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Abstract— We implement and evaluate a likelihood-based
method to cluster contacts in a multistatic active sonar setting.
The underlying assumption is that a true contact will be detected
by multiple receivers and any aspect-dependent feature must be
consistent across all contacts in a cluster. Contacts which are
contained in the same cluster can be appropriately fused and
passed into a tracker. Clutter contacts detected are rejected if
they are not in a cluster with any other possible objects. The use
of the aspect dependent features Doppler and target strength
allows for improved rejection of clutter. We show that clutter
can be rejected with minimal false negatives.

Keywords: Clustering, Doppler, Multistatic Active Sonar,

Clutter Rejection.

I. INTRODUCTION

In a multistatic active sonar array, a single transmitted ping

reflects off of multiple objects and has the potential to be

detected by any of the receivers. Each receiver estimates the

location of the contacts which are within its detection range.

Additional processing can result in the estimation of charac-

teristics of the target (Doppler or amplitude, for example).

If the receivers are not extremely far apart, it is reasonable

to expect that if a target is present in the scenario area, it

should be detected by multiple receivers. For the purposes

of tracking and localization, it would be beneficial to combine

each receiver’s measurement of a single object’s position. This

is simple in a low-clutter, high probability-of-detection system.

However, it becomes much more difficult in a multistatic active

sonar environment, where probability of detection is low and

there is a large amount of clutter.

In this paper, we propose a method for fusing contacts from

multiple receivers by clustering the contacts, and we evaluate

this approach on a standard multistatic tracking dataset. Figure

1 motivates the proposed clustering approach - one sees that

contacts from the same object (marked by dots of the same

color) cluster together, and thus clustering the contacts may

help fuse contacts representing the same object.

We propose and implement clustering based on the similar-

ity between contact position measurements and other aspect-

dependent features of the contact. We investigate two clus-

tering algorithms: a k-medoids clustering and a variant that

incorporates assumptions consistent with the multistatic ar-

chitecture. The different clustering algorithms are compared

using several metrics motivated by the dataset. Section II
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Fig. 1. Example contacts returned from one ping of a multistatic active sonar
system. The small black points are the clutter contacts. The larger colored
contacts originate from objects. Contacts which are colored the same are
from the same object but were received by different receivers.

discusses related work. Section III introduces the similarity

used in the clustering. Section IV describes the different

clustering algorithms. Section V defines the metrics which will

be used to evaluate the clustering performance and compares

results across clustering algorithms. Section VI will discuss the

results, suggest some methods for fusion within the clusters

and pose some open questions.

Table I defines the key terms used in this paper.

II. RELATED WORK

The general topic of “tracking” spans several different

domains, each with their own characteristics and challenges.

Multistatic active sonar tracking tends to be characterized

by large amounts of clutter and relatively low probability

of detection. One approach to reject clutter in the hopes

of improving later processing is to run two steps of multi-

hypothesis tracking, with the first serving as a clutter rejection



κ Contact

N ∈ Z+ Number of contacts

c ∈ R2 Contact position; [x, y]
v ∈ R2 Contact velocity; [dx, dy]
ri ∈ R2 Receiver i location; [x, y]
t ∈ R2 Transmitter location; [x, y]
δj ∈ R Doppler measurement for contact j

dj ∈ R+ Range measurement for contact j
bj ∈ [0, 360) Bearing measurement for contact j
zj = [δj , dj , bj ] Measurements for contact j
P (·) Probability

S(·, ·) ∈ R+ Similarity between two contacts

k ∈ Z++ Number of clusters
ψ Cluster
mj Medoid of cluster j

TABLE I

TABLE OF KEY NOTATION.

step [1]. The work presented here differs from the Maximum

Likelihood - Multi-Hypothesis Tracker (ML-MHT) approach

in two key ways: this work uses a clustering approach, rather

than the modified MHT, and also leverages Doppler, an aspect-

dependent feature to improve the estimate of contact similarity.

Georgescu et al. propose a two step process for clutter

rejection and contact fusion [2]. First, contacts are rejected

using a ratio test which determines if a contact’s features

(SNR, Doppler) are distributed more similarly to a target or

clutter. The remaining contacts are then combined in a pre-

detection fusion step. The measurement error distribution is

used to generate 100 particles for each contact. Then, all the

particles for all the contacts are clustered by spatially binning

them, where the spatial bins correspond to a regular grid of

their [x, y] coordinates. Any clusters which have a number

of particles greater than a threshold are considered to be a

contact, and these fused contacts are used in the tracker. The

work presented here differs in a couple respects. First, the

Doppler measurement is used in addition to the bearing and

range measurements to create a pairwise similarity matrix

between all contacts. This pairwise similarity matrix can then

be used in a variety of different clustering algorithms. Addi-

tionally, the method presented here allows for the inclusion

of any aspect-dependent feature in the similarity calculation,

rather than only using the bearing and range measurements for

clustering. Further, rather than the rough clustering produced

by binning, we propose using a similarity-based clustering. We

use a kernel k-medoids variant, but any clustering algorithm

that operates on similarities could be used [3].

The use of clustering to combine region information is

a common practice in video tracking. In general, clustering

is used to combine multiple regions of interest that have

been identified using segmentation or other techniques [4],

[5]. These combined regions can then be tracked as one

object, allowing for improved tracking performance. This is

similar to the objective of the work presented here, however,

the difference in the domain and type of measurement data

necessitates a different approach.

Other approaches use the aspect-dependent target strength to

only initiate tracks when a specular cue is observed, ensuring

that clutter will not be used to initiate tracks [6]. This works

well given that there is a large enough number of receivers that

a specular cue can be observed, but it would not work as well

in arrays with a smaller number of receivers or environments

which result in a low probability of detection.

III. SIMILARITY BETWEEN CONTACT MEASUREMENTS

We desire a measure of similarity or distance between

objects to determine what objects should be clustered together.

In many situations, Euclidean distance is both the intuitive

and correct choice, however this is not the case in multistatic

sonar. To understand why this is the case and motivate a more

appropriate choice, a brief recap of sonar measurements is

included.

A. Multistatic Active Sonar Measurements

In a multistatic active sonar array, each transmitted wave-

form is received by many receivers. Each of these receivers

processes the received waveform into a set of measurements.

These measurements generally include a measurement of bear-

ing b and bistatic range d for each contact. If the transmitted

waveform is a continuous wave (CW) waveform, Doppler shift

δ of the waveform due to the detected object’s motion can be

measured. It is important to note that these measurements are

not comparable across receivers, because they are dependent

on the location of the receiver. In addition, because the source

and each receiver are located at different locations, there is a

blanking region - a region in which no objects can be detected.

Figure 2 shows the range and bearing measurements, as well

as the blanking region.
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Fig. 2. A bistatic sonar system. The source and receivers are at different
locations. The bistatic range measurement is the sum of the source-contact
range and receiver-contact range. Bearing is measured clockwise from receiver
north. The magenta equal-range line is an ellipse, with foci at the source and
receiver. The blanking region is delineated by the smaller cyan ellipse with
the same foci.

These measurements are also corrupted by noise due to al-

gorithmic limitations or environmental effects. The distribution

of the error is generally assumed to be known and additive



to the measurement. However, because the measurements are

relative to the location of the receiver, it is non-trivial to create

a simple mapping from the measurement error distribution

on the bearing and range measurements of one receiver to

bearing and range measurements of another receiver. Figure 3

is a plot of the posterior distribution P (c|z) of an object

being at a location c given measurements z = [d, b] that have

been corrupted by additive Gaussian noise in the measurement

domains. Note that when mapped to the two-dimensional

Cartesian coordinate space, the measurement error appears

to be non-Gaussian. An extremely thorough discussion of

multistatic sonar measurements is contained in [7].

x (m)

y
 (

m
)

 

 

0 1 2 3 4 5 6 7

x 10
4

0

1

2

3

4

5

6

7

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x 10
−3

Fig. 3. The posterior distribution over position given a range and bearing
measurement with additive Gaussian noise. The true location is marked with
a circle, the transmitter location is marked with a triangle, and the receiver
location is marked with a square.

To overcome this non-linear measurement mapping between

receivers, a likelihood-based similarity measure is proposed.

B. Likelihood Based Similarity

The similarity between two contacts is calculated using a

likelihood-based approach [8]–[10]. Given the measurements

of bearing, range and Doppler of two contacts, the similarity

between contacts is calculated as follows:

First, given two measurements z1, z2 from two receivers

r1, r2 the posterior distribution is

P (c, v|z1, z2, r1, r2, t),

where c is contact position, v is contact velocity and t is the

transmitter location. By Bayes’ rule,

P (c, v|·) = γ−1P (z1, z2|r1, r2, t, c, v)P (c, v|r1, r2, t),

where P (z1, z2|r1, r2, t, c, v) is the likelihood of the measure-

ments and γ is a normalizing constant,

γ = P (z1, z2|r1, r2, t).

Assuming the measurements from each receiver are indepen-

dent,

P (c, v|·) = γ−1P (z1|r1, t, c, v)P (z2|r2, t, c, v)P (c, v|r1, r2, t).

In a bistatic sonar, there will be a blanking region for each

receiver,

P (c, v|r1, r2, t) = 0 ∀c (D1(c) < dblank ∨D2(c) < dblank)

where Di(c) is the mapping from location c to the bistatic

range for receiver i. Assuming the measurements of bearing,

range and Doppler are independent,

P (zj |ri, t, c, v) = P (δj |ri, t, c, v)P (bj |ri, t, c, v)P (dj |ri, t, c, v).

Assuming Gaussian measurement error,

P (δj |ri, t, c, v) = N

(

δj ;
vT

2
(~utc + ~uric), σ

2

δ

)

,

where ~utc is the unit vector from the transmitter to location

c and ~uric is the unit vector from receiver i to location c.

This is derived from the bistatic Doppler equation [11]. For

the bearing measurement,

P (bj |ri, t, c, v) = N (bj ;Bi(c), σ
2

b ),

where Bi(c) is the mapping from location c to the bearing

measured from receiver i. The range measurement is similar,

P (dj |ri, t, c, v) = N (dj ;Di(c), σ
2

d).

The similarity is defined here as the max over all possible

contact positions and velocities,

S(z1, z2) = max
c,v

P (c, v|z1, z2, r1, r2, t). (1)

In practice the posterior distribution is impossible to calculate

analytically, and is approximated by sampling the position and

velocity space. This is done for every pair of contacts that

are not detected by the same receiver. Any two contacts that

are detected by the same receiver are given a similarity of

zero. This is done under the assumption that any object cannot

generate more than one contact per receiver.

IV. CLUSTERING

Clustering is the process of assigning data points to groups

such that points within each group are similar [12]. We

propose clustering contacts, and in particular, propose using

the likelihood-based similarity given in (1) to determine the

clustering. This similarity is indefinite, that is, the N × N

matrix of pairwise similarities between the N contacts is not

necessarily a positive semidefinite matrix [12], and thus kernel

clustering methods like kernel k-means are not applicable.

Clustering methods that do act on indefinite similarities in-

clude linkage methods, spectral clustering, and k-medoids (see

also [13] for a review of approaches to create kernels from

indefinite similarities). Linkage methods can be very slow. For

the experiments in this paper, we used a k-medoids algorithm

as detailed in the next section.



A. K-Medoids Clustering

K-medoids is a k-means-like algorithm which uses only the

similarity between points to cluster objects. K-means alternates

between calculating the mean of the points assigned to each

cluster, and then re-assigning points to the cluster with the

nearest mean. K-medoids differs from k-means in that rather

than calculating a mean of the points in the cluster, the point

in the cluster to which all the other points are most similar

(the medoid) is calculated.

There are several variants of k-medoids, the variant used

here has the following steps [14]:

1) Randomly assign k contacts as medoids

{m1,m2, . . . ,mk}
2) Assign all non-medoid contacts to the nearest medoid

3) Calculate score S of this assignment (described below)

4) Swap medoid j with a non-medoid contact

5) Repeat Steps 2-4 for all non-medoid contacts

6) Repeat Steps 2-5 for all medoids j = 1 . . . k
7) Select the set of medoids from steps 2-3 with the highest

score S
8) Repeat Steps 2-7 until convergence

The k-medoids algorithm gives a candidate clustering the

following score:

S =

k
∑

j=1

∑

κℓ∈ψj

S(mj , κℓ), (2)

where κℓ is the ℓth non-medoid contact, ψj is the set of points

in the jth cluster, and mj is the medoid of the jth cluster.

B. Constrained K-Medoids

We also investigated a constrained k-medoids clustering. In

this clustering variant, a constraint is added to the k-medoids

algorithm that does not allow multiple contacts from the same

receiver to be placed in the same cluster. This constraint in-

corporates the assumption that a single target cannot generate

multiple contacts at a receiver. This modification is done by

greedily assigning contacts to clusters: the un-clustered contact

with the largest similarity to any medoid is assigned to that

cluster if and only if the cluster does not already contain a

contact from that receiver. If the cluster already contains a

contact from that receiver, the similarity is treated as zero.

1) Randomly assign k contacts as medoids

2) Greedily assign contacts to medoids, restricted s.t. only

one contact per receiver is in a cluster

3) Calculate score S of the assignment

4) Swap medoid j with a non-medoid contact

5) Repeat Steps 2-4 for all non-medoid contacts

6) Repeat Steps 2-5 for all medoids j = 1 . . . k
7) Select medoids that result in highest score

8) Repeat Steps 2-7 until convergence.

In the next section, the metrics used to evaluate the perfor-

mance of these clustering algorithms are described and the

clustering algorithms are compared on a standard tracking

dataset.

V. METRICS AND CLUSTERING PERFORMANCE

The ideal clustering of contacts would be to have one cluster

which corresponds to each object present, and to have one or

many clusters which contain only clutter contacts. This is a

slightly different objective than most clustering problems due

to the lack of a single true “clutter” cluster. To evaluate the

clustering performance, two metrics are defined, clusters per

target (CpT) and object cluster impurity (OCI). Clusters per

target is defined here as the number of clusters which contain

a true object. The optimal value for CpT is one. This metric

becomes artificially small when clusters grow extremely large.

For example, if all the contacts were clustered into a single

cluster, CpT would be one but the clustering would not be

very useful. To balance this, the “impurity” of the clusters

which contain true objects is defined here. The impurity of a

cluster is the percentage of false contacts in the cluster, and

is ideally zero for any cluster that contains at least one true

object. To measure the OCI of a clustering result, the average

of the impurities for all clusters that contain at least one true

contact is calculated.

A. Evaluation Dataset

The first scenario of the Metron dataset is used to evaluate

the clustering performance of the different algorithms [15].

This simulated dataset has 4 transmitters (one active per ping)

and 25 receivers aligned in a grid. This dataset is characterized

by a low per-receiver probability of detection (Pd ≈ 0.13
for each receiver) and large amounts of clutter (NC ≈ 390
per ping). In addition, bearing and range measurements are

corrupted by a large error (σb = 8◦, σd = 600m). Figure 1 is

a plot of all the contacts from a single transmitted ping. An

ideal clustering of these contacts would have one cluster per

color, and each of these clusters would not contain more than

one color nor any clutter (black dots). Clustering performance

is evaluated for 30 pings from the first scenario which contain

Doppler measurements.

B. Clustering Performance

An important step in any clustering problem is choosing

the number of clusters. The number of clusters chosen can

have a non-intuitive effect on the metrics chosen, so the two

clustering methods described in Section IV are all compared

for the same value of k. As a rough guideline, we suggest that

k ≈
N̄C

PdNRx
, (3)

where N̄C is the average number of contacts per ping, Pd
is the per-receiver probability of detection, and NRx is the

number of receivers. This results in the average cluster size

being equal to the expected number of contacts that originate

from an object. Initial results suggest that using a higher value

for k can result in additional rejection of clutter, however the

optimal value will likely be application-dependent.

A plot of the clustering that results from the constrained k-

medoids algorithm (k=160) is shown in Figure 4. The clusters

are displayed by connecting the medoid contact to all other



contacts in the cluster. This figure illustrates the result of using

a non-Euclidean distance in the clustering: many contacts that

are “close” in Euclidean distance are not clustered together,

while other contacts that are quite far in Euclidean distance

are in the same cluster.
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Fig. 4. Clustering results using the constrained k-medoids algorithm, with
k=160. Blue lines indicate contacts that are clustered together.

The two clustering methods described in Section IV are

compared in Table II. The metrics are calculated for each target

on each ping, and the mean and variance of the CpT and

OCI are calculated over all pings. These scores suggest that

the standard k-medoids algorithm is a better choice for this

dataset and choice of k. The metric of CpT is calculated for

unclustered data to establish a baseline.

Method Metric Mean Variance

Unconstrained Object Cluster Impurity 0.555 0.057
Constrained Object Cluster Impurity 0.519 0.913

Unconstrained Clusters per Target 1.81 0.898
Constrained Clusters per Target 1.99 1.07
Standard (Unclustered) Clusters per Target 3.36 4.13

TABLE II

STATISTICS OF THE CLUSTERING PERFORMANCE METRICS FOR 30

DIFFERENT PINGS OF THE METRON DATASET, WITH K=160.

C. Clutter Rejection Using Cluster Size

A simple way of using the clustering results is to discard

contacts that are in clusters that are smaller than a certain size.

This is based on the assumption that a target will generate

contacts on multiple receivers, and that these contacts will be

clustered together due to a high similarity. Table III shows

the rejection rates when clusters of sizes one and two are

discarded. These rejection rates are calculated by dividing the

number of clutter or true contacts that would be rejected by

the total number of clutter or true contacts in the pings. Using

the unconstrained clustering and discarding clusters of size

one results in rejection of 19.5% of clutter contacts and only

rejecting 1.99% of target contacts.

Method Rejected Target Contact Clutter
Cluster Size Rejection Rate Rejection Rate

Unconstrained 1 0.0199 0.195
Constrained 1 0.0347 0.151
Unconstrained 2 0.0596 0.311
Constrained 2 0.137 0.347

TABLE III

TARGET AND CLUTTER REJECTION RATES WITH DIFFERENT CLUSTER SIZE

THRESHOLDS.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we defined a likelihood-based similarity

between contacts and compared the results of two clustering

algorithms on a standard tracking dataset. The likelihood-

based similarity uses position and Doppler measurements and

is easily expandable to other aspect-dependent features.

The unmodified k-medoids algorithm performed the best,

resulting in less than two clusters per target. The addition of

the constraint that clusters may only contain one contact per re-

ceiver decreased the performance of clustering algorithm. This

is due to two factors: the greedy nature of the algorithm used

and the difficulty of the evaluation dataset. The constrained

algorithm greedily assigns contacts to clusters, which results

in sub-optimal clusterings. In tandem with the greediness of

the algorithm, the large amount of clutter present in each ping

makes it likely that a clutter contact will be more similar to a

medoid than a target contact.

The scope of this work was only to cluster the contacts

and compare two clustering algorithms. A potential research

question is the how the clustered contacts should be used in

a tracker. One option is to simply choose the medoids of the

clusters and use them as inputs to a tracker instead of the full

set of contacts. As described in Section V-C, clusters smaller

than a threshold could be discarded under the assumption that

a target should result in at least a certain number of contacts.

Additionally, the measurements of the contacts in the cluster

could be fused using a likelihood-based approach and then

used in any contact-based tracker [9].

One open question is whether a different clustering method

would offer a performance or computational advantage. We

would also like to further investigate how the chosen number

of clusters k affects the performance, and whether there is a

better way to set k than what we have proposed here.
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