

of (4.29) is allowed V guesses, then there will be O(VM2N2) total evaluations of the

reconstruction function. Thus, it is helpful if evaluating the estimate is efficient, as is the

case with lattice regression. Still, the above greedy registration can be too slow. To speed

it up, we keep track of the reconstruction error of the last image added to the training set.

If at any time an image has a lower reconstruction error than that of the last image added,
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it is immediately added to the training set and this threshold is updated; the order in which

the images in ICt−1 are traversed in Step 2 is randomized on each iteration.

To perform each global optimization in (4.29), we used a state-of-the-art metaheuristic

termed fully-informed particle swarm (FIPS) [52], which is a variant of the original particle

swarm optimizer (PSO) [21]. PSO begins with a number of random guesses (usually, equal

to the number of search dimensions squared) called birds. At each iteration, the optimizer

moves each bird to a new point in the domain, where each bird is moved in part towards

the best location it has ever seen, in part towards the best location any of the birds has

ever seen, and its movement has an inertial term that encourages exploration. FIPS imposes

further connections between the birds movements; we used the connecting ring neighborhood

variant.

Experimental Details

In this section we show that our method outperforms the state-of-the-art method [3] in

terms of the resulting PSNR for the super-resolved image as well as in terms of the com-

putational requirements and scalability of method to larger problems. Tested are two real

omni-directional images (image ‘graves’ shown in Fig. 4.18(a) and image ‘street’ shown in

Fig. 4.19(a)) from a public domain image database [48] and one synthetically generated

omni-directional image (image ‘room’ shown in Fig. 4.20(a) which was the image used in

reporting results with the benchmark method in [1, 2]). The low-resolution images were

generated by downsampling in the SFT domain (as done in [1, 2, 3]) for all experimental

results except results in Figs. 4.18, 4.19, and 4.20 which for computational feasibility were

downsampled using the Matlab in-built function TriScatteredInterp with natural neigh-

bor interpolation. The low resolution images were captured on uniformly random rotations

of the canonical grid G0. The reconstruction algorithms are given the low-resolution images

and the grids they were captured on within a registration error of [−ψ◦,ψ◦] where the maxi-

mum registration error ψ is known. The setting ψ = 90◦ corresponds to complete ignorance

of the orientations.
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The experiments were run for three different settings (1) reconstructing a (64×64) image

from (16 × 16) images - this was the only setting we could extensively collect results for

because the benchmark [3] computation time explodes exponentially with the number of

low-res images and the size of the high-res image, (2) reconstructing a (128 × 128) image

from (16 × 16) images and (3) reconstructing a (256 × 256) image from (64 × 64) images.

The results are given below Figs. 1-3 in terms of PSNR values and runtime as a function

of the number of low resolution images and degree of registration uncertainty. Each set

of experiments reported in this paper was run with 10 random realizations of unknown

registration parameters.

Lattice regression was run for the reconstruction of a 64 × 64 high-resolution image

from 16 × 16 low-resolution images, using a lattice of size 128 × 128 as an underlying

representation. A 128 × 128 lattice was also used for the reconstruction of a 128 × 128

high-resolution image using a set of 16 × 16 low-resolution images. For the reconstruction

of a 256× 256 high-resolution image from 64× 64 images, a 256× 256 lattice was used.

Results

Fig. 4.15 shows the PSNR of reconstructing a high-resolution image from multiple low-

resolution images that were downsampled at arbitrarily rotated grids. In the left column

are synthetic results (‘room’) and the right column is the average of the real-image results

(‘street’ and ‘graves’). Note that the solid lines in these plots are the reconstruction given

perfect registration and the dotted lines are the reconstruction given the registration esti-

mated by each algorithm. Fig. 4.15(a,b) show that the proposed method outperforms the

benchmark by an order of magnitude (15 to 20 dB) when the registration is completely un-

known for reconstructing a (64×64) image from (16×16) images. If the registration is known

within 10◦, Figs. 4.15(c,d) show that the two methods are comparable in performance.

For reconstructing a (128 × 128) image from (16 × 16) images with large degree of

registration uncertainty, Figs. 4.16(a,b) show that the proposed method performs much

better than the benchmark. Our approach is consistent across the number of low-resolution

images used and provides a 20 dB gain over the benchmark.
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(a) CG image with 90◦ uncertainty
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(b) Natural images with 90◦ uncertainty
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(c) CG image with 10◦ uncertainty
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(d) Natural images with 10◦ uncertainty

Figure 4.15: Reconstruction PSNR (in dB) for (64× 64) image vs number of low-resolution
(16 × 16) images. The registration uncertainty in Euler angle parameters for each rotated
image was 5◦. Results with (a,c) ‘room’, (b,d) ‘street’ and ‘graves’. The error bars represent
the standard deviation of the resulting PSNR values.
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(a) CG image with 90◦ uncertainty
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(b) Natural images with 90◦ uncertainty

Figure 4.16: Reconstruction PSNR of (128×128) image vs number of low-resolution (16×16)
images of real images ‘graves’, ‘street’. The registration uncertainty was 90◦. Results with
image (a) ‘room’, (b) ‘street’ and ‘graves’

To illuminate another angle on performance we show, for a fixed number of (80) low-

resolution images, the performance of the method over varying registration uncertainties.

Fig. 4.17 illustrates that the proposed approach outperforms the benchmark by a margin of

15− 20 dBs in terms of PSNR when reconstructing (64× 64) image from (16× 16) images

for conditions with large degree of registration uncertainty while, as we saw before, for the

smaller amount of uncertainty, the methods are comparable.

Shifting now to computational efficiency, Table 4.7 lists runtime (in mins) for registra-

tion and reconstruction of omni-directional images for various settings. All the experiments

reported in this paper were run on an Intel quad-core 3.20GHz machine with 12 Gigabyte

memory. It is evident from the table that the benchmark method [3] does not scale ef-

ficiently to larger resolutions. The computation of the fast spherical transform requires

O(B2(log(B))2) operations where B is typically chosen to correspond with the size of the

high-resolution image that needs to be reconstructed. Furthermore, this operation needs

to be repeated several times at each iteration of the gradient descent approach [1]. This

polynomial increase in computation time with the size of the reconstructed image severely

limits the scalability to image sizes larger than 128× 128. Our approach on the other hand

is more computationally efficient and allows for scaling-up without significant increase in
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(b) Natural images

Figure 4.17: Reconstruction PSNR (in dB) of (64×64) image from 80 low-resolution (16×16)
images vs degree of uncertainty. Results with images (a) ‘room’, (b) ‘street’ and ‘graves’.

Table 4.7: Comparing runtime-per-super-resolved-image (in mins) for Lattice regression
with the benchmark [3]

Number of Images 10 20 40 60 80
Benchmark (128× 128) 13.4113 24.8804 40.8226 49.3601 70.8547
Lattice Regression (128× 128) 0.0673 0.1785 0.5720 1.3148 3.4343
Lattice Regression (256× 256) 0.1588 0.4287 1.1683 2.5282 5.6448

computational requirements. We show reconstruction results with lattice regression for im-

ages of size (256×256) from 80 (64×64) images for image ‘graves’ in Fig. 4.18, for ‘street’ in

Fig. 4.19 and image ‘monkey’ in Fig. 4.20. These conditions were computationally infeasible

with the benchmark due to memory and runtime constraints.

4.4 Conclusions

In this chapter we have presented lattice regression, a method for estimating the outputs of

a linearly-interpolated look-up table (lattice) from a set of training examples. The approach

we adopt is to minimize the regularized training error of the look-up table, directly taking

into account the effect of interpolation from the nodes. We hypothesized at the outset

that such an approach would outperform the naive approach of estimating a function f̂

independent of the look-up table and predicting the look-up table node outputs from f̂ .
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Figure 4.18: Reconstructing (256 × 256) omni-directional image from 80 (64 × 64) low
resolution omni-directional images for the real image ‘graves’: (a) Top-Left: Original (256×
256) image, (b) Top-Right: reconstruction from perfectly registered images (resulting PSNR
= 26.8021 dB), (c) Bottom-Left: reconstruction from unregistered images with registration
uncertainty of 5◦ (resulting PSNR = 26.4469 dB), (d) Bottom-Right: reconstruction from
unregistered images with registration uncertainty of 90◦ (resulting PSNR = 26.1720 dB).
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Figure 4.19: Reconstructing (256 × 256) omni-directional image from 80 (64 × 64) low
resolution omni-directional images for the real image ‘street’: (a) Original (256×256) image,
(b) reconstruction from perfectly registered images (resulting PSNR = 27.8758 dB), (c)
reconstruction from unregistered images with registration uncertainty of 5◦ (resulting PSNR
= 27.3273 dB), (d) reconstruction from unregistered images with registration uncertainty
of 90◦ (resulting PSNR = 24.2951 dB).
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Figure 4.20: Reconstructing (256 × 256) image from 80 (64 × 64) images for the image
‘room’: (a) Original (256× 256) image, (b) reconstruction from perfectly registered images
(resulting PSNR = 29.0318 dB), (c) reconstruction from unregistered images with registra-
tion uncertainty of 5◦ (resulting PSNR = 27.6772 dB), (d) reconstruction from unregistered
images with registration uncertainty of 90◦ (resulting PSNR = 22.8049 dB).
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This hypothesis was tested on a wide variety of applications leading to some expected but

also a few counter-intuitive results.

First, we have observed that when applying lattice regression with Laplacian and global

bias regularization – where the global bias f is the result of a sophisticated regression

estimate (such as GPR) – lattice regression outperforms the naive approach of setting the

nodes look-up table by simply evaluating the same f . This was an expected result which

was validated in the simulated data of section 4.3.1, the geospatial interpolation application

of section 4.3.2, and the color management application in section 4.3.3. In this context,

lattice regression amounts to tweaking an existing estimate to be smoother (in a first-order

sense) and to more closely match the training data. This could be appropriate when one

has an existing look-up table that must be adapted to new data or when one has some side

information about the underlying function.

In a few instances, we also observed that lattice regression with Laplacian and global

bias regularization actually outperforms a regression that sidesteps using a look-up table at

all. This is a surprising result as lattice regression was designed to overcome the inherent

limitations of discretizing the function to a lattice (which is appropriate only when one is

interested in optimizing test-evaluation performance). Offhand, one would expect to do

better with a regression that is unencumbered by the lattice, but we see in the geospatial

interpolation and color management applications that lattice regression using no bias at all

actually outperforms the application of GPR directly to the data. This behavior is observed

only at the large lattice sizes and is likely due to the ability of lattice regression to fit varying

amounts of roughness in the estimate throughout the domain while GPR attempts to fit

one length-scale to the entire domain, over-smoothing in some areas in order to fit others.

The second-order thin-plate regularization was tested in the color management experi-

ments of section 4.3.3 and in the omni-directional super-resolution problem of section 4.3.4.

In this set of color management experiments, we found no significant difference in color

accuracy or color smoothness when comparing lattice regression with the two types of reg-

ularization: thin-plate vs. Laplacian + global trilinear bias. However, the thin plate reg-

ularization provides a more concise solution and fewer regularization parameters to train.

In the omni-directional super-resolution problem, we demonstrate an application that takes
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advantage of the test-evaluation speed of lattice regression in an interesting way. By using

the lattice as an intermediate function representation in the inner loop of a global opti-

mization procedure, one continually tests the accuracy of a series of possible registrations

of a single image against this model. Although the metric for evaluation in this application

confounds the registration process with the accuracy of the regressed estimate (the final

super-resolved image), the technique involving lattice regression is shown to have higher

accuracy at a lower computational cost than state-of-the-art for this application.

Overall, the proposed lattice regression performed quite well in comparison to other

standard techniques in the tested applications. Compared to the standard approach of

estimating a look-up table, lattice regression optimizes the correct training objective: the

regularized error of the estimated function with respect to the training data. Further, we

have explored a few approaches to regularization, with the thin-plate approach being the

most theoretically sound in terms of characterizing roughness. For practitioners, we suggest

using lattice regression with the thin-plate regularizer unless one has some side information

about the underlying function to be estimated or an existing estimate one would like to

update. In these cases, one might attempt the combination of Laplacian and global bias

regularizers.



92

Chapter 5

EXTENSIONS AND CONCLUSIONS

The contributions of this thesis are summarized in section 5.1. Section 5.2 provides a

discussion of the limitations of the proposed topics as well as recommendations for how they

might be applied. Finally, the thesis is concluded with a discussion of future work in section

5.3

5.1 Contributions

In this thesis, we have presented two new concepts in regression that – due to computational

considerations – each happen to be applicable only in low-dimensional domains. First, we

have proven that enclosing neighborhoods for local linear regression provide estimates with

bounded variance and proposed the enclosing kNN neighborhood as the smallest (and thus

lowest bias) radial neighborhood exhibiting this property along with an algorithm for its

construction. Second, we have presented a new technique, lattice regression, for estimating

look-up tables (suitable for applications where fast test throughput is required) with the

proper training objective (minimizing the training error of the overall estimated function).

Although each contribution was developed with estimation of color transformations in mind,

we have shown their applicability to a wide variety of low-dimensional problems as well.

5.2 Limitations

As mentioned at the outset, the proposed methods are applicable only in low-dimensional

settings due to computational restrictions. In each case, the restrictions emerge from the

so-called curse of dimensionality, a general purpose term for the various unfortunate side-

effects caused by the exponential increase in volume of a space with its dimension. The

nature of this curse is best demonstrated by comparing the volume of the unit sphere with

that of the unit hypercube with respect to dimension. For an even dimension d, the volume
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of the unit sphere is Vs =
πd/2

(d/2)!
while that of the unit hypercube is Vc = 2d [39]. The ratio

of the two volumes is
Vs
Vc

=
(π/4)d/2

(d/2)!
,

this is plotted against dimension in Fig. 5.1 One important consequence of this fact is that
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Figure 5.1: The ratio of the volume of the unit sphere Vs to that of the unit hypercube Vc
vs dimension. Plotted on a logarithmic scale.

points in high dimensional space become far from one another; this presents a problem for

learning.

For the enclosing neighborhoods, one is relying on there being some subset of the train-

ing data that indeed encloses the test point within its convex hull. This objective is stifled

in high dimensions because for most distributions of data,1 the likelihood of finding a test

point inside the convex hull of a fixed-size training set decreases exponentially with dimen-

sion. This problem could be mitigated by exponentially increasing the size of the training

set for higher dimensional problems, but in many applications this is simply not possible.

Furthermore, increasing the size of the training set increases the amount of time required

to seek out the nearest neighbors which adds to the computational burden.

1All but pathological cases such as finding training points at the corners of a hypercube.
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For lattice regression, the detrimental effects of dimension are a bit more straightfor-

ward. Lattice regression requires one to construct a lattice in the domain of interest, but

the number of points m required to construct such a lattice will grow exponentially with

dimension. Since the solution to lattice regression is requires the inversion of a (sparse)

m ×m matrix, the size of this problem will grow exponentially with dimension. This can

be mitigated somewhat by reducing the number of lattice nodes in each dimension, but this

detracts from the flexibility of the estimated function. In the limit of m = 2d, this reduces

to fitting a global trilinear function, but even this approach quickly becomes intractable as

by d = 20 dimensions, this very rough fit will require more than m > 106 nodes.

5.3 Future Work

The bounded estimation variance result for regression on an enclosing neighborhood is

promising, but the result only holds for iid noise and un-regularized linear regression. Similar

results might be shown in the case of non-iid noise, Tikhonov or ridge regression, and

non-linear interpolation. Additionally, given some smoothness quantification (such as a

representation that is a truncated Taylor series) one might be able to quantify the trade-

off between linear extrapolation from a small neighborhood and linear interpolation from

a larger neighborhood. Such a result would attempt to formalize the intuition that the

accuracy of linear extrapolation degrades as functions become increasingly non-linear.

From a computational standpoint, local linear regression is encumbered by exhaustively

searching for near-neighbors in a large training set. For general learning problems, this

burden is lifted somewhat by seeking only approximate neighbors from an optimized data

structure known as a k-d tree [11]. The searching algorithm used in kd-trees is markedly

similar to the algorithm used to construct the enclosing kNN in that it uses rules out entire

half-spaces of possible neighbors at a time. The major difference is that the half-spaces

in the kd-tree search are axis-aligned whereas those in the enclosing kNN algorithm are

unconstrained. Thus, a fast approximation to the enclosing kNN neighborhood could be

easily built in to the kd-tree search. The efficiency gained from this approximation would

allow local linear regression on enclosing neighborhoods to be run on larger data sets.
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The bottleneck for computation in lattice regression is the inversion of a sparse m×m
matrix where m is the total number of nodes in the desired look-up table. A promising

approach to improving both the performance and parallelization ability of lattice regression

is to decouple the lattice into sub-lattices. That is, to partition the lattice along each

dimension forming many small lattices on which one may apply lattice regression. The

delicate part to this approach lies in how one ‘stitches’ the multiple lattices at the seams

in some optimal way. A promising approach to this open question is to overlap each sub-

lattice by a full cell and to average the overlapping node outputs of this cell although one

can imagine various iterative approaches as well.
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