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Abstract

Bayesian Minimum Expected Risk Estimation of Distributions for Statistical
Learning

Santosh Srivastava

Chair of the Supervisory Committee:
Maya Gupta, Department of Electrical Engineering

In this thesis, the principle of Bayesian estimation is applied directly to distributions such

that the estimated distribution minimizes the expectation of some risk that is a functional

of the distribution itself. Bregman divergence is considered as a risk function. An analysis

of distribution-based Bayesian quadratic discriminant analysis (QDA) is presented, and a

relationship is shown between the proposed approach and an existing regularized quadratic

discriminant analysis approach. A functional definition of Bregman divergence is established

and it is shown that Bayesian models are optimal in the expected functional Bregman di-

vergence sense. Based on this analysis two practical classifiers are proposed. BDA7 uses

a crossvalidated data dependent prior. Local BDA is a modification of Bayesian QDA to

achieve flexible model-based classification, by restricting the inference to local neighbor-

hoods of k samples from each class that are closest to the test sample.
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Chapter 1

INTRODUCTION

As Tom Mitchell noted [1], “A scientific field is best defined by the central question it

studies”.

The central question of statistical classification is:

“How to estimate probabilities of different class labels for a test sample given a set of

labeled samples to learn from?”

These questions cover a broad range of learning and classification tasks, such as how to

design autonomous mobile robots that can train themselves from self-collected data, how

to data mine historical medical records to learn which future patients will respond best to

which treatments, and how to build search engines that automatically customize to user

interests [1].

Many concepts and techniques in machine and statistical learning are illuminated by

human and animal learning in psychology, neuroscience and related fields. The questions

of how computers can learn and how humans learn most probably have highly intertwined

answers. Human’s ability to learn is a hallmark of intelligence. For example, in the field

of visual category recognition humans can easily distinguish 30,000 or so categories and

can be trained with very few examples, while the machine learning approach to digits and

faces currently requires hundreds if not thousands of examples. Nevertheless as comput-

ers become more and more powerful, the idea that computers can imitate human learning

is no longer science fiction. In fact, there has been a surge of interest to study machine

and statistical learning paradigms that parallel human learning processes, such as efficient

knowledge representation and visual recognition. These techniques have greatly influenced
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the development of more intelligent computer interfaces that can recognize objects, under-

stand human languages, predict weather and traffic, diagnose diseases, automatically sort

letters containing hand written addresses in US post office, detect fraudulent financial trans-

actions, learn models of gene expression in cells from high-throughput data, and even play

chess or drive robots autonomously.

1.1 Challenges in Statistical Learning

The massive collections of data along with many new scientific problems create golden op-

portunities and significant challenges and has reshaped statistical thinking, data analysis,

and theoretical studies. The challenges of high-dimensionality arise in diverse fields of sci-

ences and the humanities, ranging from statistics, computational biology and health studies

to financial engineering and risk management. High-dimensionality has significantly chal-

lenged traditional statistical theory and the intensive computational costs make traditional

procedures infeasible for high-dimensional data analysis. As Donoho said [2] “many new

insights need to be unveiled and many new phenomena need to be discovered in high dimen-

sional data analysis, and it will be the most important research topic in machine learning

and statistics in the 21st century.”

As pointed out by Fan and Li [3], to optimize the performance of a portfolio or to

manage the risk of portfolio, one needs to estimate the “covariance matrix of the returns

of assets in the portfolio.” Estimating covariance matrices in high-dimensional statistical

problems poses challenges. Covariance matrices pervade every facet of statistical learning,

from density estimation, to graphical models. They are also critical for studying genetic

networks, as well as other statistical applications such as climatology.

There are two broad approaches to tackle problems when the dimension of the variables

is comparable with the sample size. One approach to dimension reduction that is common in

machine learning and data mining is to select reliable variables to minimize risk of prediction.

Another approach is to employ a regularization method. Regularization is the class of

methods that reduce estimation variance and can be used to modify maximum likelihood to

give reasonable answers in unstable situations. Regularization techniques have been highly

successful in the solution of ill-and poorly-posed inverse problems. Regularization is further
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discussed in Chapter 5.

In this thesis a special case of the learning process is considered which is the supervised

learning framework for classification. In this framework, the data consists of instance-label

or feature-label {Xi, Yi}ni=1 pairs, where the labels are Yi ∈ {1, 2, 3, . . . , G}. Given a set

of such pairs, a learning algorithm constructs a function that maps instances to labels.

This function should be such that it makes few errors when predicting the labels of unseen

instances. For example in a wine classification problem [4], data consists of different wine

samples made from the Pinot Noir (Burgundy) grapes. The wines are subjected to taste

tests by 16 judges and graded with numerical scores on 14 sensory characteristics, which

define a feature vector. These characteristics or features are clarity, color, aroma intensity,

aroma character, undesirable odor, acidity, sugar, body, flavor intensity, flavor character,

oakiness, astringency, undesirable taste, and overall quality. These wines originate from

three different geographical regions, which defines the class label Y of the wine: California,

Pacific Northwest, and France. The goal of supervised learning algorithm is to classify the

geographical origin of the unseen wine sample x from 14 sensory characteristics.

1.2 Examples of Supervised Algorithms: k-NN, SVM

A variety of supervised machine learning algorithms have been studied in the past including

k-Nearest-Neighbor (k-NN), support vector machine (SVM).

1.2.1 k-Nearest-Neighbor (k-NN) Classifiers,

These classifiers are memory-based, and require no model to be fit [5]. Given a query point

or test point x, it finds the k training points X(r), r = 1, . . . , k closest in distance to x, and

then classifies x using the majority vote among the k neighbors. Despite its simplicity, k-

NN has been successful in a large number of classification problems, including handwritten

digits, satellite image scenes, and EKG patterns.
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1.2.2 Support Vector Machine (SVM)

Support vector machines (SVMs) are a useful classification method. The goal of the support

vector machine (SVM) is to find the separating hyperplane in the input space with the

largest margin [5, 6, 7]. It is based on the idea that the larger the margin, the better the

generalization of the classifier. The margin of SVM has a nice geometric interpretation: it

is defined informally as (twice) the smallest Euclidean distance between the decision surface

and the closet training point. Non-linear SVMs usually use the “kernel trick” to first map

the input space into a higher-dimension feature space with some non-linear transformation

and build a maximum-margin hyperplane there. The “trick” is that this mapping is never

computed directly, but implicity induced by a kernel. Support vector machines (SVM) were

originally designed for binary classification and how to effectively extend it for multi-class

classification is still an on-going research issue [8, 9].

1.3 Contributions and Organization

This dissertation makes contribution to the problem of statistical learning from the following

aspects

• The theoretical contributions of this dissertation is that we defining and establishing

functional Bregman divergence. It relates to square difference, square bias, and rel-

ative entropy. We have shown that functional Bregman divergence for functions and

distributions generalizes vector and point-wise definitions of Bregman divergence. We

extended Banerjee et. al.’s work to show that the mean of a set of functions minimizes

the expected functional Bregman divergence. Furthermore, we extended Bayesian es-

timation using Bregman divergence risk function, and showed that using functional

Bregman divergence one can directly estimate the underlying distribution instead of

the parameters of the distribution.

• Application-wise, this dissertation gives an overview of the regularization of statistical

learning problem in high dimensional feature space. The main research contribution

from this dissertation is the Bayesian quadratic discriminant analysis for classification
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and establishing its link to regularization.

• The algorithmic contributions come from the development of novel regularized data

adaptive algorithms called BDA7 and local BDA for pattern classification tasks. Both

of these algorithms are derived using inverted Wishart prior distribution and the

Fisher information measure over the statistical manifold of Gaussian distributions.

These algorithms perform remarkably well on a wide range of real datasets compared

to other state-of-the-art classifiers in the literature.

The rest of the dissertation is organized as:

Chapter 2 reviews the basic principles of estimation including maximum likelihood (ML),

maximum a posteriori (MAP), method of moments (MOM), and Bayesian mean square error

estimation (BMSEE). It introduces the concept of Bregman divergence risk function for

Bayesian estimation and shows that the mean of the posterior pmf is an optimal estimator

for any Bregman divergence risk.

Chapter 3 discusses nearest-neighbor classifier model of constant class probabilities in

the neighborhood of the test sample. A generalized form of Laplace smoothing for weighted

k nearest-neighbors class probability estimates is derived, and it is shown that it is optimal

in the sense of minimizing any expected Bregman divergence and leads to the class estimates

that minimize expected misclassification cost.

Chapter 4 explains the theory of Bayesian quadratic discriminant analysis in many as-

pects. The Bayesian classifier is solved in terms of Gaussian distribution themselves, as

opposed to the standard approach of Gaussian parameters. It explains that distribution-

based Bayesian classifier based on minimizing the expected misclassification costs is equiva-

lent to the classifier that minimizes the expected Bregman divergence estimates of the class

conditional distribution.

Chapter 5 reviews approaches to cross-validated Bayesian QDA and regularized quadratic

discriminant analysis (RDA). It explains how the distribution-based Bayesian classifier can

be realized as RDA [4]. Results are presented on simulated and benchmark datasets and

comparisons are made with RDA, Quadratic Bayes (QB) [10], model-selection discrimi-

nant analysis based on eigenvalue decomposition (EDDA) [11], and to maximum likelihood
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estimated quadratic and linear discriminant analysis (LDA).

In Chapter 6 the local distribution-based Bayesian quadratic discriminant analysis (local

BDA) classifier is proposed which applies to the neighborhood formed by the k samples from

each class that are closest to the query. Performance of the local BDA classifier is compared

with local nearest means [12], recently proposed local support vector machine (SVM-KNN)

[13], Gaussian mixture models, k-NN, and local linear regression.

Chapter 7 discusses functional Bregman divergence, and establishes its relation with

previously defined Bregman definition [14, 15]. After establishing properties and the main

theorem, it discusses the role of functional Bregman divergence in Bayesian estimation of

distributions.

Chapter 8 concludes, discusses open questions, and suggests directions for future work.

1.4 Conventions and Notations

For convenience, we present in Table 1.1 the important notation used in the rest of the

dissertation. Less frequently used notation will be defined later when it is first introduced.

Random variables are represented by upper-case alphabets, e.g., X, Y and their realization

are represented by smaller-case alphabets, e.g., x, y. The symbol arg min stands for the

argument of the minimum, that is to say, the value of the given argument for which the

value of the given expression attains its minimum value.
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Table 1.1: Key notation

Notation Description Notation Description

R set of real numbers Rd d-dimensional real vector space

Xi ∈ Rd ith random training sample n number of training samples

Yi ∈ G class label corresponding to Xi nh number of training samples of class h

G = {1, 2, . . . , G} set of class labels X̄h sample mean for class h

X ∈ Rd random test sample Sh

Pn
i=1(Xi − X̄h)(Xi − X̄h)T I(Yi=h)

Y ∈ G class label corresponding to X S
Pn

i=1(Xi − X̄)(Xi − X̄)T

I, I(.) identity matrix, indicator function |B| determinant of B

diag(B) diagonal of B tr(B) trace of B

arg min argument of the minimum ri(S) relative interior of S

∇φ(y) gradient of φ at y P (X ) probability of X

Ef [θ] expectation of θ w.r.t. f ‖·‖ l2 - norm

µ mean Σ covariance matrix

φ[f ] functional over Lp(ν) δφ[f ; ·] Fréchet derivative of φ at f

Γ(·) gamma function Γd(·) multivariate gamma function
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Chapter 2

PRINCIPLES OF ESTIMATION AND BREGMAN DIVERGENCE

In this chapter, some principles of estimation and Bayesian estimation are reviewed.

Then, a result is presented for Bayesian estimation with Bregman divergence risk function.

These principles are used differently depending upon the information given. Maximum

likelihood (ML), maximum a posteriori (MAP), methods of moments (MOM), are reviewed

in Section 2.1. Bayesian approach to parameter estimation and the concept of Bayesian risk

function are discussed in Section 2.2. Section 2.3 discusses Bregman divergence, followed

by examples and a theorem of Banerjee et al., 2005 that states that the mean minimizes the

expected Bregman divergence. Section 2.4 discusses Bayesian estimation using the Bregman

divergence risk function, and a new result shows that the mean of the posterior pdf is the

optimal Bayesian estimator for any Bregman divergence risk. Examples of the computation

of the Bayesian estimator using Bregman divergence risk are included in Section 2.5. The

results in this chapter have been published in the workshop [16].

2.1 ML, MAP, MOM

The maximum likelihood estimator (ML) estimates a pmf that maximizes the probability

(likelihood) of the given data X . To estimate a parameter θ ∈ Rd of a parametric distribution

given observations X , the ML estimate solves

max
θ∈Rd

P (X|θ). (2.1)

1. It is intuitively appealing.

2. It has good asymptotic properties.

3. It coincides with the relative frequency of the event in the sample.
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For example, if three out of ten parts arrive broken, the ML estimate for the probability

of a broken part is .3. ML estimates are unbiased for multinomial distributions but can be

biased for other distributions; for instance estimating standard deviation in the Gaussian

case.

A related principle of estimation is the maximum a posterior estimate (MAP), which

chooses the distribution with maximum probability given the observations X , and a prior

P (θ),

max
θ∈Rd

P (θ|X )

= max
θ∈Rd

P (X|θ)P (θ)
P (X )

. (2.2)

For an estimate of parametric distributions, the method of moments (MOM) defines the

estimated moments to be the sample moments. Another approach to parametric distribution

estimation is to find the unbiased minimum variance estimate; this goes by various names

such as MVUE [17], UMVU [18].

2.2 Bayesian Minimum Expected Risk Estimation

For an unknown pmf parameterized by some θ, the Bayesian Mean Square Error Estimator

(BMSEE) [17] (pages 310-316, 342-350) solves

θ∗ = arg min
θ̂∈Rd

∫
θ
(θ − θ̂)2f(θ|X )dθ (2.3)

where a prior distribution over the θ parameter, f(θ), has yielded a posterior pdf f(θ|X )

based on knowledge or data X . This is equivalent to solving

θ∗ = Ef(θ|X )[θ] (2.4)

where the expectation is taken over the posterior f(θ|X ). Thus the optimal estimator θ̂

in terms of minimizing the Bayesian Mean Square Error is the mean of the posterior pdf

f(θ|X ). The BMSEE estimator will in general depend on the prior knowledge as well

the data X . If the prior knowledge is weak relative to the knowledge of the data, then

the estimator will ignore the prior knowledge. Otherwise, the estimator will be “biased”
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towards the prior mean. On average, the use of relevant prior information always improves

the estimation accuracy. More generally the Bayesian minimum expected risk principle [18,

ch. 4] uses a risk function R : Rd × Rd → R to estimate the parameter as

θ∗ = arg min
θ̂

∫
R(θ, θ̂)f(θ|X )dθ (2.5)

≡ arg min
θ̂
Ef(θ|X )[R(Θ, θ̂)], (2.6)

where Θ ∈ Rd is a random variable with realization θ. The average risk or cost Ef(θ|X )[R(Θ, θ̂)]

is termed as Bayes risk R or

R = Ef(θ|X )[R(Θ, θ̂)], (2.7)

and measures the performance of the estimator. If R(θ, θ̂) = (θ− θ̂)2, then the risk function

is quadratic and Bayes risk is just the mean square error (MSE). Other widely used risk

functions are

R(θ, θ̂) = |θ − θ̂|, (2.8)

R(θ, θ̂) =

 0 if |θ − θ̂| < δ

1 if |θ − θ̂| > δ.
(2.9)

The risk function (2.8) penalizes errors proportionally, while (2.9) penalizes with value 1 for

error greater than the threshold δ > 0. In all the above three cases the risk function is sym-

metric in θ−θ̂, reflecting the implicit assumption that positive errors are just as bad negative

errors. In general this need not be case. In the next section we will discuss the Bayesian

estimation problem using a general risk function called Bregman divergence. Bregman di-

vergences included a large number of useful risk or loss functions such squared loss, Kullback

Leibler-divergence, logistic loss, Mahalanobis distance, Itakura-Saito distance, I-divergence,

etc.

2.3 Bregman Divergence

This section defines the Bregman divergence [14], [15] corresponding to a strictly convex

function and presents some examples.
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2.3.1 Definition of Bregman Divergence

Let φ : S → R be a strictly convex function defined on a convex set S ⊂ Rd such that φ

is differentiable on the relative interior of S ri(S), assumed to be nonempty. The Bregman

divergence dφ : S × ri(S) → [0,∞) is defined as

dφ(x, y) = φ(x)− φ(y)− (∇φ(y))T (x− y), (2.10)

where ∇φ(y) represent the gradient vector of φ evaluated at y.

Example 1: Squared Euclidean distance is the simplest and most widely used Bregman

divergence. The underlying function φ(x) = xTx is strictly convex, differentiable on Rd and

dφ(x, y) = xTx− yT y − (∇φ(y))T (x− y)

= ‖x‖2 − ‖y‖2 − 2yT (x− y)

= ‖x‖2 − 2xT y + ‖y‖2

= ‖x− y‖2 .

Example 2: Another Bregman divergence is relative entropy or Kullback Leibler dis-

tance D(p‖q) between two probability mass functions p and q. Relative entropy is a measure

of the distance between two distributions. In statistics, it arises as the expected logarithm

of the likelihood ratio. In information and coding theory, it is a measure of the inefficiency

of assuming that the distribution is q when the true distribution is p. If p is a discrete

probability distribution so that
∑d

i=1 pi = 1, the negative entropy φ(p) =
∑d

i=1 pi log pi is a
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convex function. The corresponding Bregman divergence is

dφ(p, q) =
d∑
i=1

pi log pi −
d∑
i=1

qi log qi − (∇φ(q))T (p− q)

=
d∑
i=1

pi log pi −
d∑
i=1

qi log qi −
d∑
i=1

(log qi + 1)(pi − qi)

=
d∑
i=1

pi log pi −
d∑
i=1

qi log qi −
d∑
i=1

(pi − qi) log qi

=
d∑
i=1

pi log pi −
d∑
i=1

pi log qi

=
d∑
i=1

pi log
pi
qi

= D(p‖q).

Example 3: Itakura-Saito distance is another Bregman divergence that is widely used

in signal processing. If F (eiθ) is the power spectrum of a signal f(t), then the functional

φ(F ) = − 1
2π

∫ π
−π log(F (eiθ))dθ is convex in F and corresponds to the negative entropy rate

of the signal assuming it was generated by a stationary Gaussian process [19], [20]. The

Bregman divergence between F (eiθ) and G(eiθ) (the power spectrum of another signal g(t))

is given by

dφ(F,G) =
1
2π

∫ π

−π

(
− log(F (eiθ)) + log(G(eiθ))− (F (eiθ)−G(eiθ))

(
− 1
G(eiθ)

))
dθ

=
1
2π

∫ π

−π

(
− log

(
F (eiθ)
G(eiθ)

)
+
F (eiθ)
G(eiθ)

− 1
)
dθ,

which is exactly the Itakura-Saito distance between the power spectra F (eiθ) and G(eiθ)

and can also be interpreted as the I-divergence [21] between the generating processes under

the assumption that they are equal mean, stationary Gaussian process [22].

Table 2.1 contains a list of some common convex functions and their corresponding

Bregman divergences.

The following theorem from Banerjee et al. 2005 [14] states that the mean of the random

variable X minimizes the expected Bregman divergence and, surprisingly, does not depend

on the choice of Bregman divergence.
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Table 2.1: Bregman divergences generated from some convex functions.

Domain φ(x) dφ(x, y) Divergences

R x2 (x− y)2 Squared loss

R+ x log x x log
�

x
y

�
− (x− y)

[0, 1] x log x + (1− x) log(1− x) x log
�

x
y

�
+ (1− x) log

�
1−x
1−y

�
Logistic loss

R++ − log x x
y
− log

�
x
y

�
− 1 Itakura-Saito distance

R ex ex − ey − (x− y)ey

Rd ‖x‖2 ‖x− y‖2 Square Euclidean distance

Rd xT Ax (x− y)T A(x− y) Mahalanobis distance

d-Simplex
Pd

i=1 xi log xi xi log
�

xi
yi

�
KL-divergence

Rd
+

Pd
i=1 xi log xi

Pd
i=1 xi

�
xi
yi

�
− (xi − yi) Generalized I-divergence

Theorem 2.3.1. (Banerjee et al., 2005) Let X be a random variable that takes values in

X = {xi}ni=1 ⊂ S ⊆ Rd following a positive probability measure ν such that Eν [X] ∈ ri(S).

Given a Bregman divergence dφ : S × ri(S) → [0,∞), the problem

min
s∈ri(S)

Eν [dφ(X, s)] (2.11)

has a unique minimizer given by s∗ = µ = Eν [X].

More examples of Bregman divergences and their properties can be found in [14, 23, 24].

2.4 Bayesian Estimation with Bregman Divergence

In this section, the class of Bregman divergences are considered for the risk functions for

Bayesian estimation. The following theorem establishes the solution to (2.5) for Bregman

divergence risk functions and a general form of likelihood.

Theorem 2.4.1. (Gupta, Srivastava, Cazzanti) [25] Let the posterior f(θ) have the
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form

f(θ) = γ

G∏
g=1

θ
αg
g , (2.12)

where γ is a normalization constant, and
∑G

g=1 αg = 1, then for any Bregman divergence

risk R(θ, φ) = dψ(θ, φ),

θ∗g =
αg + 1∑G
g=1 αg +G

· (2.13)

2.5 An Example: Binomial

As a simple example, suppose one orders five parts and when they arrive, three of the five

parts are broken. We would like to estimate the probability of a part arriving broken based

on this data. Let θ be the probability of a part arriving broken. Then the probability of the

data X (three parts broken out of five) for a given θ is P (X|θ) = 10(1 − θ)2θ3. In Figure

2.1, the likelihood P (X|θ) for each θ is shown.

Based on the data X , different estimates for pmf = theta are shown in Table 1. The

probability of each of each pmf conditioned on the data is P (θ|X ). Using Bayes’ theorem,

P (θ|X ) = P (X|θ)P (θ)/P (X ). Since the MER estimate solves a minimization problem, the

P (X ) in the divisor is a constant and thus can be disregarded. If a prior or other information

about P (θ) is available, then that information can be used. For this example we assume

the prior P (θ) is uniform. Then, for the binomial case at hand, f(θ|X ) = 10(1− θ)2θ3.

Method Estimated θ

ML .60

MOM .57

Bayesian estimate with Bregman divergence .57

Table 2.2: Estimated Bernoulli parameter θ, given that three parts out of five were broken.
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Figure 2.1: Probability of {X = three parts broken out of five}, based on an iid Bernoulli
distribution with parameter θ

As seen from Figure 2.1, the maximum probability P (X|θ) occurs at θ = .60, and thus

this is the ML estimate. Which estimate is best? That depends on what one is trying to

accomplish. Each estimate does exactly what its principle aims to do: the ML maximizes

the probability of being right, but does not worry about how wrong the estimate could

be. The Bayesian estimates minimize expected risk, and thus, on average, we expect these

estimates to be more robust.
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Chapter 3

BAYESIAN ESTIMATES FOR WEIGHTED NEAREST-NEIGHBOR
CLASSIFIERS

In this chapter we derive minimum expected Bregman divergence estimates for weighted

nearest-neighbor class probability estimates, and show that classifying with these class prob-

ability estimates minimizes the expected misclassification cost. Section 3.1 introduces super-

vised learning problem and notations. Section 3.2 discusses the k-nearest neighbor learning

problem and a generalized form of Laplace smoothing for weighted k nearest-neighbors class

probability estimates is derived. Section 3.3 discusses nearest neighbor classification with

these probability estimates. The results in this chapter have been submitted for publication

[25].

3.1 Introduction

The standard statistical learning problem is treated, with training pairs T = {(Xi, Yi)}

and test pair (X,Y ) drawn independently and identically from a sufficiently nice joint

distribution PX,Y , where Xi and X are feature vectors in Rd and Yi ∈ {1, 2, . . . , G}, are the

class labels. The problems are to estimate class label’s probability PY |x = P (Y |X = x) and

Y given training pairs T , test sample x, and a G×G misclassification cost matrix C, where

C(g, h) specifies the cost of classifying a test sample as class g when the truth is class h.

In this chapter, the unknown PY |x is treated as a random vector Θ where Θg denotes

the unknown P (Y = g|x) for g ∈ {1, 2, . . . , G}, a realization of Θ is the probability mass

function θ, and Θ is distributed with density f(θ), which is constrained to have a particular

formulation, as stated in (2.12).

3.2 Nearest-Neighbor Learning

Let the training samples be re-indexed by their distance to x, such that xk is the kth nearest

neighbor of x. Nonparametric nearest-neighbor methods assign a weight wj to each xj ; the
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present analysis is restricted to weights that satisfy
∑k

j=1wj = 1 and wj ≥ 0. The standard

estimate for P (Y = g|x) is [26]

θ̂g =
k∑
j=1

wjI(Yj=g), (3.1)

where I(·) is an indicator function that equals one when its argument is true, and equals

zero otherwise. Given the class pmf estimate θ̂ = (θ̂1, θ̂2, . . . , θ̂G), the standard classification

of x is

Ŷ = arg min
g

G∑
h=1

C(g, h)θ̂h. (3.2)

The underlying model is that the k nearest neighbors of x are all drawn from the true PY |x,

so that the likelihood of mg nearest neighbors being labeled class g for every g = 1, 2, . . . , G

is

f(θ) =


k!

G∏
g=1

mg!


G∏
g=1

θ
mg
g . (3.3)

Under this model, the probability estimate (3.1) with wj = 1/k for all j maximizes the

likelihood f(θ).

Similarly, define a weighted likelihood f(θ, w) to be the likelihood of the weighted neigh-

bors:

f(θ, w) = γ

G∏
g=1

k∏
j=1

θ
wjkI(Yj=g)

g = γ

G∏
g=1

θ
k
Pk

j=1 wjI(Yj=g)

g , (3.4)

where γ is the normalization constant. It can be shown that the estimate (3.1) maximizes

the weighted likelihood (3.4).

ML estimates can yield high variance estimates because the maximum of the likelihood

function can be quite unrepresentative of the complete likelihood distribution, particularly

when sample sizes are small. For nearest neighbor classifiers the sample sizes are often very

small in an effort to keep the neighborhood local, which under the compactness hypothesis

improves the validity of the nearest-neighbor model assumption that the k nearest neighbors

are drawn from PY |x. See [27, pgs. 300-310] and [28, ch. 15] for further discussions of the

problems with maximum likelihood estimation. Other smoothing approaches have also been

applied to statistical learning, most heuristic in nature [29].
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From theorem 2.4.1, for any Bregman divergence risk the probability estimate θ∗g is given

as

θ∗g =
αg + 1∑G
g=1 αg +G

, (3.5)

where

αg = k
k∑
j=1

wjI(Yj=g). (3.6)

When the weights are uniform such that wj = 1/k for all j, the estimate θ∗ is equivalent to

Laplace correction for estimating multinomial distributions [30, pg. 272], also called Laplace

smoothing. Appropriately, the history of Laplace correction goes back to Laplace himself;

Jaynes offers historical information and more details about alternate derivations [31, pgs

154-165]. Laplace correction has been shown to be useful for class probability estimation in

decision trees [32, 33, 34, 35], and with naive Bayes [36]. Laplace correction was incorporated

in the CN2 rule learner [37], and Domingos used it to break ties in a unified instance-based

and rule-based learner [38].

3.3 Classifying

For zero-one costs such that C(g, g) = 0 and C(g, h) = 1 for all g 6= h, it can easily be

shown that using either the maximum likelihood estimate given in (3.1) or the minimum

expected risk estimate given in (2.13) with the classification rule (3.2) will result in the

same estimated class.

For more general costs, the Bayes classifier minimizes

arg min
g∈{1,2,...,G}

G∑
h=1

C(g, h)P (Y = h|x).

In practice, P (Y = h|x) is unknown and is estimated as some θ̂ as discussed in this paper.

It is proposed that instead of first estimating the class pmf P (Y = h|x) and then classifying,

one should model the uncertain class pmf as a random variable Θ, and directly classify to

minimize the expected misclassification cost, choosing the class Ŷ that solves:

Ŷ = arg min
g∈{1,2,...,G}

EΘ

[
G∑
h=1

C(g, h)Θh

]
. (3.7)
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Corollary 3.3.1. Classifying as per (3.7) is equivalent to classifying as per (3.2) with the

class pmf estimate given by (A.2).

Proof. The equivalence follows directly from applying the linearity of expectation to (3.7)

and (A.1).

This corollary explicitly links minimizing expected Bregman divergences of the class proba-

bility estimates to the optimal choice for the class label in terms of expected misclassification

cost. For discrete random variables, it has been shown that for the expectation of a risk

function to equal the expectation of the variable it is necessary that the risk function be a

Bregman divergence [14, Theorem 4]. It is conjectured in this chapter that this is true for

continuous random variables as well, such that the solution to (6) is EΘ[Θ] only if R is a

Bregman divergence.

In summary, this chapter theoretically motivated the application of a generalized form

of Laplace smoothing for weighted k nearest-neighbors class probability estimates as the

solution to minimizing any expected Bregman divergence. Also, it established that mini-

mizing expected Bregman divergence in the class pmf estimation is equivalent to resolving

the uncertainty of the unknown class pmf so as to minimize the expected misclassification

cost. This simple result is important because it establishes that minimizing the Bregman

divergence of the class estimate has a direct link to minimizing the 0-1 misclassification

cost, which is difficult to work with analytically.
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Chapter 4

DISTRIBUTION-BASED BAYESIAN MINIMUM EXPECTED RISK
FOR DISCRIMINANT ANALYSIS

This chapter considers a distribution-based Bayesian estimation for classification by

quadratic discriminant analysis, instead of the standard parameter-based Bayesian esti-

mation. This approach yields closed form solutions, but removes the parameter-based re-

striction of requiring more training samples than feature dimensions. Section 4.1 describes

the motivations behind the distribution-based approach to Bayesian quadratic discrimi-

nant analysis. Section 4.2 reviews bias phenomenon in linear and quadratic discriminant

analysis. Section 4.3 discusses related work on Bayesian approach to quadratic discrimi-

nant analysis. In Section 4.4 the criterion of minimizing expected misclassification cost is

motivated and distribution-based approach to Bayesian quadratic discriminant analysis is

proposed using idea of statistical manifold of Gaussian distributions. Section 4.4.2 inves-

tigates prior so that it has an adaptively regularizing effect. In Section 4.4.3 closed form

solutions of distribution-based and parameter-based Bayesian discriminant analysis classi-

fiers are established for different priors. In Section 4.5 performance of the various classifiers

are compared on a suite of simulations. This chapter takes the first steps towards showing

that the prior itself can act as an efficient regularizing force. The results in this chapter

have been published [39, 40].

4.1 Introduction

A standard approach to supervised classification problems is quadratic discriminant analy-

sis (QDA), which models the likelihood of each class as a Gaussian distribution, then uses

the posterior distributions to estimate the class for a given test point based on minimizing

the expected misclassification cost [5]. This method is also known as predictive classifica-

tion. The Gaussian parameters for each class can be estimated from training points with

maximum likelihood (ML) estimation. The simple Gaussian model is best suited for cases
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when one does not have much information to characterize a class. Unfortunately, when

the number of training samples n is small compared to the number of dimensions of each

training sample d, the ML covariance estimation can be ill-posed. One approach to resolve

the ill-posed estimation is to regularize the covariance estimation; another approach is to

use Bayesian estimation.

Bayesian estimation for QDA was first proposed by Geisser [41], but this approach has

not become popular, even though it minimizes the expected misclassification cost. Ripley

[42], in his text on pattern recognition, states that such predictive classifiers are mostly

unmentioned in other texts and that “this may well be because it usually makes little

difference with the tightly constrained parametric families.” Geisser [43] examines Bayesian

QDA in detail, but does not show that in practice it can yield better performance than

regularized QDA. The performance of Bayesian QDA classifiers is very sensitive to the

choice of prior [39], and that priors suggested by Geisser [41] and Keehn [44] produce error

rates similar to those yielded by ML.

This chapter considers two issues in using Bayesian estimation effectively for quadratic

discriminant analysis. First, it considers directly integrating out the uncertainty over

the domain of Gaussian probability distributions (pdfs), as opposed to the standard ap-

proach of integrating out the uncertainty over the domain of the parameters. The proposed

distribution-based Bayesian discriminant analysis removes the parameter-based Bayesian

analysis restriction of requiring more training samples than feature dimensions and also

removes the question of invariance to transformations of the parameters, because the esti-

mate is defined in terms of the Gaussian distribution itself. Comparative performance on

the Friedman suite of simulations shows that the distribution-based Bayesian discriminant

analysis is also advantageous in terms of average error. The second issue considered here is

the choice of prior. Ideally, a prior should have an adaptively regularizing effect, yielding

robust estimation when the number of training samples is small compared to the number

of feature dimensions (and hence the number of parameters), but also converging as the

number of data points grows large. In practice, there can be more informative features

d than labeled training samples n. This situation has previously been addressed through

regularization (such as regularizing quadratic discriminant analysis with linear discriminant
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analysis [4]). This chapter takes the first steps towards showing that the prior itself can act

as an efficient regularizing force. This would be more clear when we would move to Chapter

5.

4.2 Review of Bias in Linear and Quadratic Discriminant Analysis

This review section is based on [5], [4], and Michael D. Perlman class’s note on multivari-

ate statistic. The most common generative classification rules are based on the normal

distribution

fh(x) =
1

(2π)
d
2 |Σh|

1
2

exp
(
−1

2
(x− µh)TΣ−1

h (x− µh)
)
, (4.1)

where µh and Σh are the class h (1 ≤ h ≤ G) mean and covariance matrix. For the simple

loss (0− 1) function and the uniform prior over the class labels, the classification rule for a

given test sample x ∈ Rd becomes: classify as class ĝ where

ĝ = arg min
h∈{1,2,...,G}

dh(x) (4.2)

where dh(x) = (x− µh)TΣ−1
h (x− µh) + log |Σh|. (4.3)

The quantity dh(x) is called the discriminant function. The first term on the right side of

(4.3) is the well-known Mahalanobis distance between x and µh.

The classification rule (4.2) and (4.3) is called quadratic discriminant analysis (QDA)

since it separates the disjoint regions of the feature space corresponding to each class label

by quadratic boundaries. When all the class covariance matrices are identical

Σh = Σ, 1 ≤ h ≤ G, (4.4)

then classification rule (4.2) and (4.3) is called linear discriminant analysis (LDA). LDA

results in linear decision boundaries as the quadratic terms associated with (4.2) and (4.3)

get canceled.

Quadratic and linear discriminant analysis can be expected to work well if the class

conditional densities are approximately normal and good estimates can be obtained for

mean µh and covariance matrices Σh. Classification rules based on QDA are known to

require generally larger samples than those based on LDA and seems to be more sensitive

to violation of the basic assumptions.
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In common application of linear and quadratic discriminant analysis the parameters

associated with the class densities are estimated by their sample analogs

µ̂h = X̄h (4.5)

Σ̂h =
1
nh

n∑
i=1

(Xi − X̄h)(Xi − X̄h)T I(yi=h). (4.6)

When the class sample size nh (1 ≤ h ≤ G) is small compared with the dimension of

the feature space d, the covariance matrix estimates, especially, become highly variable.

Moreover, when nh < d not all of their parameters are even identifiable. The effect this has

on discriminant analysis can be seen by representing the class covariance matrices by their

spectral decompositions

Σh =
d∑
i=1

λihvihv
T
ih,

where λih is the ith eigenvalue of Σh (ordered in decreasing value) and vih ∈ Rd is the

corresponding eigenvector. The inverse in this representation is

Σ−1
h =

d∑
i=1

vihv
T
ih

λih
,

and the discriminant function (4.3) becomes

dh(x) =
d∑
i=1

[vTih(x− µh)]2

λih
+

d∑
i=1

lnλih. (4.7)

The discriminant function (4.7) is heavily weighted by the smallest eigenvalues and the di-

rection associated with their eigenvectors. When sample-based plug-in estimates are used,

this becomes the eigenvalues and eigenvectors of Σ̂h. Moreover, writing the extremal rep-

resentation of the largest and smallest eigenvalues of the hth class’s estimated covariance

matrix Σ̂h,

λ1h(Σ̂h) = max
vT v=1

vT Σ̂hv

λdh(Σ̂h) = min
vT v=1

vT Σ̂hv.

Therefore, λ1h(Σ̂h) and λdh(Σ̂h) are, respectively, convex and concave functions of Σ̂h. Thus
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by Jensen’s inequality,

EΣh
[λ1h(Σ̂h)] ≥ λ1h(EΣh

[Σ̂h]) = λ1h(Σh) (4.8)

EΣh
[λdh(Σ̂h)] ≤ λdh(EΣh

[Σ̂h]) = λdh(Σh). (4.9)

Thus, even though the estimate Σ̂h given by (4.6) is unbiased estimate of Σh, it produces

the biased estimate of the eigenvalues: the largest eigenvalue is biased high (overestimated)

(4.8), while the smallest eigenvalue is biased low (underestimated) (4.9). This holds for the

other eigenvalues also. One way to attempt to mitigate this problem is to either try to

obtain more reliable estimates of the eigenvalues: by shrinking the larger eigenvalues and

expanding the lower ones. Moreover

E

[
d∏
i=1

λih(Σ̂h)

]
=

d∏
i=1

λih(Σh)
d∏
j=1

(
nh − d+ j

nh

)
(4.10)

=
d∏
i=1

λih(Σh)

 d∏
j=1

(
nh − d+ j

nh

) d
d

≤
d∏
i=1

λih(Σh)

 d∑
j=1

(
1
d

nh − d+ j

nh

)d

(4.11)

=
d∏
i=1

λih(Σh)
(

1− d− 1
2nh

)d

≤
d∏
i=1

λih(Σh) exp[−d(d− 1)
2nh

], (4.12)

where (4.11) follows from the fact that geometric mean is less than equal to arithmetic

means, (4.12) follows from the inequality 1−x ≤ exp(−x). Thus,
∏d
i=1 λih(Σ̂h) will tend to

underestimate
∏d
i=1 λih(Σh) unless nh � d2, which does not usually hold in applications.

This suggest that shrinkage-expansion of the sample eigenvalues should not be done in a

linear manner: the smaller λih(Σ̂h)′s should be expanded proportionally more than the

larger λih(Σ̂h)′s should be shrunk.

With as many parameters in the model as training examples we would expect ML

estimation to lead to severe over-fitting. To avoid this a common approach is to impose

some additional constraint on the parameters, for example the addition of a penalty term
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to the likelihood or error function. The other way is to adopt a Bayesian perspective and

‘constrain’ the parameters by defining an explicit prior probability distribution over them.

4.3 Related Work on Bayesian Approach to QDA

Discriminant analysis using Bayesian estimation was first proposed by Geisser [41] and

Keehn [44]. Geisser’s work used a noninformative prior distribution to calculate the posterior

odds that a test sample belongs to a particular class. Keehn’s work assumed that the prior

distribution of the covariance matrix has a Wishart distribution. Work by Brown et al.

[10] on this topic uses conjugate priors, and they proposed a hierarchical approach that

compromises between the two extremes of linear and quadratic Bayes discriminant analysis,

similar to Friedman’s regularized discriminant analysis [4]. Raudys and Jain note that the

Geisser and Keehn Bayesian discriminant analysis may be inefficient when the class sample

sizes differ [45]. In all of this prior Bayesian work is parameter-based in that the mean µ

and covariance Σ are treated as random variables, and the expectation of µ and of Σ are

calculated with respect to Lebesgue measure over the domain of the parameters. In the next

section distribution-based Bayesian QDA is solved, such that the uncertainty is considered

to be over the set of Gaussian distributions and the Bayesian estimation is formulated over

the domain of the Gaussian distributions. The mathematics of such statistical manifolds

needed for this approach has been investigated by Kass [46], Amari [47] and others.

4.4 Distribution-Based Bayesian Quadratic Discriminant Analysis

Parameter estimation depends on the form of the parameter. For example, Bayesian es-

timation can yield one result if the expected standard deviation is solved for, or another

result if the expected variance is solved for. To avoid this issue Bayesian QDA is derived

by formulating the problem in terms of the Gaussian distributions explicitly. This section

extends work presented in a recent conference paper [39].

Suppose one is given an iid training set T = {(xi, yi), i = 1, 2, . . . n} and a test sample

x, where xi, x ∈ Rd, and yi takes values from a finite set of class labels yi ∈ {1, 2, . . . , G}.

Let C be the misclassification cost matrix such that C(g, h) is the cost of classifying x as

class g when the truth is class h. Let P (Y = h) be the prior probability of class h. Suppose
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the true class conditional distributions p(x|Y = h) exist and are known for all h, then the

estimated class label for x that minimizes the expected misclassification cost is

Y ∗ 4
= arg min

g=1,...,G

G∑
h=1

C(g, h)p(x|Y = h)P (Y = h). (4.13)

In practice the class conditional distributions and the class priors are usually unknown.

Model each unknown distribution p(x|h) by a random Gaussian distribution Nh, and model

the unknown class priors by the random vector Θ, which has components Θh = P (Y = h) for

h = 1, . . . , G. Then, estimate the class label that minimizes the expected misclassification

cost, where the expectation is with respect to the random distributions Θ and {Nh} for h =

1, . . . , G. That is, define the distribution-based Bayesian QDA class estimate by replacing the

unknown distributions in (4.13) with their random counterparts and taking the expectation:

Ŷ
4
= arg min

g=1,...,G
E

[
G∑
h=1

C(g, h)Nh(x)Θh

]
. (4.14)

In (4.14) the expectation is with respect to the joint distribution over Θ and {Nh} for

h = 1, . . . , G, and these distributions are assumed independent. Therefore (4.14) can be

rewritten as

Ŷ = arg min
g=1,...,G

G∑
h=1

C(g, h)ENh
[Nh(x)]EΘ[Θh]. (4.15)

Straightforward integration yields an estimate of the class prior, EΘ[Θh] = nh+1
n+G ; this

Bayesian estimate for the multinomial is also known as Laplace correction [31]. In this

next section we discuss the evaluation of ENh
[Nh(x)].

4.4.1 Statistical Models and Measure

Consider the family M of multivariate Gaussian probability distributions on Rd. Let each

element of M be a probability distribution N : Rd → [0, 1], parameterized by the real-valued

variables (µ,Σ) in some open set in Rd ⊗ S, where S ⊂ Rd(d+1)/2 is the cone of positive

semi-definite symmetric matrices. That is M = {N (· ;µ,Σ)} defines a d2+3d
2 -dimensional

statistical model, [47, pp. 25–28].
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Let the differential element over the set M be defined by the Riemannian metric [46, 47],

dM = |IF (µ,Σ)|
1
2dµdΣ, where

IF (µ,Σ) = −EX [∇2 logN (X; (µ,Σ))],

where ∇2 is the Hessian operator with respect to the parameters µ and Σ, and this IF is

also known as the Fisher information matrix. Straightforward calculation shows that

dM =
dµ

|Σ|
1
2

dΣ

|Σ|
d+1
2

=
dµdΣ

|Σ|
d+2
2

. (4.16)

Let Nh(µh,Σh) be a possible realization of the Gaussian pdf Nh. Using the measure defined

in (4.16),

ENh
[Nh(x)] =

∫
M
Nh(x)r(Nh)dM, (4.17)

where r(Nh) is the posterior probability of Nh given the set of class h training samples Th;

that is,

r(Nh) =
`(Nh, Th)p(Nh)

αh
, (4.18)

where αh is a normalization constant, p(Nh) is the prior probability of Nh (treated further

in Section 4.4.2), and `(Nh, Th) is the likelihood of the data Th given Nh, that is,

`(Nh(µh,Σh), Th) =
exp[−1

2 tr
(
Σ−1
h Sh

)
− nh

2 tr
(
Σ−1
h (µh − X̄h)(µh − X̄h)T

)
]

(2π)
dnh
2 |Σh|

nh
2

.(4.19)

4.4.2 Priors

A prior probability distribution of the Gaussians, p(Nh), is needed to solve the classification

problem given in (4.14). A common interpretation of Bayesian analysis is that the prior

represents information that one has prior to seeing the data [31]. In the practice of statistical

learning, one often has very little quantifiable information apart from the data. Instead of

thinking of the prior as representing prior information, consider the following design goals:

the prior should

• regularize the classification to reduce estimation variance, particularly when the num-

ber of training samples n is small compared to the number of feature dimensions;
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• add minimal bias;

• allow the estimation to converge to the true generating class conditional normals as

n→∞ if in fact the data was generated by class conditional normals;

• lead to a closed-form result.

To meet these goals, we use as a prior

p(Nh) = p(µh)p(Σh) = γ0
exp[−1

2 tr
(
Σ−1
h Bh

)
]

|Σh|
q
2

, (4.20)

where Bh is a positive definite matrix and γ0 is a normalization constant. The prior (4.20)

is equivalent to a noninformative prior for the mean µ, and an inverted Wishart prior with

q degrees of freedom over Σ. One can also note that if Bh = 0 and q = d + 1, the prior

(4.20) reduces to an improper, invariance non-informative prior.

p(Nh) =
1

|Σh|
d+1
2

. (4.21)

To meet the goal of minimizing bias, encode some coarse information about the data into

Bh. Setting Bh = kI is reminiscent of Friedman’s RDA [4], where the covariance estimate

is regularized by the trace:
tr(Σ̂ML)

d I. The trace of the ML covariance estimate is stable,

and provides coarse information about the scale of the data samples. As pointed out by

Friedman [4], this term
tr(Σ̂ML)

d I has the effect of decreasing the larger eigenvalues and

increasing the smaller ones, thereby counteracting the biasing inherent in sample-based

estimation of eigenvalues.

This chapter shows that by setting Bh =
tr(Σ̂ML)

d I and q = d + 3 a distribution-based

discriminant analysis outperforms Geisser’s or Keehn’s parameter-based Bayesian discrim-

inant methods, and does not require crossvalidation [39]. Next, the closed form result with

a prior of the form given in (4.20) is described. Chapter 5 returns to the question of data-

dependent definitions for Bh when we propose the BDA7 classifier and there it is shown

that an effect this prior has on discriminant analysis is that it regularizes the likelihood

covariance estimate towards the maximum of the prior.
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4.4.3 Closed-Form Solutions

In Theorem 4.4.1 the closed-form solution for the proposed distribution-based Bayesian dis-

criminant analysis classifier is established. The closed-form solution for the parameter-based

classifier with the same prior is given in Corollary 4.4.2.

Theorem 4.4.1. (Srivastava, Gupta 2006) The classifier (4.15) using the inverted

Wishart prior (4.20) is equivalent to

Ŷ = arg min
g

G∑
h=1

C(g, h)
(nh)

d
2 Γ(nh+q+1

2 )
∣∣∣Sh+Bh

2

∣∣∣nh+q

2

(nh + 1)
d
2 Γ(nh+q−d+1

2 )|Ah|
nh+q+1

2

P̂ (Y = h), (4.22)

where

Ah =
1
2

(
Sh +

nh(X − X̄h)(X − X̄h)T

(nh + 1)
+Bh

)
. (4.23)

The proof is given in the Appendix A. Because q ≥ d, the solution (4.22) is valid for any

nh > 0 and any feature space dimension d.

Corollary 4.4.2. The parameter-based Bayesian discriminant analysis solution using the

inverted Wishart prior given in (4.20) is to classify test point X as class label

Ŷ
4
= arg min

g

G∑
h=1

C(g, h)
n

d
2
hΓ(nh+q−d−1

2 )

(nh + 1)
d
2 Γ(nh+q−2d−1

2 )

|Sh+Bh
2 |

nh+q−d−2

2

|Ah|
nh+q−d−1

2

P̂ (Y = h). (4.24)

The proof of this corollary follows the same steps as the proof of the presented theorem

4.4.1 by replacing the Fisher information measure dµdΣ

|Σ|
d+2
2

with Lebesgue measure. One

can also get parameter-based Bayesian classifier (4.24) by replacing q equal to q − d − 2

in distribution-based Bayesian classifier (4.22). Notably, the parameter-based Bayesian

discriminant solution (4.24) will not hold if nh ≤ 2d− q + 1.

Theorem 4.4.3. The distribution-based Bayesian discriminant analysis solution using the

noninformative prior

p(Nh) = p(µh)p(Σh) =
1

|Σh|
d+1
2

, (4.25)
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is to classify test point X as class label

Ŷ
4
= arg min

g

G∑
h=1

C(g, h)
n

d
2
hΓ(nh+d+2

2 )

(nh + 1)
d
2 Γ(nh+2

2 )

|Sh
2 |

nh+d+1

2

|Th|
nh+d+2

2

P̂ (Y = h), (4.26)

where

Th =
1
2

(
Sh +

nh(X − X̄h)(X − X̄h)T

(nh + 1)

)
. (4.27)

The proof is given in the Appendix A. Again, this distribution-based Bayesian discrim-

inant solution (4.26) will hold for any nh > 0 and any d. Also note that one gets (4.26) by

setting Bh = 0 and q = d+ 1 in (4.22)

A parameter-based Bayesian discriminant analysis given by Geisser [41] using the non-

informative prior over Σ and µ is also given for comparison.

Theorem 4.4.4. (Geisser 1964) The parameter-based Bayesian discriminant analysis

solution using the noninformative prior (4.25) is to classify test point X as class label

Ŷ
4
= arg min

g

G∑
h=1

C(g, h)
n

d
2
hΓ(nh

2 )

(nh + 1)
d
2 Γ(nh−d

2 )

|Sh
2 |

nh−1

2

|Th|
nh
2

P̂ (Y = h), (4.28)

where Th is given by (4.27).

Note that Geisser’s parameter-based Bayesian classifier requires at least d number of

training samples from each class, for (4.28) to holds. Also Geisser’s formula (4.28) can be

directly obtained from (4.26) by substituting nh as nh − d− 2.

4.5 Simulation

The performance of the various estimators was compared using simulations similar to those

proposed by Friedman to evaluate regularized discriminant analysis [4]. The comparison

is between parameter-based Bayesian estimation, distribution-based Bayesian estimation,

quadratic discriminant analysis, and nearest-means classification. Furthermore, for the

Bayesian perspective, the non-informative prior was compared to the inverted Wishart prior

with d+3 degree of freedom for the covariance (the non-informative prior was used through-

out for the mean). The class label is randomly drawn to be class 1 (Y = 1) with probability

half, and class 2 (Y = 2) with probability half.
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Figure 4.1: Below: Results of equal (bottom left) and unequal (bottom right) spherical
covariance matrix simulation

Equal Spherical Covariance Matrices

Each class conditional distribution was normal with identity covariance matrix I. The mean

of the first class µ1 was the origin. Each component of the mean µ2 of the second class was

3. Results are shown in Figure 4.5 (bottom left).

Unequal Spherical Covariance Matrices

Conditioned on class 1, the distribution was normal with identity covariance matrix I and

mean at the origin. Conditioned on class 2, the distribution was normal with covariance

matrix 2I and each component of the mean was 3. Results are shown in Figure 4.5 (bottom
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right).

Equal Highly Ellipsoidal Covariance Matrices

Covariance matrices of each class distribution were the same, and highly ellipsoidal. The

eigenvalues of the common covariance matrices were given by

ei = [
9(i− 1)
d− 1

+ 1]2, 1 ≤ i ≤ d, (4.29)

so the ratio of the largest to smallest eigenvalue is 100.

A first case was that the class mean differences were concentrated in a low-variance

subspace. The mean of class 1 was located at the origin and ith component of the mean of

class 2 was given by

µ2i = 2.5
√
ei
d

(
d− i
d
2 − 1

)
, 1 ≤ i ≤ d.

Results are shown in Figure 4.5 (top left).

A second case was that the class mean differences were concentrated in a high-variance

subspace. The mean of the class 1 was again located at the origin and the ith component

of the mean of class 2 was given by

µ2i = 2.5
√
ei
d

(
i− 1
d
2 − 1

)
, 1 ≤ i ≤ d.

Result is shown in Figure 4.5 (top right).

Unequal Highly Ellipsoidal Covariance Matrices

Covariance matrices were highly ellipsoidal and different for each class. The eigenvalues of

the class 1 covariance were given by equation (4.29) and those of class 2 were given by

e2i = [
9(d− i)
d− 1

+ 1]2, 1 ≤ i ≤ d.

A first case was that the class means were identical. A second case was that the class

means were different, where the mean of class 1 was located at the origin and the ith

component of the mean of class 2 was given by µ2i = 14√
d
. Results are shown in Figure 4.5

(bottom left) and Figure 4.5 (bottom right) respectively.
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Figure 4.2: Above: Results of equal highly ellipsoidal covariance matrix with low variance
(top left) and high variance (top right) subspace mean differences simulations. Below:
Results of unequal highly ellipsoidal covariance matrix with the same (bottom left) and the
different (bottom right) means simulations.

Experimental Procedure

For each of the above described choices of class conditional covariance matrix and mean,

the figures show the average misclassification costs from 1000 replications of the following

procedure: First n = 40 training sample pairs were drawn iid. Each classifier used the

training samples to estimate its parameters. For all the classifiers, the prior probability of

each of the two classes was estimated based on the number of observations from each class

using Bayesian minimum expected risk estimation. Then, 100 test samples were drawn iid,
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and classified by each estimator.

4.6 Conclusion

The distribution-based Bayesian discriminant analysis is seen to perform better in almost

all cases of the simulations. In particular, using the adaptive inverted Wishart prior led

to significantly better performance in some cases. We hypothesize that this choice of prior

has a regularizing effect, and that using a well-designed adaptive prior could be an effective

regularization strategy for discriminant analysis without the need for cross-validation to

find regularization parameters as in regularized discriminant analysis [4].
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Chapter 5

BAYESIAN QUADRATIC DISCRIMINANT ANALYSIS

This chapter proposes a Bayesian QDA classifier termed BDA7. BDA7 is competitive

with regularized QDA, and in fact performs better than regularized QDA in many of the

experiments with real data sets. BDA7 differs from previous Bayesian QDA methods in

that the prior is selected by crossvalidation from a set of data-dependent priors. Each data-

dependent prior captures some coarse information from the training data. Using twelve

benchmark datasets and ten simulations, performance of BDA7 is compared to that of

Friedman’s regularized quadratic discriminant analysis (RDA) [4], to a model-selection dis-

criminant analysis (EDDA) [11], to a modern cross-validated Bayesian QDA (QB) [10], and

to ML-estimated QDA, LDA, and the nearest-means classifier. Focus is on cases in which

the number of dimensions d is large compared to the number of training samples n. The

results show that BDA7 performs better than the other approaches on average for the real

datasets. The simulations help analyze the methods under controlled conditions.

This chapter also contributes to the theory of Bayesian QDA in several aspects. First, it

is shown that the Bayesian distribution-based classifier that minimizes the expected misclas-

sification cost is equivalent to the classifier that minimizes the expected Bregman divergence

of the class conditional distributions. Second, using a series approximation, it is shown how

the Bayesian QDA solution acts like Friedman’s regularized QDA, which provides insight

into determining effective prior distributions.

Chapter 4 has already discussed that the distribution-based Bayesian classifier perfor-

mance is superior to the parameter-based Bayesian classifier given the same prior if no

cross-validation is allowed. Section 5.1 reviews approaches to cross-validated Bayesian QDA

and regularized QDA. An approximate relationship between Bayesian QDA and Friedman’s

regularized QDA is given in Section 5.2. Section 5.3 establishes that the Bayesian mini-

mum expected misclassification cost estimate is equivalent to a plug-in estimate using the
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Bayesian minimum expected Bregman divergence estimate for each class conditional. Then,

it turns to the practical matter of classification: proposes a cross-validated Bayesian QDA

classifier BDA7 in Section 5.4. In Section 5.5, benchmark dataset results compare BDA7 to

other QDA classifiers, followed by further analysis using simulation results in Section 5.6.

The chapter concludes with a discussion of the results. The results in this chapter have

been submitted for journal publication [40]

5.1 Prior Research on Ill-Posed QDA

5.1.1 Bayesian Approaches to QDA

In Section 4.3 Bayesian approaches to QDA were reviewed.

The inverse Wishart prior is a conjugate prior for the covariance matrix, and it requires

the specification of a “seed” positive definite matrix and a scalar degree of freedom. Follow-

ing [10], the term Quadratic Bayes (QB) is used to refer to a modern form of Bayesian QDA

where the inverse Wishart seed matrix is kI, where I is the d-dimensional identity matrix,

k is a scalar, and the parameters k and the degree of freedom q of the inverse Wishart

distribution are chosen by crossvalidation.

5.1.2 Regularizing QDA

Friedman [4] proposed regularizing ML covariance estimation by linearly combining a ML

estimate of each class covariance matrix with the ML pooled covariance estimate and with

a scaled version of the identity matrix to form an estimate Σ̂h(λ, γ) for the hth class:

Σ̂h(λ) =
(1− λ)Sh + λS

(1− λ)nh + λn
(5.1)

Σ̂h(λ, γ) = (1− γ)Σ̂h(λ) +
γ

d
tr
(
Σ̂h(λ)

)
I. (5.2)

In Friedman’s regularized QDA (RDA), the parameters λ, γ are trained by crossvalida-

tion to be those parameters that minimize the number of classification errors. Friedman’s

comparisons to ML quadratic discriminant analysis and ML linear discriminant analysis on

six simulations showed that RDA could deal effectively with ill-posed covariance estimation
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when the true covariance matrix is diagonal. RDA is perhaps the most popular approach

to discriminant analysis when the covariance estimation is expected to be ill-posed [5].

Hoffbeck and Landgreb [48] proposed a similar regularized covariance estimate for clas-

sification of the form

Σ̂ = α1diag(Σ̂ML) + α2Σ̂ML + α3Σ̂pooledML + α4diag(Σ̂pooledML),

where Σ̂ML and Σ̂pooledML are maximum likelihood estimates of class and pooled covariance

matrices, respectively, and the parameters α1, α2, α3, α4 are trained by crossvalidation to

maximize the likelihood (whereas Friedman’s RDA crossvalidates to maximize classification

accuracy). Results on Friedman’s simulation suite and experimental results on a hyper-

spectral classification problem showed that the two classifiers achieved similar accuracy

[48]. Another restricted model used to regularize covariance matrix estimation is a banded

covariance matrix [49].

RDA and the Hoffbeck-Landgrebe classifiers linearly combine different covariance esti-

mates. A related approach is to select the best covariance model out of a set of models using

crossvalidation. Besnmail and Celeux [11] propose eigenvalue decomposition discriminant

analysis (EDDA), in which fourteen different models are considered. Each model is the

reparameterization of the class covariance matrix Σh in terms of eigenvalues decomposition

Σh = λhAhDhA
T
h , where λh specifies the volume of density contours of the class, diagonal

matrix of eigenvalues Dh specifies its shape, and the eigenvectors Ah specifies its orientation.

Variations on constraints concerning volumes, shape, and orientations, λh, Dh and Ah leads

to fourteen discrimination models ranging from a scalar times the identity matrix to a full

class covariance estimate for each class. The model that minimizes the crossvalidation error

is selected for use with the test data. Each individual model’s parameters are estimated

by ML, and some of these estimates require iterative procedures that are computationally

intensive.

The above techniques consider a discrete set of possible models for Σ, and either linearly

combine models or select one model. In contrast, Bayesian discriminant analysis considers

a continuous set of possible models for Σ, and averages the continuous set with respect to

each model’s posterior probability.
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5.1.3 Other Approaches to Quadratic Discriminant Analysis

Other approaches have been developed for ill-posed quadratic discriminant analysis. Fried-

man [4] notes that, beginning with work by James and Stein in 1961, researchers have

attempted to improve the eigenvalues of the sample covariance matrix. Another approach

is to reduce the data dimensionality before estimating the Gaussian distributions, for exam-

ple by principal components analysis [50]. One of the most recent algorithms of this type

is orthogonal linear discriminant analysis Ye [51], which was shown by the author of that

work to perform similarly to Friedman’s regularized linear discriminant analysis on six real

data sets.

5.1.4 Priors and Regularization

Prior (4.20) is used where Bh is a positive definite matrix (further specified in (5.13)) and

γ0 is a normalization constant. The prior (4.20) is equivalent to a noninformative prior for

the mean µ, and an inverted Wishart prior with q degrees of freedom over Σ.

This prior is unimodal and leads to a closed-form result. Depending on the choice of Bh

and q, the prior probability mass can be focused over a small region of the set of Gaussian

distributions M in order to regularize the estimation. Regularization is important for cases

where the number of training samples n is small compared to the dimensionality d. However,

the tails of this prior are sufficiently heavy that the prior does not hinder convergence to

the true generating distribution as the number of training samples increases if the true

generating distribution is normal.

The positive definite matrix Bh specifies the location of the maximum of the prior

probability distribution. Using the matrix derivative [52] and the knowledge that the inverse

Wishart distribution has only one maximum, one can calculate the location of the maximum

of the prior. Take the log of the prior,

log p(Nh) = −1
2

tr
(
Σ−1
h Bh

)
− q

2
log |Σh|+ log γ0.
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Differentiate with respect to Σh to solve for Σh,max,

−1
2

∂

∂Σh
tr
(
Σ−1
h,maxBh

)
− q

2
∂

∂Σh
log |Σh,max| = 0

Σ−1
h,maxBhΣ

−1
h,max − qΣ−1

h,max = 0

Σh,max =
Bh
q
. (5.3)

Because this prior is unimodal, a rough interpretation of its action is that it regularizes

the likelihood covariance estimate towards the maximum of the prior, given in (5.3). To meet

the goal of minimizing bias, some coarse information about the data is encoded into Bh. In

QB [10], the prior seed matrix Bh = kI, where k is a scalar determined by crossvalidation.

Setting Bh = kI is reminiscent of Friedman’s RDA [4], where the covariance estimate is

regularized by the trace:
tr(Σ̂ML)

d I.

Chapter 4 has shown that setting Bh =
tr(Σ̂ML)

d I for a distribution-based discriminant

analysis outperforms Geisser’s or Keehn’s parameter-based Bayesian discriminant methods,

and does not require crossvalidation [39]. The trace of the ML covariance estimate is

stable, and provides coarse information about the scale of the data samples. Thus, this

proposed data-dependent prior can be interpreted as capturing the knowledge an application

expert would have before seeing the actual data. There are many other approaches to data-

dependent priors, including hyperparameters and empirical Bayes methods [53, 54, 18].

Data-dependent priors are also used to form proper priors that act similarly to improper

priors, or to match frequentist goals [55].

It is interesting to see that the only difference between the parameter-based Bayesian

QDA (4.24) and the distribution-based Bayesian QDA (4.22) is a shift of the degree of

freedom q; this is true whether the distribution-based formula (4.22) is solved for using

either the Fisher or Lebesgue measure. QB, which is a modern parameter-based Bayesian

QDA classifier (discussed further in Section 5.1.1), chooses the degree of freedom for the

modified inverse Wishart prior by cross-validation. If one cross-validates the degree of

freedom, then it does not matter if one starts from the parameter-based formula or the

distribution-based formula.



40

5.2 Relationship Between Regularized QDA and Bayesian QDA

In this section it is shown that Friedman’s regularized form for the covariance matrix [4]

emerges from the Bayesian QDA formula.

Let Dh = Sh +Bh, Zh = x− x̄h. The distribution-based Bayesian discriminant formula

for the class conditional pdf (4.22) can be simplified to

ENh
[Nh] =

n
d
2
hΓ
(
nh+q+1

2

)
(2π)

d
2 (nh + 1)

d
2 Γ
(
nh+q−d+1

2

)
∣∣∣Dh

2

∣∣∣nh+q

2

∣∣∣Dh
2 + nh

2(nh+1)ZhZ
T
h

∣∣∣nh+q+1

2

=
n

d
2
hΓ
(
nh+q+1

2

) ∣∣∣Dh
2

∣∣∣nh+q

2

(2π)
d
2 (nh + 1)

d
2 Γ
(
nh+q−d+1

2

) ∣∣∣Dh
2

∣∣∣nh+q+1

2

∣∣∣∣I +
nh

nh + 1
ZhZ

T
hD

−1
h

∣∣∣∣−
nh+q+1

2

=
Γ
(
nh+q+1

2

)
(π)

d
2

∣∣∣(nh+1
nh

)
Dh

∣∣∣ 12 Γ
(
nh+q−d+1

2

) (1 +
nh

nh + 1
ZThD

−1
h Zh

)−nh+q+1

2

, (5.4)

where (5.4) follows by rearranging terms and applying the identity |I + ZhZ
T
hD

−1
h | = 1 +

ZThD
−1
h Zh [56]. It is easy to see using identity [57]∫

Rd

[
1 + (x− µ)TD−1(x− µ)

]− ν+d
2 dx =

Γ(1
2)dΓ(ν2 )

Γ(ν+d2 )
|D|

1
2 , (5.5)

ENh
[Nh] (5.4) is a proper probability density function for X.

Approximate nh/(nh + 1) ≈ 1 in (5.4). Recall the series expansion er = 1 + r+ r2/2 . . .,

so if r is small, 1+r ≈ er. Apply this approximation to the term 1+ZThD
−1
h Zh in (5.4), and

note that the approximation is better the closer the test point x is to the sample mean x̄h,

such that Zh is small. The approximation is also better the larger the minimum eigenvalue

λmin of Dh is, because |ZThD
−1
h Zh| ≤ ‖Zh‖2/λmin. Then (5.4) becomes

ENh
[Nh] ≈

Γ
(
nh+q+1

2

)(
exp

[
nh
nh+1Z

T
hD

−1
h Zh

])−nh+q+1

2

(π)
d
2

∣∣∣(nh+1
nh

)
Dh

∣∣∣ 12 Γ
(
nh+q−d+1

2

)

=
Γ
(
nh+q+1

2

)
exp

[
−1

2Z
T
h

[
nh+1
nh+q+1

(
Dh
nh

)]−1
Zh

]
(π)

d
2

∣∣∣(nh+1
nh

)
Dh

∣∣∣ 12 Γ
(
nh+q−d+1

2

) . (5.6)
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Let

Σ̃h
4
=

nh + 1
nh + q + 1

Dh

nh
. (5.7)

The approximation (5.6) resembles a Gaussian distribution, where Σ̃h plays the role of the

covariance matrix. Rewrite (5.7),

Σ̃h =
nh + 1

nh + q + 1

(
Sh +Bh
nh

)
=

nh + 1
nh + q + 1

(
Sh
nh

)
+

nh + 1
nh + q + 1

(
Bh
nh

)
=

(
1− q

nh + q + 1

)
Sh
nh

+
1

nh + q + 1

(
nh + 1
nh

)
Bh. (5.8)

In (5.8), make the approximation nh+1
nh

≈ 1, then multiply and divide the second term of

(5.8) by q,

Σ̃h ≈
(

1− q

nh + q + 1

)
Sh
nh

+
(

q

nh + q + 1

)
Bh
q
. (5.9)

The right-hand side of (5.9) is a convex combination of the sample covariance and the

positive definite matrix Bh
q . This is the same general formulation as Friedman’s RDA

regularization [4], re-stated in this chapter in equations (5.1) and (5.2). Here, the fraction
q

nh+q+1 controls the shrinkage of the sample covariance matrix toward the positive definite

matrix Bh
q ; recall from (5.3) that Bh

q is the maximum of the prior probability distribution.

Equation (5.9) also gives information about how the Bayesian shrinkage depends on the

number of sample points from each class: fewer training samples nh results in greater

shrinkage towards the positive definite matrix Bh
q . Also, as the degree of freedom q increases,

the shrinkage towards Bh
q increases. However, as q increases, the shrinkage target Bh

q moves

towards the zero-matrix.

5.3 Bregman Divergences and Bayesian Quadratic Discriminant Analysis

In (4.15) the Bayesian QDA class estimate that minimizes the expected misclassification

cost was defined. Then, assuming a Gaussian class-conditional distribution, the expected

class-conditional distribution is given in (4.22). A different approach to Bayesian estimation

would be to estimate the hth class-conditional distribution to minimize some expected risk.
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That is, the estimated class-conditional distribution would be

f̂h = argmin
f∈A

∫
M
R(Nh, f)dM, (5.10)

where R(Nh, f) is the risk of guessing f if the truth is Nh, the set of functions A more

precisely is defined shortly, and dM is a probability measure on the set of Gaussians, M .

Equation (5.10) is a distribution-based version of the standard parameter Bayesian estimate

given in [18, ch. 4]; for example, using the standard parameter Bayesian estimate, estimating

a mean µ ∈ Rd would be formulated

µ̂ = argmin
ψ∈Rd

∫
R(µ, ψ)dΛ(µ),

where Λ(µ) is some probability measure.

Given estimates of the class-conditional distributions {f̂h} from (5.10), one can solve for

the class label as

Ỹ ∗ = argmin
g=1,...,G

G∑
h=1

C(g, h)f̂h(x)P̂ (Y = h). (5.11)

In this section it is shown that the class estimate Ŷ from minimizing the expected misclas-

sification cost as defined in (4.15) is equivalent to the class estimate Ỹ ∗ from (5.11) if the

risk function in (5.10) is a (functional) Bregman divergence. This result links minimizing

expected misclassification cost and minimizing an expected Bregman divergence.

Bregman divergences form a set of distortion functions that include squared error, rel-

ative entropy, logistic loss, Mahalanobis distance, and the Itakura-Saito function, and are

sometimes termed Bregman loss functions [23]. Bregman divergences act on pairs of vec-

tors. Csiszár defined a Bregman divergence between two distributions [15], but Csiszár’s

definition acts pointwise on the input distributions, which limits its usefulness in analysis.

A recent result showed that the mean minimizes the average Bregman divergence [14, 24].

In order to extend this result to distributions and show how it links to Bayesian estimation,

one must solve for minima over sets of functions. To this end, a new functional Bregman

divergence that acts on pairs of distributions is defined in Chapter 7. This allows us to

extend the Banerjee et al. result to the Gaussian case and establish the equivalence be-

tween minimizing expected misclassification cost and minimizing the expected functional

Bregman divergence.
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Let ν be some measure, and define the set of functions Ap to be

Ap =
{
a : Rd → R

∣∣∣∣ a ∈ Lp(ν), a > 0, ‖a‖Lp(ν) = 1
}
.

Theorem 5.3.1. (Srivastava Gupta and Frigyik 2006) Let φ : A1 → R, φ ∈ C3, and

δ2φ[f ; ·, ·] be strongly positive. Suppose the function f̂h minimizes the expected Bregman

divergence dφ between a random Gaussian Nh and any probability density function f ∈ A

where the expectation is taken with respect to the distribution r(Nh), such that

f̂h = argmin
f∈A

ENh
[dφ(Nh, f)]. (5.12)

Then f̂h is given by

f̂h =
∫
M
Nh r(Nh)dM = ENh

[Nh(x)].

This theorem is a special case of Theorem 7.4.1 in Chapter 7.

Corollary 5.3.2. Corollary: The result of (4.15) is equivalent to the result of (5.11) where

each f̂h comes from (5.12).

The corollary follows directly from Theorem 5.3.1 where r(Nh) is the posterior distrib-

ution of Nh given the training samples.

5.4 The BDA7 Classifier

Distribution-based QDA with a fixed degree of freedom (as proposed by the authors in

the conference paper [39]) does not require cross-validation. With cross-validation, one can

generally do better if cross-validating a useful parameter. The question is, what parameters

to cross-validate with what options? As done in the QB Bayesian QDA classifier, it is

proposed that that the degree of freedom of the prior should be cross-validated. Also,

in preliminary experiments it was found that the distribution-based performance could be

enhanced by using the diagonal of Σ̂ML rather than the trace for each prior seed matrix

Bh; the diagonal encodes more information but is still relatively stable to estimate. The
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diagonal of Σ̂ML has also been used for regularized discriminant analysis [48] and model-

based discriminant analysis [11].

Note that setting Bh = diag
(
Σ̂ML

)
places the maximum of the prior at 1

qdiag
(
Σ̂ML

)
.

It is based on intuition that in some cases it may be more effective to place the maximum

of the prior at diag
(
Σ̂ML

)
; that requires setting Bh = q diag

(
Σ̂ML

)
.

The heavy tail of the prior can add too much bias to estimates. One way to reduce the

tail’s effect is to move the maximum of the prior closer to the zero matrix, effectively turning

the prior into an exponential prior rather than a unimodal one. This will have the rough

effect of shrinking the estimate toward zero. Shrinkage towards zero is a successful technique

in other estimation scenarios: for example ridge and lasso regression shrink linear regression

coefficients toward zero [5], and wavelet denoising shrinks wavelet coefficients toward zero.

To this end, we also consider setting the prior matrix seed to be Bh = 1
qdiag

(
Σ̂ML

)
.

These different choices for Bh will be more or less appropriate depending on the amount

of data and the true generating distributions. Thus, for BDA7 the Bh is selected by cross-

validation from seven options:

Bh =



q diag
(
Σ̂(pooled ML)

)
, q diag

(
Σ̂(class ML,h)

)
,

1
q diag

(
Σ̂(pooled ML)

)
, 1

q diag
(
Σ̂(class ML,h)

)
,

diag
(
Σ̂(pooled ML)

)
, diag

(
Σ̂(class ML,h)

)
,

1
qd tr(Σ̂(pooled ML)) I.

(5.13)

To summarize: BDA7 uses the result (4.22) where q is cross-validated, and Bh is cross-

validated as per (5.13).

5.5 Results on Benchmark Datasets

We compared BDA7 to popular QDA classifiers on nine benchmark datasets from the UCI

Machine Learning Repository. In the next section simulations are used to further analyze

the behavior of each of the classifiers.

QDA classifiers are best-suited for datasets where there is relatively little data, such

that a simple Gaussian model is fitting. For this reason, the error rate is tracked as the

percentage of samples used for training is increased. A percentage of the samples for each
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class is selected randomly to use as training; when this percentage results in a fraction of

training samples, the number of training samples is rounded up.

For datasets with separate training and test sets, the tables show results on the test set

given different percentages of the training samples randomly drawn to train the classifier.

For datasets that do not have separate training and test sets, the tables show results based

on using the stated percentage of the dataset as training data, and the rest of the dataset

as test data. In each case except the Cover Type dataset, each result is the average of 100

trials with different randomly chosen training samples. The average results for one hundred

random trials are give in Tables 2–9. Due to the immense size of the Cover Type dataset,

the average results for it, shown in Table 10, are for only 10 random trials.

5.5.1 Experimental Details for Each Classifier

BDA7 is compared with QB [10], RDA [4], eigenvalue decomposition discriminant analysis

(EDDA) [11], and maximum-likelihood estimated QDA, LDA, and the nearest-means clas-

sifier (NM). Code for the classifiers (and the simulations presented in the next section) is

available at idl.ee.washington.edu.

The parameters for each classifier were estimated by leave-one-out crossvalidation, unless

there exists a separate validation set (such as for the Pen Digits dataset). Some of the

classifiers required the prior probability of each class P (Y = h); those probabilities were

estimated based on the number of observations from each class using Bayesian estimation.

The RDA parameters λ and γ were calculated and crossvalidated as in Friedman’s paper

[4] for a total of 25 joint parameter choices.

The BDA7 method is crossvalidated with the seven possible choices of Bh for the prior

specified in (5.13). The scale parameter q of the inverse Wishart distribution is crossvali-

dated in steps of the feature space dimension d so that q ∈ {d, 2d, 3d, 4d, 5d, 6d}. Thus there

are 42 parameter choices.

The QB method is implemented as described by Brown et al. [10]. QB uses a nor-

mal prior for each mean vector, and an inverse Wishart distribution prior for each co-

variance matrix. There are two free parameters to the inverse Wishart distribution: the
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scale parameter q ≥ d and the seed matrix Bh. For QB, Bh is restricted to be spherical:

Bh = kI. The parameters q and k are trained by crossvalidation. In an attempt to be sim-

ilar to the RDA and BDA7 crossvalidations, we allowed there to be 42 parameter choices,

q ∈ {d, 2d, 3d, 4d, 5d, 6d} and k ∈ {1, 2, . . . 7}. Other standard Bayesian quadratic discrim-

inant approaches use a uniform (improper) or fixed Wishart prior with a parameter-based

classifier [42, 41, 44]; previous Chapter 4 has demonstrated that the inverse Wishart prior

performs better than these other choices [39].

The EDDA method of Bensmail and Celeux is run as proposed in their paper [11].

Thus, the crossvalidation selects one of fourteen models for the covariance, and then the

ML estimate for that model is calculated. Unfortunately, we found it computationally

infeasible to run the 3rd and 4th model for EDDA for some of the problems. These models

are computationally intensive iterative ML procedures that sometimes took prohibitively

long for large n, and when n < d these models sometimes caused numerical problems that

caused our processor to exit with error. Thus, in cases where the 3rd and 4th model was

not feasible, they were not used.

5.5.2 Results

The results are shown in Tables 2–10. The lowest mean error rate is in bold, as well as

any other mean error rate that is not statistically significantly different from the lowest

mean error rate, as determined by the Wilcoxon signed rank test for paired-differences at a

significance level of .05.

5.5.3 BDA7 Performs Well

BDA7 was the best or statistically insignificant from the best for six of the nine tested

datasets: Pen Digits, Thyroid, Heart Disease, Wine, Image Segmentation, and Sonar. BDA7

performed competitively for the other three datasets.

The Pen Digits dataset has 7,494 training samples and 3,498 test samples spread over

10 classes described by 34 features. Here, BDA7 does significantly better than the other

QDA classifiers, followed by EDDA, then QB and then RDA.
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The Thyroid dataset is a three-class problem with 215 samples described by 5 features.

BDA7 performs the best.

The Heart Disease dataset from the Statlog Project Databases is a two-class problem

with 270 samples described by 13 features, but three of the feature are nominal, which are

removed for this experiment, leaving 10 features.

The Wine dataset has 178 samples split between three classes and described by 13

features. For most fractions of the dataset, BDA7 has less than 50% of the error of QB, but

its performance is generally not significantly different than EDDA. RDA does not perform

well on this dataset.

The Image Segmentation dataset from the Statlog Project Datbases is a seven-class

problem with 2,310 samples described by 19 features. BDA7 and QB perform the best.

The Sonar dataset has two classes, 208 training samples and 132 test samples described

by 60 features. BDA7 performs consistently better than QB or RDA, but only by a tiny

amount. EDDA has more difficulty with this dataset.

For all of these datasets, the features are continuous, with the exception of four features

of the Heart Disease dataset, which are ordered or binary.

5.5.4 BDA7 Performs Competitively, But Not Best

For the Pima Diabetes, Ionosphere, and Cover Type datasets, BDA7 is not the best QDA

classifier, but performs competitively.

The Pima Diabetes dataset is a two-class problem with 768 samples described by 8

features. BDA7, QB, RDA, and EDDA perform similarly, but LDA achieves the lowest

error on this dataset.

The Waveform dataset is three class problem with 5000 samples described by 21 features.

BDA7 and RDA perform better than other classifiers.

The Ionosphere dataset is a two-class problem with 351 samples described by 34 features.

One of the features has the value zero for all samples of class two. This causes numerical

difficulties in estimating the maximum likelihood covariance estimates. BDA7 chooses the

identity prior seed matrix Bh = I every time for this dataset. Given that the identity
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matrix is BDA7’s best choice, it is at a disadvantage compared to QB, which cross-validates

a scaled identity seed matrix kI. Thus, QB does slightly better for this dataset. RDA

achieves the lowest error.

The Cover Type dataset is an eight-class problem with 581,012 samples and described

by 54 features, 44 of which are binary features. As is standard, the first 11,340 samples are

used for training, the next 3,780 samples as a validation set, and the last 565,892 samples

as test samples. In the maximum likelihood estimated matrices for QDA and LDA there

are many zeros, which result in a zero determinant. Thus their error rate is solely due to

the prior class probabilities. Because of the zero determinant, the best BDA7 model for

the prior’s seed matrix is the identity, Bh = I. As in the Ionosphere dataset, this puts

BDA7 at a disadvantage compared to QB, and it is not surprising that on this dataset QB

does a little better. Still, the two Bayesian QDA classifiers do better than the other QDA

classifiers.

5.5.5 Summary of Results

To summarize, BDA7 performed best, or statistically insignificantly different from the best,

for those datasets where no class had a sample covariance with determinant zero, with the

exception of the Pima dataset, where BDA7 performed around 10% worse than LDA. For

datasets with zero determinants, like Ionosphere and Cover Type, BDA7 did slightly worse

than QB, but both Bayesian classifiers performed relatively well in both those cases.

5.6 Simulations

In order to further analyze the behavior of the different QDA classifiers, ten simulations are

compared. For each of the ten simulations, the data are drawn iid from three Gaussian class

conditional distributions. Six of the simulations were originally used by Friedman to show

that RDA performs favorably compared to ML linear discriminant analysis (LDA) and ML

QDA [4]. Friedman’s six simulations all have diagonal generating class covariance matrices,

corresponding to independent classification features. In those cases, the constrained diag-

onal models used in RDA and EDDA are correct, and so RDA and EDDA’s performance

may be optimistic compared to real data. For a fuller picture, two full covariance matrix
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Table 5.1: Pen Digits mean error rate

Percentage Used as Training Data

2 3 4 5 6 7 8 9 10

BDA7 8.82 7.57 6.64 6.32 5.91 5.57 5.34 5.25 5.16

QB 15.64 11.48 8.97 8.22 7.34 6.76 6.35 6.03 5.97

RDA 11.50 10.10 9.16 8.64 8.24 7.87 7.86 7.56 7.45

EDDA 19.73 13.86 8.94 7.66 6.86 6.30 5.84 5.60 5.55

NM 24.75 24.26 24.24 23.56 23.38 23.20 23.18 22.99 23.05

LDA 19.33 18.38 17.99 17.68 17.51 17.58 17.42 17.51 17.50

QDA 89.62 89.62 89.62 89.62 89.62 89.62 89.62 89.62 89.62

simulations are added to Friedman’s six diagonal Gaussian simulations, and for each of the

full covariance matrix simulations cases of classes with the same means, and classes with

different means are considered.

All of the simulation results are presented for 40 training and 100 test samples, drawn iid.

The number of feature dimensions ranges from 6 to 100. The parameters for each classifier

were estimated by leave-one-out crossvalidation. Each simulation was run 100 times. Thus,

each result presented in this section is the average error over 10, 000 test samples.

Each classifier was trained using the cross-validation parameters described in Section

5.5.1. Because the goal in this section is analysis, when the EDDA results were uncom-

putable (when n < d), we simply marked those entries with a uc, rather than removing

the 3rd and 4th EDDA model, as done for the benchmark results when those models were

infeasible to compute.
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Table 5.2: Thyroid mean error rate

Percentage Used as Training Data

4 5 6 7 8 9 10 15 20

BDA7 11.74 10.80 9.33 8.99 8.59 7.62 7.39 6.47 5.67

QB 14.33 14.09 11.52 10.82 10.92 9.10 8.89 6.36 5.60

RDA 19.27 17.27 12.86 12.06 10.43 10.26 10.20 8.29 8.28

EDDA 15.37 15.54 10.80 10.32 9.56 9.75 8.56 5.97 5.74

NM 19.99 18.83 18.00 16.17 17.11 16.67 17.02 15.05 14.17

LDA 18.06 14.42 12.19 11.22 10.71 11.36 10.44 9.79 9.43

QDA 29.76 30.04 29.89 29.80 29.96 29.85 30.02 29.77 19.73

Table 5.3: Heart disease mean error rate

Percentage Used as Training Data

2 3 4 5 6 7 8 9 10

BDA7 38.97 36.17 32.96 31.65 28.56 28.89 27.90 27.49 25.99

QB 43.74 42.93 41.31 37.90 34.96 34.21 32.91 31.63 31.24

RDA 45.95 46.20 43.88 37.46 35.92 34.89 34.86 32.27 31.86

EDDA 43.62 40.70 38.89 34.02 30.58 29.72 30.61 27.90 26.76

NM 41.85 41.55 42.65 40.03 39.45 39.68 38.37 37.87 38.17

LDA 44.32 44.44 44.40 36.94 33.48 32.47 29.55 28.90 28.09

QDA 44.32 44.44 44.40 44.53 44.28 44.40 44.38 42.66 41.31
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Table 5.4: Image segmentation mean error rate

Percentage Used as Training Data

2 3 4 5 6 7 8 9 10

BDA7 18.65 14.61 12.94 12.23 11.78 11.31 11.10 11.13 10.83

QB 19.44 15.30 13.78 12.82 12.35 11.70 11.39 11.45 10.87

RDA 21.74 20.31 18.89 18.29 17.20 16.87 16.71 16.64 16.17

EDDA 33.31 31.69 30.33 29.44 28.83 29.12 28.44 28.05 28.35

NM 33.07 31.44 29.74 29.33 28.68 28.95 28.37 27.95 28.18

LDA 85.71 85.72 85.72 85.71 85.71 85.71 85.72 85.71 85.71

QDA 85.71 85.72 85.72 85.71 85.71 85.71 85.72 85.71 85.71

Table 5.5: Wine mean error rate

Percentage Used as Training Data

3 4 5 6 7 8 9 10

BDA7 23.83 14.54 9.77 9.89 10.35 8.72 8.53 7.57

QB 43.88 41.49 33.36 30.48 25.73 22.82 18.13 17.45

RDA 90.23 50.53 33.74 33.39 32.10 33.23 28.24 24.07

EDDA 49.02 30.31 12.95 11.85 10.61 8.13 7.88 6.94

NM 33.31 35.63 30.78 31.80 31.55 32.93 30.13 28.76

LDA 60.24 67.06 60.13 60.23 67.08 60.14 25.65 20.03

QDA 60.24 67.06 60.13 60.23 67.08 60.14 59.97 60.32
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Table 5.6: Iris mean error rate

Percentage Used as Training Data

3 4 5 6 7 8 9 10 20

BDA7 24.56 23.86 7.38 8.27 7.21 6.91 6.27 6.43 4.22

QB 8.84 9.76 7.29 8.35 6.47 7.03 6.11 6.05 4.13

RDA 72.41 79.20 9.54 9.17 7.36 7.94 6.05 6.11 4.37

EDDA 53.17 37.03 9.88 9.21 7.93 9.03 8.14 7.91 5.79

NM 9.85 10.01 8.88 9.82 8.54 9.10 8.50 8.70 7.98

LDA 66.65 66.65 9.77 9.02 6.45 7.32 5.07 5.63 3.64

QDA 66.66 66.65 66.65 66.67 66.62 66.70 46.96 42.95 7.41

Table 5.7: Sonar mean error rate

Percentage Used as Training Data

5 10 15 20 25 30 35 40 45 50

BDA7 34.63 31.98 30.14 27.87 27.39 25.52 25.67 24.37 22.92 22.54

QB 38.96 35.40 30.80 28.27 27.04 25.48 25.33 25.02 23.69 23.17

RDA 40.05 34.36 31.06 28.04 27.26 25.64 25.64 25.67 25.49 24.80

EDDA 38.59 35.17 32.83 33.04 32.20 31.86 33.09 35.19 35.14 34.05

NM 41.26 40.00 38.00 36.64 36.41 36.45 36.73 36.76 34.88 34.76

LDA 46.68 46.69 46.61 46.56 46.65 46.34 44.47 40.13 37.68 36.19

QDA 46.68 46.69 46.61 46.56 46.65 46.34 46.35 46.82 46.87 46.91
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Table 5.8: Waveform mean error rate

Percentage Used as Training Data

2 3 4 5 6 7 8 9 10

BDA7 18.01 17.24 16.80 16.78 16.32 16.31 16.23 16.03 15.90

QB 26.01 24.34 22.85 21.77 20.97 20.35 19.92 19.38 19.05

RDA 18.35 17.21 16.88 16.62 16.09 16.00 16.00 15.72 15.55

EDDA 20.13 20.13 20.00 19.92 19.70 19.82 19.37 18.92 18.46

NM 20.35 20.01 20.23 20.21 20.21 20.08 20.11 20.04 20.04

LDA 28.64 24.82 22.40 21.08 19.75 19.40 18.78 18.25 17.85

QDA 32.76 26.38 23.87 22.40 21.35 20.66 20.12 19.53 19.18

Table 5.9: Pima mean error rate

Percentage Used as Training Data

2 3 4 5 6 7 8 9 10

BDA7 32.04 31.53 30.65 29.52 28.90 28.94 28.05 28.03 27.87

QB 35.05 35.03 33.30 32.19 31.43 30.95 30.25 29.79 29.52

RDA 33.76 33.43 30.42 29.79 28.78 28.37 27.95 27.15 27.28

EDDA 35.62 33.70 30.72 30.91 30.03 29.17 28.71 28.16 28.85

NM 39.22 38.19 37.39 37.57 36.25 36.86 36.26 35.57 35.57

LDA 32.74 31.66 28.81 27.77 27.22 26.43 26.21 25.75 25.56

QDA 34.84 35.83 34.40 32.72 31.92 31.37 30.31 29.93 29.73
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Table 5.10: Ionosphere mean error rate

Percentage Used as Training Data

2 3 4 5 6 7 8 9 10

BDA7 24.51 19.20 16.01 12.78 11.49 10.58 11.58 10.14 10.28

QB 26.02 22.37 18.42 16.07 15.45 13.61 12.82 11.70 11.19

RDA 27.79 21.92 14.73 12.92 11.45 10.25 9.63 9.12 9.16

EDDA 32.72 30.03 27.54 26.14 25.46 29.15 24.95 24.11 24.40

NM 34.47 30.99 27.93 27.49 25.58 27.14 25.48 25.21 25.13

LDA 35.86 35.87 35.72 35.84 35.88 35.90 35.72 35.88 35.86

QDA 35.86 35.87 35.72 35.84 35.88 35.90 35.72 35.88 35.86

Table 5.11: Cover type mean error rate

Percentage Used as Training Data

2 3 4 5 6 7 8 9 10

BDA7 48.34 47.87 48.32 48.31 47.88 48.79 47.70 47.47 47.98

QB 49.47 45.27 44.80 44.58 43.64 44.41 42.67 42.57 43.74

RDA 60.90 61.84 61.83 59.20 58.45 60.02 58.59 58.43 57.38

EDDA 81.71 79.48 81.21 83.13 82.59 83.34 82.73 80.86 82.10

NM 78.09 76.50 77.99 78.52 78.90 79.74 78.07 78.12 77.90

LDA 62.94 62.94 62.94 62.94 62.94 62.94 62.94 62.94 62.94

QDA 62.94 62.94 62.94 62.94 62.94 62.94 62.94 62.94 62.94
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Table 5.12: Letter Recognition mean error rate

Percentage Used as Training Data

2 3 4 5 6 7 8 9 10

BDA7 31.21 26.51 23.70 21.99 20.67 19.80 18.94 18.54 17.76

QB 31.57 26.36 23.47 21.67 20.46 19.54 18.79 18.35 17.62

RDA 32.92 28.11 25.73 24.51 23.64 21.89 20.45 19.55 18.54

EDDA 37.94 35.95 29.95 25.31 22.73 21.10 19.87 19.09 18.15

NM 55.89 53.56 52.26 51.16 50.61 49.56 49.43 49.01 48.78

LDA 37.79 35.74 34.77 34.01 33.63 33.22 33.00 32.80 32.47

QDA 96.10 77.36 40.65 26.94 23.68 21.79 20.43 19.54 18.53

5.6.1 Simulation Results

Case 1: Equal Spherical Covariance Matrices

Each class conditional distribution is normal with identity covariance matrix I. The mean

of the first class µ1 is the origin, and the second class has zero mean, except that the first

component of the second class mean is 3. Similarly, the third class has zero mean, except

the last component of the third class mean is 3. Results are shown in Table 5.13.

The performance here is bounded by the nearest-means classifier, which is optimal for

this simulation. EDDA also does well, because one of the 14 models available for it to

choose is exactly correct: scalar times the identity matrix. Similarly, RDA strongly shrinks

towards the trace times the identity. Though this is an unrealistic case, it shows that BDA7

can perform relatively well even when the simulation uses a simple model built into EDDA

and RDA. BDA7’s performance is statistically significantly better than QB for dimensions

6 through 60, above that, the differences not significant.
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Table 5.13: Case 1: Equal spherical covariance

Number of Feature Dimensions

6 10 20 30 40 50 60 70 80 90 100

BDA7 12.77 11.73 13.70 21.51 24.01 26.66 27.48 27.55 34.73 33.91 34.01

QB 15.22 15.99 23.00 27.90 30.00 30.43 31.64 29.36 33.36 31.78 33.01

RDA 12.41 11.36 14.08 19.31 20.82 22.33 23.15 23.38 27.29 27.07 28.53

EDDA 11.40 10.64 11.32 17.21 19.00 19.72 20.80 20.94 24.98 23.71 25.16

NM 10.16 9.80 10.03 16.33 18.45 19.79 20.40 20.73 24.14 23.70 25.28

QDA 26.03 54.04 66.78 66.71 67.31 67.12 66.28 66.76 66.90 67.33 66.84

LDA 13.15 12.60 23.44 37.78 67.31 67.12 66.28 66.76 66.90 67.33 66.84

Case 2: Unequal Spherical Covariance Matrices

The class one conditional distribution is normal with identity covariance matrix I and mean

at the origin. The class two conditional distribution is normal with covariance matrix 2I

and has zero mean except the first component of its mean is 3. The class three conditional

distribution is normal with covariance matrix 3I and has zero mean except the last com-

ponent of its mean is 4. Results are shown in Table 5.14. This simulation allows EDDA

and RDA to use their built-in shrinkage towards class-independent covariance matrices to

outperform the Bayesian methods. BDA7 makes roughly half the errors of QB.

Cases 3 and 4: Equal Highly Ellipsoidal Covariance Matrices

Covariance matrices of each class distribution are the same, and highly ellipsoidal. The

eigenvalues of the common covariance matrix are given by

ei =
(

9(i− 1)
d− 1

+ 1
)2

, 1 ≤ i ≤ d, (5.14)

so the ratio of the largest to smallest eigenvalue is 100.
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Table 5.14: Case 2: Unequal spherical covariance

Number of Feature Dimensions

6 10 20 30 40 50 60 70 80 90 100

BDA7 20.35 15.46 17.95 19.78 20.16 20.23 19.61 20.79 19.22 18.76 19.94

QB 21.73 21.47 34.76 35.93 39.41 40.02 39.56 38.14 41.26 39.66 43.94

RDA 17.64 11.35 12.80 10.79 11.99 11.86 9.96 11.03 10.34 9.58 10.54

EDDA 16.44 10.18 10.47 8.92 9.45 9.88 8.09 9.71 8.25 7.57 8.33

NM 19.66 12.54 18.46 22.94 26.69 30.80 28.56 29.90 34.09 32.59 38.29

QDA 28.64 54.83 66.78 66.71 67.31 67.12 66.28 66.76 66.90 67.33 66.84

LDA 21.43 17.28 31.77 41.90 67.31 67.12 66.28 66.76 66.90 67.33 66.84

Table 5.15: Case 3: Equal highly ellipsoidal covariance, low-variance subspace means

Number of Feature Dimensions

6 10 20 30 40 50 60 70 80 90 100

BDA7 4.30 7.89 13.24 17.29 21.01 26.42 27.49 33.08 34.57 39.11 44.45

QB 11.60 31.65 49.83 52.19 53.13 52.89 54.51 56.40 56.09 55.56 57.43

RDA 3.94 11.56 23.42 35.00 37.69 40.70 43.55 49.05 49.53 49.32 51.33

EDDA 1.99 6.80 12.46 15.23 18.18 22.00 uc uc uc uc uc

NM 16.73 24.65 30.76 39.68 43.77 43.95 46.32 50.05 50.31 49.45 51.93

QDA 14.71 50.59 76.07 78.62 68.07 76.00 65.00 67.00 64.00 65.00 70.00

LDA 2.89 9.13 21.14 38.00 74.54 77.22 78.32 67.00 64.00 65.00 70.00
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For Case 3 the class means are concentrated in a low-variance subspace. The mean of

class one is located at the origin and the ith component of the mean of class two is given by

µ2i = 2.5
√
ei
d

d− i

(d2 − 1)
, 1 ≤ i ≤ d.

The mean of class three is the same as the mean of class two except every odd numbered

dimension of the mean is multiplied by −1.

Results are shown in Table 5.15 for Case 3. Here, BDA7 rivals the performance of

EDDA, which makes half the errors of RDA. In contrast, the error rate of QB is twice as

high as BDA7 for many dimensions.

Case 4 is that the class means are concentrated in a high-variance subspace. The mean

of class one is again located at the origin and the ith component of the mean of class two is

given by

µ2i = 2.5
√
ei
d

i− 1
(d2 − 1)

, 1 ≤ i ≤ d.

The mean of class three is the same as the mean of class two except every odd numbered

dimension of the mean is multiplied by −1.

Results are shown in Table 5.16 for Case 4. As in Cases 1 and 2, RDA and EDDA

perform similarly with BDA7 performing slightly worse and QB performing generally worse,

particularly for low dimensions. Nearest-means does the best, and RDA and EDDA use

their identity covariance models to mimic nearest-means.

Cases 5 and 6: Unequal Highly Ellipsoidal Covariance Matrices

For these cases, the covariance matrices are highly ellipsoidal and different for each class.

The eigenvalues of the class one covariance are given by equation (5.14), and those of class

two are given by

e2i =
(

9(d− i)
d− 1

+ 1
)2

, 1 ≤ i ≤ d.

The eigenvalues of class three are given by

e3i =

(
9(i− d−1

2 )
d− 1

)2

, 1 ≤ i ≤ d.
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Table 5.16: Case 4: Equal highly ellipsoidal covariance, high-variance subspace means

Number of Feature Dimensions

6 10 20 30 40 50 60 70 80 90 100

BDA7 9.35 12.48 16.04 19.67 25.59 25.65 28.49 29.47 33.57 37.66 42.27

QB 15.32 32.00 42.29 34.92 35.84 32.83 31.40 32.05 31.42 33.08 32.17

RDA 8.95 13.03 16.21 14.71 19.88 20.91 19.41 21.38 20.99 24.31 22.78

EDDA 7.76 12.35 15.66 13.83 18.03 18.12 17.27 19.82 19.07 22.82 21.44

NM 7.76 12.33 15.37 12.98 16.82 16.71 16.39 18.56 16.88 21.69 19.80

QDA 20.55 54.03 66.68 67.77 66.07 68.04 66.85 66.19 67.39 67.39 65.97

LDA 8.71 13.97 25.91 36.80 66.07 68.04 66.85 66.19 67.39 67.39 65.97

Table 5.17: Case 5: Unequal highly ellipsoidal covariance, same means

Number of Feature Dimensions

6 10 20 30 40 50 60 70 80 90 100

BDA7 15.46 4.35 1.14 0.79 1.57 0.83 0.62 0.78 0.29 0.55 0.68

QB 20.78 16.57 25.87 28.73 25.91 33.29 32.43 40.28 38.27 40.44 36.98

RDA 25.02 18.95 11.54 15.33 11.20 13.77 10.90 14.59 13.64 14.92 14.10

EDDA 15.66 4.72 0.37 0.12 0.01 0.00 0.00 0.00 0.00 0.00 0.00

NM 58.22 59.42 54.34 56.49 48.05 56.74 50.74 61.12 57.42 58.69 55.10

QDA 23.32 46.04 66.90 65.76 66.05 67.14 67.14 66.00 66.99 68.01 67.11

LDA 59.20 61.20 57.66 59.17 66.05 67.14 67.14 66.00 66.99 68.01 67.11
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Table 5.18: Case 6: Unequal highly ellipsoidal covariance, different means

Number of Feature Dimensions

6 10 20 30 40 50 60 70 80 90 100

BDA7 6.92 5.44 2.17 0.87 1.84 0.90 0.62 1.16 0.38 0.31 0.48

QB 7.82 9.37 19.41 21.12 23.32 22.32 26.38 29.36 31.76 29.09 26.04

RDA 10.06 11.50 7.34 10.70 10.05 6.48 8.72 10.70 9.80 9.86 8.25

EDDA 6.29 3.16 0.39 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NM 39.23 40.61 42.08 40.83 39.27 36.67 41.38 45.57 45.14 43.13 38.77

QDA 11.23 48.09 66.69 66.70 67.04 67.44 67.65 67.44 66.10 66.44 65.67

LDA 39.32 40.52 45.85 49.77 67.04 67.44 67.65 67.44 66.10 66.44 65.67

Table 5.19: Case 7: Unequal full random covariance, same means

Number of Feature Dimensions

6 10 20 30 40 50 60 70 80 90 100

BDA7 10.01 19.64 18.63 24.79 32.08 35.27 40.23 40.22 40.58 40.96 42.42

QB 20.44 24.47 15.91 22.19 27.57 30.66 34.38 32.52 33.17 34.56 34.89

RDA 6.68 30.29 29.44 34.58 37.49 41.54 44.16 43.99 42.96 43.84 45.73

EDDA 9.98 18.25 53.08 60.53 61.84 63.83 65.81 66.24 66.85 66.88 65.08

NM 64.16 66.25 65.61 66.24 65.99 66.51 66.05 67.16 65.67 66.43 66.32

QDA 7.02 46.31 67.95 67.70 67.00 66.80 66.28 66.84 67.42 66.6200 67.04

LDA 61.60 63.10 62.41 64.65 67.00 66.80 66.28 66.84 67.42 66.62 67.04
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Table 5.20: Case 8: Unequal full random covariance, different means

Number of Feature Dimensions

6 10 20 30 40 50 60 70 80 90 100

BDA7 4.46 1.30 5.34 9.68 8.56 13.19 12.99 14.30 18.15 17.19 16.43

QB 2.51 0.27 2.08 3.91 3.34 4.86 5.09 7.38 8.72 7.75 6.47

RDA 2.81 0.23 2.71 3.58 3.90 4.27 4.11 6.10 8.89 6.78 6.19

EDDA 5.23 0.65 6.39 14.58 17.35 27.67 48.25 50.16 52.66 52.85 50.7200

NM 17.44 24.14 28.01 38.35 45.70 47.60 47.86 49.71 51.17 51.88 49.05

QDA 7.24 33.55 67.03 66.94 64.72 67.10 66.47 66.75 66.97 66.05 66.46

LDA 3.20 0.62 6.09 19.68 64.72 67.10 66.47 66.75 66.97 66.05 66.46

Table 5.21: Case 9: Unequal full highly ellipsoidal random covariance, same means

Number of Feature Dimensions

6 10 20 30 40 50 60 70 80 90 100

BDA7 2.12 5.25 0.93 1.26 1.10 1.18 2.87 1.84 1.89 2.57 2.13

QB 2.21 4.21 0.61 0.65 1.01 0.88 2.64 1.68 1.84 2.58 1.89

RDA 1.13 12.36 12.57 39.01 61.34 59.93 63.04 61.22 65.22 64.00 69.00

EDDA 0.34 2.80 25.48 27.22 37.23 32.33 62.54 66.18 69.00 64.00 69.00

NM 64.86 66.57 66.73 65.93 65.68 65.67 66.76 66.25 66.92 65.68 66.94

QDA 1.60 35.97 67.07 66.38 66.33 67.62 66.01 66.60 67.69 66.12 67.25

LDA 56.26 58.22 58.15 60.92 66.33 67.62 66.01 66.60 67.69 66.12 67.25
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Table 5.22: Case 10: Unequal full highly ellipsoidal random covariance, different means

Number of Feature Dimensions

6 10 20 30 40 50 60 70 80 90 100

BDA7 0.36 0.16 0.67 0.69 0.82 1.01 1.73 1.58 0.96 1.38 1.56

QB 0.05 0.06 0.27 0.30 0.69 0.98 1.47 1.37 1.11 1.43 1.40

RDA 0.00 2.68 5.81 30.38 59.29 62.30 63.35 64.36 62.43 61.00 62.00

EDDA 0.79 2.70 17.20 21.96 25.48 31.09 67.32 68.04 70.00 61.00 62.00

NM 51.34 60.57 66.48 65.24 66.30 66.74 66.57 66.31 66.41 66.37 64.99

QDA 1.35 27.71 66.57 65.65 66.88 66.73 66.93 66.99 66.86 65.06 65.74

LDA 2.05 10.92 21.98 41.31 66.88 66.73 66.93 66.99 66.86 65.06 65.74

For Case 5, the class means are identical. For Case 6 the class means are different, with

the class one mean located at the origin and the ith component of the class two mean given

by µ2i = 14√
d
. The mean of class three is the same as the mean of class two except every

odd numbered dimension of the mean is multiplied by −1.

Results are shown in Tables 5.18 and 5.19. In both cases the BDA7 error falls to zero as

the number of feature dimensions rise, whereas RDA plateaus around 10% error, and QB

has substantially higher error. Case 5 and Case 6 present more information to the classifiers

than the previous cases because the covariance matrices are substantially different. BDA7

appears to be able to use this information effectively to discriminate the classes. EDDA

also achieves very low error but breaks when run for high dimensions.

Cases 7 and 8: Unequal Full Random Covariances

Let R1 be a d×d matrix where each element is drawn independently and identically from a

uniform distribution on [0, 1]. Then let the class one covariance matrix be RT1R1. Similarly,

let the class two and class three covariance matrices be RT2R2 and RT3R3, where R2 and R3

are constructed in the same manner as R1. For Case 7, the class means are identical. For
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Case 8, the class means are each drawn randomly, where each element of each mean vector

is drawn independently and identically from a standard normal distribution.

Results are shown in Tables 5.19 and 5.20. Case 7 is a difficult case because the means

do not provide any information and the covariances may not be very different. However,

BDA7 and QB only lose classification performance slowly as the dimension goes up, with

QB doing slightly better than BDA7 from 20 dimensions and higher. In contrast, EDDA

jumps from 15% error at 10 feature dimensions to 55% error at 20 dimensions. For most

runs of this simulation, the best EDDA model is the full covariance model, but because

EDDA uses ML estimation, its estimation of the full covariance model is ill-conditioned.

Case 8 provides more information to discriminate the classes because of the different

class means. EDDA again does relatively poorly because its best-choice model is the full-

covariance which it estimates with ML. QB and RDA do roughly equally as well, with BDA7

at roughly twice their error. In this case for dimensions greater than twenty, BDA7 chooses

the prior seed matrix to be the trace-scaled identity matrix, whereas QB cross-validates the

identity matrix as its prior seed matrix which gives it the edge.

Cases 9 and 10: Unequal Full Highly Ellipsoidal Random Covariance

Let R1, R2, R3 be as described for Cases 7 and 8. Then the Cases 9 and 10 covariance

matrices are RiRTi R
T
i Ri for i = 1, 2, 3. These covariance matrices are highly ellipsoidal,

often with one strong eigenvalue and many relatively small eigenvalues. This simulates the

practical classification scenario in which the features are all highly correlated. For Case 9,

the class means are the same. For Case 10, the class means are each drawn randomly, where

each element of the mean vector is drawn independently and identically from a standard

normal distribution.

Results are shown in Tables 5.21 and 5.22. The two Bayesian methods perform similarly,

but RDA, EDDA, and nearest-means have a very difficult time discriminating the classes.

5.7 Conclusions

In this chapter, it has been shown how a distribution-based formulation of the Bayesian

quadratic discriminant analysis classifier relates to the standard parameter-based formula-
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tion, established an analytic link between Bayesian discriminant analysis and regularized

discriminant analysis, and presented a functional equivalence between minimizing the ex-

pected misclassification cost and minimizing the expected Bregman divergence of class con-

ditional distributions. A side result was the establishment of a functional definition of the

standard vector Bregman divergence.

The practical contribution of this chapter is the classifier BDA7, which has been shown

to perform generally better than RDA, EDDA and QB over nine benchmark datasets. Key

aspects of BDA7 are that the seed matrix in the inverse Wishart prior defines the maximum

of the prior, and that using a coarse estimate of the covariance matrix as the seed matrix

pegs the prior to a relevant part of the distribution-space.

The simulations presented are helpful in analyzing the different classifiers. Comparisons

on simulations show that RDA and EDDA perform well when the true Gaussian distribution

matches one of their regularization covariance models (e.g. diagonal, identity), but can fail

when the generating distribution has a full covariance matrix, particularly when features

are correlated. In contrast, the Bayesian methods BDA7 and QB can learn from the rich

differentiating information offered by full covariance matrices.

In cases where BDA7 chooses the identity matrix for the prior seed, Bh =
tr(Σ̂ML)

d I,

BDA7 usually performs a little worse than QB, because QB cross-validates a scaled identity

matrix kI for the prior seed. This is the case in the Ionosphere and Cover Type benchmark

datasets, where QB performs better than BDA7. This issue can be fixed in BDA7 by

cross-validating k in Bh = kI as the seventh model, rather than using the Bh =
tr(Σ̂ML)

d I.

We hypothesize that better priors exist, and that such priors will also be data-dependent

and make use of a coarse estimate of the covariance matrix for the prior. QDA has too much

model bias to be a general purpose classifier, but Gaussian mixture model classifiers are

known to work well for a variety of problems. It is an open question as to how to effectively

integrate the presented ideas into a mixture model classifier.
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Figure 5.1: Examples of two-class decision regions for different classifiers. Features 11 and 21
from the Sonar UCI dataset were used to create this two-dimensional classification problem
for the purpose of visualization; the training samples from class 1 are marked by red ‘o’ and
the training samples from class 2 are marked by black ‘·’.
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Figure 5.2: Examples of two-class decision regions for different classifiers LDA and QDA.
Features 11 and 21 from the Sonar UCI dataset were used to create this two-dimensional
classification problem for the purpose of visualization; the training samples from class 1 are
marked by red ‘o’ and the training samples from class 2 are marked by black ‘·’.
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Chapter 6

LOCAL BAYESIAN QUADRATIC DISCRIMINANT ANALYSIS

Local classifiers, such as k-NN, base decisions only on a local neighborhood of the test

sample, and do not need to make assumptions about the smoothness of the entire feature

space. This chapter explores model-based local classifiers and proposes a different solution

to achieve flexible model-based classification. It applies the distribution-based Bayesian

QDA classifier locally to the neighborhood that is formed by the k samples from each class

that are closest to the test sample. Only the neighborhood size k must be cross-validated. It

is shown that a local distribution-based Bayesian QDA classifier can achieve low error and

is a simple alternative to Gaussian mixture models. First, related work in local model-based

classification is reviewed in Section 6.1. In Section 6.2 the proposed local BDA classifier

is described. Experimental results in Section 6.3 show that the proposed local Bayesian

quadratic discriminant analysis classifier can achieve higher accuracy than the local nearest

means classifier, a local support vector machine (SVM), a Gaussian mixture model, k-NN,

and classifying by local linear regression. A discussion section concludes the chapter. The

results in this chapter have been submitted for publication [58].

6.1 Background

Local classifiers, such as k-NN, make decisions based only on a subset of training data that

are local to the test sample. Local classifiers can achieve competitive error rates on prac-

tical problems [5, 59, 60, 61], can automatically incorporate additional training datasets,

do not require training a classifier on the entire labeled dataset, do not require smoothness

assumptions about the feature space, and are generally easy to implement and train. Ad-

ditionally, there is some evidence in psychology literature that people make decisions based

on examples, and that learning is a function of local examples [62]. It is observed in psy-

chophysics that humans can perform coarse categorization quite quickly: when presented
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with an image, human observers can answer coarse queries such as presence or absence of an

animal in as little as 150ms, and of course can tell what animal it is, given enough time [63].

The process of a coarse and quick categorization, followed by successive finer but slower

discrimination motivates the modeling of such process in the setting of statistical learning.

We use k-NN as an initial pruning stage and perform local BDA on the smaller but more

relevant set of examples that require careful discrimination. Traditionally, local classifiers

have been nonparametric weighted nearest-neighbor voting methods [64, 5], though recently,

model-based local classifiers have been shown to be promising.

6.1.1 Related Work in Local Model-based Classification

The most closely related algorithm to the proposed local BDA is the idea of Mitani and

Hamamoto to classify a test sample as the class whose local mean is nearest [65, 12]. To

ensure that one always has samples from each class, they define the neighborhood to be

the k nearest samples of each class, where k is cross-validated. Compared to the standard

nearest-means classifier, their local nearest means classifier drastically reduces the immense

bias inherent in modeling each class as being characterized by its mean feature vector.

Compared to standard k-NN, their motivation is to reduce the classification variance due

to outlying samples. The local nearest means classifier creates a locally linear decision

boundary.

Another related classifier is local similarity discriminant analysis (local SDA) [66], which

may be the first classifier to locally model the class-conditional distributions. Local SDA

is a similarity-based classifier, but its model for the local class-conditional distributions is

the exponential distributions, which is the maximum entropy distribution given mean con-

straints. In contrast, the proposed local BDA acts on metric spaces, models class-conditional

distributions as Gaussians (which are the maximum entropy distributions given mean and

covariance constraints), and uses Bayesian rather than maximum likelihood estimation.

Another set of algorithms models the decision boundary as locally linear. For example,

a recent paper proposed applying a SVM locally [13]. Here the primary motivation is to

reduce the difficulty in training SVMs. Training an SVM only on a local neighborhood uses
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fewer samples, and for large multi-class problems there tend to be fewer different classes in

the neighborhood, which reduces the number of pairwise classifications needed for multiclass

SVM. In fact, the results showed that the accuracy of the SVM-kNN was very similar to the

standard DAG-SVM accuracy on USPS, CUReT, and Caltech-101 datasets. The authors

of the SVM-KNN paper note that while nonlinear kernels could be used, they used a linear

kernel. Based on experimentation with a few small datasets, we found that the linear kernel

worked better than a radial basis function kernel. In general, one expects simpler classifiers

to work better locally because estimation variance tends to be a more serious problem than

bias when only a few samples are used for learning. Using a linear kernel means that the

SVM-KNN locally fits a hyperplane to the given feature space, where the fit maximizes the

margin for the training data in the neighborhood.

Locally linear decision boundaries can also be created by a least-squares local linear

regression, which was shown to be a statistically consistent classifier in 1977 [26]. Local linear

regression is usually formulated for the two-class problem as calculating the discriminant

f(x) = βTx, where β is the slope vector for the least-squares hyperplane fit to the training

sample pairs in the neighborhood of the test sample x. For multiclass classification it is

computationally easier to formulate local linear regression as a weighted nearest-neighbor

classifier with weight vector w∗ = x(XTX)−1XT , where the ith row of X is the ith training

feature vector xi, and one classifies as the class that receives the most weight [26]. This

formula for w∗ uses the Moore-Penrose pseudoinverse of X and in the case of non-uniqueness

yields the w∗ solution with minimum `2 norm. In the experiments section we call this

psuedoinverse implementation pinv. A related approach is local ridge regression, which

regularizes the least-squares error with a squared norm penalty, but this requires a penalty

parameter to be chosen or cross-validated; Bottou and Vapnik showed that local ridge

regression can achieve high accuracy [61].

Vincent and Bengio proposed a modified nearest neighbor algorithm called k-local hy-

perplane distance nearest neighbor (HKNN) [7]. The basic HKNN algorithm uses k nearest

samples of each class as the neighborhood for a given test sample, and for each class cal-

culates the linear subspace that passes through all the training samples of that class, then

classifies as the class with the nearest hyperplane. The intuition behind HKNN is the linear
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subspaces generate many “fantasy” training examples. Like pinv and SVM-KNN, HKNN

creates a locally linear decision boundary. Flexible locally linear decision boundaries can

also be created with decision trees; for example, the recent FlexTrees classifier [67].

Local models have also been used to adapt the metric used for local classification. For

example, Hastie and Tibshirani iteratively fit a Gaussian model to the neighborhood training

samples of the test sample using a local linear discriminant analysis, and then a uniform or

weighted k-NN classifier is applied using the metric implied by the locally-fitted Gaussian

model [68]. Other efforts have used non-Gaussian assumptions to locally adapt the metric

[69, 70].

6.2 Local BDA Classifier

In this section the local BDA classifier is proposed and new analysis of (4.22) is given in

order to better analyze local BDA.

For local BDA, we will estimate one local model per class from k neighbors of each class,

and so we treat the local class prior probabilities as equal: P (Y = h) = P (Y = g) for

all g, h ∈ {1, . . . , G}. Define the local BDA classifier to be the classifier that results from

applying the BDA classifier given in (4.22) to the neighborhood that is composed of the k

samples of each class that are nearest to the test sample x with fixed parameters q = d+ 3

and Bh = I. Then the BDA classifier (4.22) has a closed-form solution:

Ŷ = arg min
g

G∑
h=1

C(g, h)
Γ
(
k+d+4

2

) (
1 + k

k+1(x− xh)T (Sh + I)−1(x− xh)
)− k+d+4

2

(π)
d
2 Γ
(
k+4
2

) ∣∣(k+1
k

)
(Sh + I)

∣∣ 12
≡ arg min

g

G∑
h=1

C(g, h)

(
1 + k

k+1(x− x̄h)T (Sh + I)−1(x− x̄h)
)− k+d+4

2

|Sh + I|
1
2

, (6.1)

where x̄h is the hth class sample mean, and Sh =
∑n

i=1(xi− x̄h)(xi− x̄h)T I(yi=h), where I(·)

is the indicator function.

For the local BDA, the number of neighbors k is chosen by cross-validation, such that for

G different classes, there are k neighbors from each class in total. Note, only one parameter

k is cross-validated irrespective of the number of classes. Thus, local BDA forms a flexible



72

generative classifier with only one parameter (the neighborhood size) to estimate for a given

classification problem.

For a test sample x, the local BDA classifier is implemented in two steps. Step 1: Find

the k nearest training samples of class h to x using Euclidean distance. Step 2: Estimate

the class label Ŷ as per (6.1). Note that (6.1) is a closed-form solution and no parameters

must be cross-validated. For local BDA the number of neighbors k must be cross-validated,

such that if there are G different classes, then there are k ×G neighbors used to classify a

test sample x.

There are three main motivations for local BDA. First, we hypothesize that many prac-

tical learning problems do have local structure, and that a generative local model can be

an effective classifier.

The second motivation is that one expects that each class-conditional distribution will

differ, and thus we model each class’s local class-conditional distribution individually. Our

assumption that the local class-conditional distributions have different shapes is different

than the work of Hastie and Tibshirani, as they assume the shape of the class posterior

distributions is locally the same (but with different means) [68]. There has been recent re-

search into classification of samples that lie on lower-dimensional manifolds within a feature

space. Such methods may first attempt to estimate the lower-dimensional manifold, then

classify on the manifold. Local BDA has the capability to adapt to the local shape of such

a manifold. Because each class is modeled by its own Gaussian, there is no assumption that

different classes lie on the same lower-dimensional manifold.

The third motivation for the local BDA method is the same as Hamamoto et al.’s

motivation in their work [12, 71]: to reduce the effect of outlier samples. The local means

classifier will be more robust to outlier samples than the local BDA, but at the cost of an

increased model bias. Fitting a full Gaussian to each class, as done by local BDA, is a more

flexible model. However, the robust Bayesian estimation used to fit the covariance matrix

restricts the sensitivity of the classifier to any one training sample.
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6.2.1 The Local BDA Decision Boundary

Figure 6.1 shows an example of the local BDA decision boundary for a two-class toy

problem with a two-dimensional feature space. In general, the estimated distributions

Eµh,Σh
[N (x;µh,Σh)] in Bayesian QDA are not Gaussians [39], and so the shape of the

Bayesian QDA decision boundary is not quadratic. However, we show here that the local

Bayesian QDA decision boundary is in fact quadratic, which happens because we use the

same number of samples from each class. Assume a two-class problem and zero-one costs;

then the decision boundary for the Bayesian QDA classifier is defined by the x such that

E[N1] = E[N2]. From (6.1) the decision boundary can be described as

[1 +
k

k + 1
(x− x̄1)TD−1

1 (x− x̄1)]
k̃
2 = γdb[1 +

k

k + 1
(x− x̄2)TD−1

2 (x− x̄2)]
k̃
2 , (6.2)

where k̃ = k + d + 4, Dh = Sh + I, and γdb is a constant that depends on the training

samples and the number of training samples, but γdb does not depend on the test sample x.

Raise both sides of (6.2) to the power 2
k̃
, and because the exponentiated terms must always

be positive, it must be that the decision boundary is completely described by the x that

solve,(
1 +

k

k + 1
(x− x̄1)TD−1

1 (x− x̄1)
)

= γ̃db

(
1 +

k

k + 1
(x− x̄2)TD−1

2 (x− x̄2)
)
, (6.3)

where γ̃db = γ
2
k
db. Since (6.3) is quadratic in x, the local BDA decision boundary is locally

quadratic over any region of the feature space where the neighborhood is constant.

6.3 Experiments

We compared the local BDA classifier with the local nearest-means classifier, k-NN, the

pinv classifier (that is, the local linear regression classifier), the SVM-KNN, and a GMM.

All of the datasets come from the UCI Machine Learning Repository except the standard

USPS recognition set with 7291 training samples and 2709 test samples which is from

cervisia.org/machine learning data.php. For all the experiments, misclassification costs are

taken to be C(g, h) = 1 if g 6= h and C(g, h) = 0 for g = h.

For all of the classifiers except the GMM, the only parameter cross-validated is a neigh-

borhood size parameter k, where k ∈ {1, 2, . . . , 20, 30, 40, . . . , 100}, unless there were fewer
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neighbors of one class, in which case the maximum k was taken to be the maximum number

of neighbors in the smallest class. For k-NN, pinv, and SVM-KNN the k is the number of

neighbors, while for local nearest means and local BDA, the number of neighbors is k ×G.

All neighbors were calculated in terms of Euclidean distance. There are many ways to im-

plement a GMM. We chose the number of mixture components by cross-validation, where

the maximum number of components was c = minh floor(nh/d), and each class was modeled

as a mixture with c components. The mixture weights, means, and full covariances were

estimated using the EM algorithm. Occasionally, the EM algorithm produces estimated

Gaussians with ill-posed covariance matrices, in these cases we regularized the covariance

matrix by adding 10−6I. The SVM-KNN was implemented with libsvm [72] using a linear

kernel and the DAG approach for multiclass classification as in [13], and all other options

set as the defaults. Unless marked raw, the datasets were normalized before classification

in the standard way by shifting each feature to have zero-mean, then dividing each feature

by its standard deviation. If there were both training and test datasets, the normalizing

means and standard deviations were calculated only from the training data but applied to

both the training and test data.

We used a randomized 10-fold cross-validation: For each of 100 runs, the training dataset

was randomly divided into a set with 9/10 of the data, and a set with 1/10 of the data. The

9/10 data set was used to build models for each of the choices of the parameter k or number

of mixture components for the GMM, and each model was then tested on the remaining

1/10 data set. For each parameter setting, the cross-validation error is the average error on

the 100 randomly drawn 1/10 datasets. The best cross-validation error is reported in Table

1 if only one dataset was available. If a separate test set was available, then the test error is

reported in Table 2, where the choice of k or the number of mixture components was chosen

using the above-described randomized 10-fold cross-validation on the training set.

6.3.1 Results

Results are shown in Tables (6.1) and (6.2) and in Figure 6.1, which illustrates the different

decision boundaries for a toy example.
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Table 6.1: 10-fold randomized cross-validation errors

k-NN pinv Local Local BDA SVM-KNN GMM

Nearest Means

Wine 3.25 2.94 1.86 0.44 0.94 7.06

Iris 3.40 2.46 3.27 2.13 3.93 2.93

Glass 26.89 26.89 25.78 23.00 26.89 47.39

Heart 20.15 22.07 19.41 21.18 21.41 27.70

Sonar 13.10 10.35 12.05 10.05 10.15 22.90

Ionosphere 12.24 9.65 8.59 7.41 7.85 13.21

Thyroid 3.86 3.86 3.24 2.90 3.86 7.80

Figure (6.1) shows the local BDA and local nearest means for k = 5, which corresponds

to a neighborhood of 10 training samples. For comparison, we show the k-NN, pinv, and

SVM-KNN decision regions for both k = 5 neighbors and k = 10 neighbors. Classifying

based on larger neighborhoods can be expected to yield smoother decision boundaries, which

is true for this pinv and SVM-KNN example, but only somewhat the case for the k-NN

classifier. Comparing the smoothness to the local nearest means and local BDA classifiers

is difficult because the neighborhood definitions are different, but it was expected that the

model-based classifiers would be more robust to outliers, and in fact the decision boundaries

appear smooth, suggesting robustness to small changes in the neighbors.

For the seven datasets in Table (6.1), local BDA or local nearest means achieved the

lowest cross-validation error, and in every case local BDA performed better than pinv or

SVM-KNN, though sometimes only by a small amount. The test results in Table 2 show a

more mixed story, with local BDA achieving the best error in 3 of the 7 cases, including an

18% improvement in Letter Recognition over the second best performer (SVM-KNN) and
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an 11% improvement in Pen Digits over the second best performer (pinv). We have included

results on the Vowel data set without normalization (marked raw) for ease of comparison

with the Vowel results in the Hastie et al. book [5, p. 396]. Their results match ours for

k-NN, and show that the best performance on this dataset is 39% and is achieved by a

reduced-dimension version of flexible discriminant analysis.

Although the local nearest means performs very well on some datasets, on other datasets

it is the worst local classifier, for example on Image Segmentation. The closed-form pinv

classifier is only worse than k-NN for two datasets, and we propose that it is a simple

classifier that is a more formidable baseline than k-NN. The SVM-KNN only loses to k-NN

for the Iris dataset, and often offers a large gain over k-NN. For many of these cases, the

GMM classifier was an unfortunate mix of too much model bias and too much estimation

variance due to the number of parameters that have to be learned.

While we have tried to make the neighborhood cross-validation choices equitable, the two

different neighborhood definitions are simply not directly comparable. For a fixed choice of

k, the k-NN, pinv and SVM-KNN classifiers have fewer training samples to learn from than

local nearest means or local BDA. However the k-nearest neighbors gives finer control over

the size of the neighborhood, and guarantees that all of their neighborhood training samples

are actually local, and hence more likely to be relevant to the test sample. The local nearest

means and local BDA classifiers can be expected to have lower estimation variance because

their neighborhood sizes are bigger, but this can also increase bias. One dataset where the

different neighborhood definitions may be a factor is the Letter Recognition dataset (26

classes), on which local BDA performs well but chooses k = 20, giving it 20 × 26 = 520

training samples. The pinv classifier and k-NN are content with small neighborhoods of

k = 6 and k = 1 respectively, but the SVM-KNN cross-validates to k = 100, suggesting

it might have preferred an even larger neighborhood size. On other datasets where local

BDA performs best it does not appear to be a factor. For example on the Vowel dataset

local BDA uses 55 samples, but the other local classifiers do not choose a comparable k,

rather they choose k = 1 or 2. Lastly, due to the model bias of the local nearest means

and local BDA classifiers we expect they already have relatively low estimation variance (as

seen, for example, in Figure (6.1)), and thus the variance-reducing advantage of their larger
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Table 6.2: Test errors using 10-fold randomized cross-validated neighborhood size/number
of components

k-NN pinv Local Local BDA SVM-KNN GMM

Nearest Means

Letter Rec. 5.20 4.58 4.43 3.23 3.93 12.20

Optical Digits 3.23 2.78 2.73 2.78 2.67 9.29

Pen Digits 2.77 2.06 2.29 1.89 2.14 13.95

Image Seg. 12.76 10.52 13.67 10.95 11.52 16.86

USPS (raw) 5.88 4.53 4.68 4.53 4.88 50.88

Vowel 49.78 49.78 43.72 44.59 49.78 62.34

Vowel (raw) 43.72 48.05 38.53 39.18 43.72 62.99

neighborhood size choices may not be important.

6.4 Discussion

The local BDA classifier is a closed-form, flexible classifier that employs robust local Gaussian

modeling. The experiments showed that local BDA can achieve high-accuracy. Of the local

classifiers compared in this chapter, the simplest are k-NN and the local means classifier,

followed by the closed-form classifiers pinv and local BDA, and then the local SVM, which

requires optimization of the SVM objective and pairwise comparisons for multiclass clas-

sification. In terms of computation time, we found that the k-NN, local means, pinv and

local BDA classifiers completed almost instantly, while the local SVM required nontrivial

processing time.

If a generative classifier is desired, then local BDA is a simple but effective alternative to

GMM classifiers and to flexible discriminant analysis [5]. GMMs can have high variance due

to their sensitivity to the number of Gaussian components used. In contrast, the local BDA

classifier specified requires only the neighborhood size to be trained, and is fairly robust to

changes in the neighborhood.
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Table 6.3: Cross-validated k or number of components

k-NN pinv Local Local BDA SVM-KNN GMM

Nearest BDA # comp’s

Glass (6 classes) 1 1 6 6 1 1

Heart (2 classes) 60 100 70 100 13 5

Image Seg. (7 classes) 6 4 8 20 18 1

Ionosphere (2 classes) 1 100 6 90 70 2

Iris (3 classes) 13 14 3 40 16 2

Letter Rec. (26 classes) 1 6 4 20 100 2

Optical Rec. (10 classes) 3 11 2 19 80 2

Pen Digits (10 classes) 1 60 2 14 40 2

Sonar (2 classes) 1 6 2 7 30 2

Thyroid (3 classes) 1 1 3 10 2 2

USPS (10 classes) 1 15 4 30 90 1

Vowel (11 classes) 1 1 2 5 1 2

Vowel (raw) 1 5 2 2 1 2

Wine (3 classes) 18 40 6 40 16 2

The term “local classifier” implies that the training samples used to make the classi-

fication decision will be in a tight region about the test sample. However, even for the

1-NN classifier this is not necessarily the case for high-dimensional feature spaces, as ran-

domly drawn points in high-dimensions tend to be equally spread apart [73, 5]. For the

model-based classifiers compared in this work, some of the cross-validated neighborhood

sizes are large portions of the available training data. Rather than interpreting local classi-

fiers as including relevant near samples, it may be more accurate to frame these classifiers

as excluding irrelevant far samples.
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Local Nearest Means k = 5 Local BDA k = 5 GMM # comp. = 3

k-NN k = 5 pinv k = 5 SVM-KNN k = 5

k-NN k = 10 pinv k = 10 SVM-KNN k = 10

Figure 6.1: Illustrative two-dimensional examples of classification decisions for the compared
classifiers. The training samples are the same for each of the examples, and are marked by
circles and crosses, where the circles all lie along a line. The shaded regions mark the areas
classified as class circle.
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Chapter 7

FUNCTIONAL BREGMAN DIVERGENCE AND BAYESIAN
ESTIMATION OF DISTRIBUTIONS

This chapter defines a functional Bregman divergence that generalizes popular distor-

tion measures between distributions and functions, including squared error, squared bias,

and relative entropy. The new definition generalizes the standard vector-based definition of

Bregman divergence, and generalizes a previous pointwise Bregman divergence defined for

functions. A recent result showed that the mean minimizes the expected vector Bregman

divergence. The new functional definition enables the extension of this result to the contin-

uous case to show that the mean minimizes the Bregman divergence for a set of functions

or distributions. This theorem has direct application to the Bayesian estimation of distrib-

utions (as opposed to the Bayesian estimation of parameters of distributions). Estimation

of the uniform distribution from independent and identically drawn samples is used as a

case study of Bayesian distribution estimates, where the estimated distribution is either

unrestricted or is restricted to be itself a uniform distribution.

Section 7.1 reviews the background information about Bregman divergence. In Section

7.2 the new functional definition of the Bregman divergence is given, and examples are

shown for total squared difference, relative entropy, and squared bias. The relationship

between the functional definition and previous Bregman definitions is established. Section

7.3 shows that the functional Bregman divergence has many of the same properties as the

standard vector Bregman divergence. Section 7.4 presents the main theorem: that the

expectation of a set of functions minimizes the expected Bregman divergence. Section 7.5

discusses the role of this theorem in Bayesian estimation, and as a case study compares

different estimates for the uniform distribution given independent and identically drawn

samples. For ease of reference for the reader, Appendix B contains relevant definitions and

results from functional analysis and the calculus of variations. Proofs are in Appendix A.
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The results in this chapter have been submitted for journal publication [74].

7.1 Background

Bregman divergences are a useful set of distortion functions that include squared error, rel-

ative entropy, logistic loss, Mahalanobis distance, and the Itakura-Saito function. Bregman

divergences are popular in statistical estimation and information theory. Analysis using

the concept of Bregman divergences has played a key role in recent advances in statistical

learning [75, 76, 77, 78, 79, 39, 80, 25, 81], clustering [24, 82, 80], inverse problems [83],

maximum entropy estimation [84], and the applicability of the data processing theorem

[85]. Recently, it was discovered that the mean is the minimizer of the expected Bregman

divergence for a set of d-dimensional points [14, 24].

7.2 Functional Bregman Divergence

Let
(
R
d,Ω, ν

)
be a measure space, where ν is a Borel measure d is a positive integer, and

define a set of functions A =
{
a ∈ Lp(ν) subject toRd → R, a ≥ 0

}
where 1 ≤ p ≤ ∞.

Definition 7.2.1 (Functional Definition of Bregman Divergence). Let φ : Lp(ν) → R be a

strictly convex twice continuously Fréchet differentiable functional. The Bregman divergence

dφ : A×A → [0,∞) is defined for all f, g ∈ A as

dφ[f, g] = φ[f ]− φ[g]− δφ[g; f − g], (7.1)

where δφ[g; ·] is the Fréchet derivative of φ at g.

Here the Fréchet derivative has been used, but the definition (and results in this paper)

can be easily extended using more general definitions of derivatives; an example extension

is given in Section 7.2.1.

The functional Bregman divergence has many of the same properties as the standard vec-

tor Bregman divergence, including non-negativity, convexity, linearity, equivalence classes,

linear separation, dual divergences, and a generalized Pythagorean inequality. These prop-

erties are detailed and established in Section 7.3.
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7.2.1 Examples

Different choices of the functional φ lead to different Bregman divergences. Illustrative

examples are given for squared error, squared bias, and relative entropy. Functionals for

other Bregman divergences can be derived based on these examples, from the example

functions for the discrete case given in Table 1 of [14], and from the fact that φ is a strictly

convex functional if it has the form φ(g) =
∫
φ̃(g(t))dt where φ̃ : R→ R, φ̃ is strictly convex

and g is in some well-defined vector space of functions [86].

Example: Total Squared Difference

Let φ[g] =
∫
g2dν, where φ : L2(ν) → R, and let g, f, a ∈ L2(ν). Then

φ[g + a]− φ[g] =
∫

(g + a)2dν −
∫
g2dν

= 2
∫
gadν +

∫
a2dν.

Because ∫
a2dν

‖a‖L2(ν)
=
‖a‖2L2(ν)

‖a‖L2(ν)
= ‖a‖L2(ν) → 0

as a→ 0 in L2(ν),

δφ[g; a] = 2
∫
gadν

is a continuous linear functional in a. Then, by definition of the second Fréchet derivative,

δ2φ[g; b, a] = δφ[g + b; a]− δφ[g; a]

= 2
∫

(g + b)adν − 2
∫
gadν

= 2
∫
badν,

thus δ2φ[g; b, a] is a quadratic form, where δ2φ is actually independent of g and strongly

positive (which implies that φ is strictly convex):

δ2φ[g; a, a] = 2
∫
a2dν = 2‖a‖2L2(ν).
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Then,

dφ[f, g] =
∫
f2dν −

∫
g2dν − 2

∫
g(f − g)dν

=
∫

(f − g)2dν

= ‖f − g‖2L2(ν).

Example: Squared Bias

Under definition (7.1), squared bias is a Bregman divergence, which has not previously

seen noted in the literature despite the importance of minimizing bias in estimation [5]. In

this example the functional φ cannot be defined using the pointwise Bregman divergence

definition given previously for functions [80, 15] (see (7.8)), if the measure ν is such that

there are two disjoint measurable sets with positive measure. For example, all infinite but

σ-finite Borel measures satisfy this property.

Let φ[g] =
(∫
gdν

)2, where φ : L1(ν) → R. In this case

φ[g + a]− φ[g]

=
(∫

gdν +
∫
adν

)2

−
(∫

gdν

)2

= 2
∫
gdν

∫
adν +

(∫
adν

)2

,

and therefore

δφ[g; a] = 2
∫
gdν

∫
adν.

This follows from the fact that 2
∫
gdν

∫
adν is a continuous linear functional on L1(ν) and(∫

adν
)2 ≤ ‖a‖2L1(ν), so that

0 ≤
(∫
adν

)2
‖a‖L1(ν)

≤
‖a‖2L1(ν)

‖a‖L1(ν)
= ‖a‖L1(ν) → 0

as a→ 0 in L1(ν). Then, by the definition of the second Fréchet derivative,

δ2φ[g; b, a] = δφ[g + b; a]− δφ[g; a]

= 2
∫

(g + b)dν
∫
adν − 2

∫
gdν

∫
adν

= 2
∫
bdν

∫
adν
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is another quadratic form, and δ2φ is independent of g.

Because the functions in A are positive, δ2φ is strongly positive on A (which again implies

that φ is strictly convex):

δ2φ[g; a, a] = 2
(∫

adν

)2

= 2‖a‖2L1(ν) ≥ 0

for a ∈ A. The Bregman divergence is thus

dφ[f, g]

=
(∫

fdν

)2

−
(∫

gdν

)2

− 2
∫
gdν

∫
(f − g)dν

=
(∫

fdν

)2

+
(∫

gdν

)2

− 2
∫
gdν

∫
fdν

=
(∫

(f − g)dν
)2

≤ ‖f − g‖2L1(ν).

Example: Relative Entropy of Simple Functions

Let (X,Σ, ν) be a measure space. Let S denote the collection of all measurable simple

functions on (X,Σ, ν), that is, the set of functions which can be written as a finite linear

combination of indicator or characteristic functions. If g ∈ S then it can be expressed as

g(x) =
t∑
i=0

αiχTi ; α0 = 0,

where χTi is the indicator or characteristic function of the set Ti and {Ti}ti=0 is a collection

of mutually disjoint measurable sets with the property that X =
⋃t
i=0 Ti. One can adopt

the convention that T0 is the set on which g is zero and therefore αi 6= 0 if i 6= 0. The set(
S, ‖ · ‖L∞(ν)

)
is a normed vector space. In this case

∫
X
g ln gdν =

t∑
i=1

∫
Ti

αi lnαidν, (7.2)

since 0 ln 0 = 0.

Note that the integral in (7.2) only exists for g ∈ S if g ∈ L1(ν) and g ≥ 0. This implies

that ν(Ti) ≤ ∞ for all 1 ≤ i ≤ t, while the measure of T0 could be infinity. For this reason,
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consider the normed vector space (L1(ν)∩S,‖ ·‖L∞(ν)), where (L1(ν)∩S)⊂ S⊂ L∞(ν). Let

W be the set (not necessarily a vector space) of functions for which the integral
∫
X g ln g dν

is finite, that is, let

W = {g ∈ L1(ν) ∩ S subject to g ≥ 0}.

Define the functional φ on W,

φ[g] =
∫
X
g ln g dν, g ∈ W. (7.3)

The functional φ is not Fréchet differentiable because in general it cannot be guaran-

teed that g + h is non-negative for all functions h in the underlying normed vector space(
L1(ν) ∩ S, ‖ · ‖L∞(ν)

)
with norm smaller than any prescribed ε > 0. However, a general-

ized Gâteaux derivative can be defined if one limits the perturbing function h to a vector

subspace.

Let G be the subspace of
(
L1(ν) ∩ S, ‖ · ‖L∞(ν)

)
defined by

G = {f ∈ L1(ν) ∩ S subject to f dν � g dν}.

It is straightforward to show that G is vector space. The generalized Gâteaux derivative of

φ at g ∈ W is defined to be the linear operator δGφ[g; ·] if

lim
‖h‖L∞(ν)→0

h∈G

|φ[g + h]− φ[g]− δGφ[g;h]|
‖h‖L∞(ν)

= 0. (7.4)

Note, that δGφ[g; ·] is not linear in general, but it is on the vector space G. (In general, if G

is the entire underlying vector space then (7.4) is the Fréchet derivative, and if G is the span

of only one element from the underlying vector space then (7.4) is the Gâteaux derivative.

Here, the Gâteaux derivative has been generalized for the present case that G is a subspace

of the underlying vector space).

It remains to be shown that given the functional (7.3), the derivative (7.4) exists and yields

the relative entropy. Consider the solution

δGφ[g;h] =
∫
X

(1 + ln g)hdν, (7.5)
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which coupled with (7.3) does yield the relative entropy. The proof is completed by showing

that (7.5) satisfies (7.4). Note that

φ[g + h]− φ[g]− δGφ[g;h] =
∫
X

(h+ g) ln
h+ g

g
− hdν

=
∫
E
(h+ g) ln

h+ g

g
− hdν, (7.6)

where E is the set on which g is not zero.

Since g ∈ W, there are m,M > 0 such that m ≤ g ≤ M on E. On one hand if h ∈ G is

such that ‖h‖L∞(ν) ≤ m then g + h ≥ 0. In this case

(h+ g) ln
h+ g

g
− h ≤ (h+ g)

h

g
− h =

h2

g
,

and therefore

φ[g + h]− φ[g]− δGφ[g;h]
‖h‖L∞(ν)

≤ 1
‖h‖L∞(ν)

∫
E

h2

g
dν

≤ 1
m

∫
E
|h|dν

≤ 1
m
‖h‖L1(ν).

On the other hand ∫
E
(h+ g) ln

h+ g

g
dν =

∫
E

h+ g

g
ln
h+ g

g
gdν,

which can be written as

‖g‖L1(ν)

∫
E

h+ g

g
ln
h+ g

g

g

‖g‖L1(ν)
dν = ‖g‖L1(ν)

∫
E
λ

(
h+ g

g

)
dν̃.

Note, that the measure dν̃ = g
‖g‖L1(ν)

dν is a probability measure and λ(x) = x lnx is a

convex function on (0,∞). Let’s call ‖g‖L1(ν) = M . By Jensen’s inequality

M

∫
E
λ

(
h+ g

g

)
dν̃ ≥Mλ

(∫
E

h+ g

g
dν̃

)
= Mλ

(∫
E

h

M
dν +

∫
E
dν̃

)
= Mλ

(
1
M

∫
E
h dν + 1

)
.
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Since

Mλ

(
1
M

∫
E
h dν + 1

)
=
(∫

E
h dν +M

)
ln
(

1
M

∫
E
h dν + 1

)
.

As a result one can bound the integral in equation (7.6) from below by∫
E
(h+ g) ln

h+ g

g
− hdν ≥

(∫
E
h dν +M

)
ln
(

1
M

∫
E
h dν + 1

)
−
∫
E
h dν

=
∫
E
h dν ln

(
1
M

∫
E
h dν + 1

)
+M ln

(
1
M

∫
E
h dν + 1

)
−
∫
E
h dν.

If
∫
E h dν = 0 then the integral in (7.6) is non-negative, so without loss of generality one

can assume, that
∫
E h dν 6= 0. In this case

φ[g + h]− φ[g]− δGφ[g;h]
‖h‖L∞(ν)

≥
∫
E h dν

‖h‖L∞(ν)
ln
(

1
M

∫
E
h dν + 1

)
+

M

‖h‖L∞(ν)
ln
(

1
M

∫
E
h dν + 1

)
−
∫
E h dν

‖h‖L∞(ν)

≥
∫
E h dν

‖h‖L∞(ν)
ln
(

1
M

∫
E
h dν + 1

)
+

[
M ln

(
1
M

∫
E h dν + 1

)∫
E h dν

− 1

] ∫
E h dν

‖h‖L∞(ν)
.

Observe, that as
∫
E h dν → 0

ln
(

1
M

∫
E
h dν + 1

)
→ 0,

and

M ln
(

1
M

∫
E h dν + 1

)∫
E h dν

− 1 → 0.

The proof ends by showing that there is a constant K which is independent of h such that

|
∫
E
h dν| ≤ ‖h‖L1(ν) ≤ K‖h‖L∞(ν).

This implies that
∫
E h dν → 0 and ‖h‖L1(ν) → 0 as ‖h‖L∞(ν) → 0 together with the fact

that
|
∫
E h dν|

‖h‖L∞(ν)
≤ K,

which establishes (7.4). Because h ∈ G, h can be expressed as

h =
v∑
i=0

βiχVi ; β0 = 0,
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where {Vi}vi=0 is a collection of mutually disjoint measurable sets with the property that

X =
⋃v
i=0 Vi. Also, because h dν � g dν there is a set N(h) such that ν(N(h)) = 0 and

v⋃
i=1

Vi ⊂

(
t⋃
i=1

Ti ∪N(h)

)
.

This implies that there is a K independent of h such that

v∑
i=1

ν(Vi) ≤
t∑
i=1

ν(Ti) = K.

Finally, ∫
|h|dν =

v∑
i=1

|βi|ν(Vi)

≤ ‖h‖L∞(ν)

v∑
i=1

ν(Vi)

≤ ‖h‖L∞(ν)K.

7.2.2 Relationship to Other Bregman Divergence Definitions

Two propositions establish the relationship of the functional Bregman divergence to other

Bregman divergence definitions.

Proposition 7.2.2 (Functional Bregman Divergence Generalizes Vector Bregman Diver-

gence). The functional definition (7.1) is a generalization of the standard vector Bregman

divergence

dφ̃(x, y) = φ̃(x)− φ̃(y)−∇φ̃(y)T (x− y), (7.7)

where φ̃ : Rn → R is strictly convex and twice differentiable and x, y ∈ Rn.

The proof is given in Appendix A.

Jones and Byrne describe a general class of divergences between functions using a point-

wise formulation [80]. Csiszár specialized the pointwise formulation to a class of divergences

he termed Bregman distances Bs,ν [15], where given a σ-finite measure space (X,Ω, ν), and

non-negative measurable functions f(x) and g(x), Bs,ν(f, g) equals∫
s(f(x))− s(g(x))− s′(g(x))(f(x)− g(x))dν(x). (7.8)
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The function s : (0,∞) → R is constrained to be differentiable and strictly convex, and

the limit limx→0 s(x) and limx→0 s
′(x) must exist, but not necessarily finite. The function

s plays a role similar to the function φ in the functional Bregman divergence, but s acts on

the range of the functions f, g, whereas φ acts on the pair of functions f, g.

Proposition 7.2.3 (Functional Definition Generalizes Pointwise Definition). Given a point-

wise Bregman divergence as per (7.8), an equivalent functional Bregman divergence can be

defined as per (7.1) if the measure ν is finite. However, given a functional Bregman diver-

gence dφ(f, g), there is not necessarily an equivalent pointwise Bregman divergence.

The proof is given in the Appendix A.

7.3 Properties of the Functional Bregman Divergence

The Bregman divergence for vectors has some well-known properties, as reviewed in [24,

Appendix A]. Here, it has been established that the same properties hold for the functional

Bregman divergence (7.1).

1. Non-negativity

The functional Bregman divergence is non-negative. To show this, define φ̃ : R → R by

φ̃(t) = φ [tf + (1− t)g], f, g ∈ A. From the definition of the Fréchet derivative,

d

dt
φ̃ = δφ[tf + (1− t)g; f − g]. (7.9)

The function φ̃ is convex because φ is convex by definition. Then from the mean value

theorem there is some 0 ≤ t0 ≤ 1 such that

φ̃(1)− φ̃(0) =
d

dt
φ̃(t0) ≥

d

dt
φ̃(0). (7.10)

Because φ̃(1) = φ[f ], φ̃(0) = φ[g] and (7.9), subtracting the right-hand side of (7.10) implies

that

φ[f ]− φ[g]− δφ[g, f − g] ≥ 0. (7.11)

If f = g, then (7.11) holds in equality. Lastly, it is proved that equality only holds when

f = g. Suppose (7.11) holds in equality; then

φ̃(1)− φ̃(0) =
d

dt
φ̃(0). (7.12)
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The equation of the straight line connecting φ̃(0) to φ̃(1) is `(t) = φ̃(0) + (φ̃(1) − φ̃(0))t,

and the tangent line to the curve φ̃ at φ̃(0) is y(t) = φ̃(0) + t ddt φ̃(0). Because φ̃(τ) =

φ̃(0) +
∫ τ
0

d
dt φ̃(t)dt and d

dt φ̃(t) ≥ d
dt φ̃(0) as a direct consequence of convexity, it must be

that φ̃(t) ≥ y(t). Convexity also implies that `(t) ≥ φ̃(t). However, the assumption that

(7.11) holds in equality implied (7.12) which means y(t) = `(t), and thus φ̃(t) = `(t),

which is not strictly convex. Because φ is by definition strictly convex, it must be that

φ[tf + (1− t)g] < tφ[f ] + (1− t)φ[g] unless f = g. Thus, under the assumption of equality

of (7.11), it must be that f = g.

2. Convexity

The Bregman divergence dφ[f, g] is always convex with respect to f . Consider

4dφ[f, g; a] = dφ[f + a, g]− dφ[f, g]

= φ[f + a]− φ[f ]− δφ[g; f − g + a] + δφ[g; f − g].

Using linearity in the third term,

4dφ[f, g; a] = φ[f + a]− φ[f ]− δφ[g; f − g]− δφ[g; a] + δφ[g; f − g],

= φ[f + a]− φ[f ]− δφ[g; a],
(a)
= δφ[f ; a] +

1
2
δ2φ[f ; a, a] + ε[f, a] ‖a‖2L(ν) − δφ[g; a]

⇒ δ2dφ[f, g; a, a] =
1
2
δ2φ[f ; a, a] > 0,

where (a) and the conclusion follows from the appendix (B.2).

3. Linearity The functional Bregman divergence is linear in the sense that:

d(c1φ1+c2φ2)[f, g] = (c1φ1 + c2φ2)[f ]− (c1φ1 + c2φ2)[g]− δ(c1φ1 + c2φ2)[g; f − g],

= c1dφ1 [f, g] + c2dφ2 [f, g].

4. Equivalence Classes

Partition the set of strictly convex, differentiable functions {φ} on A into classes with

respect to functional Bregman divergence, so that φ1 and φ2 belong to the same class if

dφ1 [f, g] = dφ2 [f, g] for all f, g ∈ A. For brevity denote dφ1 [f, g] simply by dφ1 . Let φ1 ∼ φ2

denote that φ1 and φ2 belong to the same class, then ∼ is an equivalence relation because it
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satisfies the properties of reflexivity (because dφ1 = dφ1), symmetry (because if dφ1 = dφ2 ,

then dφ2 = dφ1) and transitivity (because if dφ1 = dφ2 and dφ2 = dφ3 , then dφ1 = dφ3).

Further, if φ1 ∼ φ2, then they differ only by an affine transformation. To see this, note

that by assumption, φ1[f ] −φ1[g] −δφ1[g; f − g] = φ2[f ]−φ2[g] −δφ2[g; f − g], and fix g so

φ1[g] and φ2[g] are constants. By the linearity property δφ[g; f − g] = δφ[g; f ] − δφ[g; g],

and because g is fixed, this equals δφ[g; f ] + c0 where c0 is a scalar constant. Then φ2[f ] =

φ1[f ] + (δφ2[g; f ]− δφ1[g; f ]) + c1, where c1 is a constant. Thus,

φ2[f ] = φ1[f ] +Af + c1,

where A = δφ2[g; ·]−δφ1[g; ·] and thus A : A → R is a linear operator that does not depend

on f .

5. Linear Separation

Fix two non-equal functions g1, g2 ∈ A and consider the set of all functions in A that are

equidistant in terms of functional Bregman divergence from g1 and g2.

dφ[f, g1] = dφ[f, g2]

⇒ −φ[g1]− δφ[g1; f − g1] = −φ[g2]− δφ[g2; f − g2]

⇒ −δφ[g1; f − g1] = φ[g1]− φ[g2]− δφ[g2; f − g2].

Using linearity the above relationship can be equivalently expressed

−δφ[g1; f ] + δφ[g1; g1] = φ[g1]− φ[g2]− δφ[g2; f ] + δφ[g2; g2],

δφ[g2; f ]− δφ[g1; f ] = φ[g1]− φ[g2]− δφ[g1; g1] + δφ[g2; g2].

Lf = c

where L is the bounded linear functional defined by Lf = δφ[g2; f ] − δφ[g1; f ] and c is

the constant corresponding to the right hand side. In other words f has to be in the set

{a ∈ A : La = c}, where c is a constant. This set is a hyperplane.

6. Dual Divergence

Given a pair (g, φ) where g ∈ Lp(ν) and φ is a strictly convex twice continuously Fréchet

differentiable functional, then the function-functional pair (G,ψ) is the Legendre transform
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of (g, φ) [87], if

φ[g] = −ψ[G] +
∫
g(x)G(x)dν(x), (7.13)

δφ[g; a] =
∫
G(x)a(x)dν(x), (7.14)

where ψ is a strictly convex twice continuously Fréchet differentiable functional, and G ∈

Lq(ν), where 1
p + 1

q = 1.

Given Legendre transformation pairs f, g ∈ Lp(ν) and F,G ∈ Lq(ν),

dφ(f, g) = dψ(G,F ).

The proof begins by substituting (7.13) and (7.14) into (7.1):

dφ[f, g] = φ[f ] + ψ[G]−
∫
g(x)G(x)dν(x)−

∫
G(x)(f − g)(x)dν(x)

= φ[f ] + ψ[G]−
∫
G(x)f(x)dν(x). (7.15)

Applying the Legendre transformation to (G,ψ) implies that

ψ[G] = −φ[g] +
∫
g(x)G(x)dν(x) (7.16)

δψ[g; a] =
∫
g(x)a(x)dν(x). (7.17)

Using (7.16) and (7.17), dψ[G,F ] can be reduced to (7.15).

7. Generalized Pythagorean Inequality

For any f, g, h ∈ A,

dφ[f, h] = dφ[f, g] + dφ[g, h] + δφ[g; f − g]− δφ[h; f − g].

This can be derived as follows:

dφ[f, g] + dφ[g, h] = φ[f ]− φ[h]− δφ[g; f − g]− δφ[h; g − h]

= φ[f ]− φ[h]− δφ[h; f − h] + δφ[h; f − h]

−δφ[g; f − g]− δφ[h; g − h]

= dφ[f, h] + δφ[h; f − g]− δφ[g; f − g],

where the last line follows from the definition of the functional Bregman divergence and the

linearity of the fourth and last terms.
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7.4 Minimum Expected Bregman Divergence

Consider two sets of functions (or distributions), M and A. Suppose there exists a prob-

ability distribution PF over the set M, such that PF (f) is the probability of f ∈ M. For

example, consider the set of Gaussian distributions, then given samples drawn indepen-

dently and identically from a randomly selected Gaussian distribution N , the data implies

a posterior probability PN (N ) for each possible generating realization of a Gaussian distri-

bution N . The goal is to find the function g∗ ∈ A that minimizes the expected Bregman

divergence with respect to PF (f). The following theorem shows that if the set of possible

minimizers A includes EPF
[F ], then g∗ = EPF

[F ] minimizes the expectation of any Bregman

divergence.

The theorem only applies to a set of functionsM that lie on a finite-dimensional manifold

M for which a differential element dM can be defined. For example, the set M could be

parameterized by a finite number of parameters, or could be a set of functions that can be

decomposed into a finite set of d basis functions {ψ1, ψ2, . . . , ψd} such that each f can be

expressed:

f =
d∑
j=1

cjψj ,

where cj ∈ R for all j. The theorem requires slightly stronger conditions on φ than the

definition of the Bregman divergence (7.1) requires.

Theorem 7.4.1 (Minimizer of the Expected Bregman Divergence). Let δ2φ[f ; a, a] be

strongly positive and let φ ∈ C3(L1(ν);R) be a three times continuously Fréchet differ-

entiable functional on L1(ν). Let M be a set of functions that lie on a finite-dimensional

manifold M , and have associated differential element dM . Suppose there is a probability

distribution PF defined over the set M. Suppose the function g∗ minimizes the expected

Bregman divergence between the set of functions M and any function g ∈ A with respect to

probability distribution P (f) such that

g∗ = arg inf
g∈A

EPF
[dφ(F, g)].



94

Then, if it exists, g∗ is given by

g∗ =
∫
M
fP (f)dM = EPF

[F ]. (7.18)

The proof is given in the Appendix A.

7.5 Bayesian Estimation

Theorem 7.4.1 can be applied to a set of distributions to find the Bayesian estimate of a

distribution given a posterior or likelihood. For parametric distributions parameterized by

θ ∈ Rn, a probability measure Λ(θ), and some risk function R(θ, ψ), ψ ∈ Rn, the Bayes

estimator is defined as [18]

θ̂ = arg inf
ψ∈Rn

∫
R(θ, ψ)dΛ(θ). (7.19)

That is, the Bayes estimator minimizes some expected risk in terms of the parameters. It

follows from recent results [14] that θ̂ = E[Θ] if the risk R is a Bregman divergence, where

Θ is the random variable whose realization is θ.

The principle of Bayesian estimation can be applied to the distributions themselves

rather than to the parameters:

ĝ = arg inf
g∈A

∫
M
R(f, g)PF (f)dM, (7.20)

where PF (f) is a probability measure on the distributions f ∈ M, dM is a differential

element for the finite-dimensional manifold M , and A is either the space of all distributions,

or a subset of the space of all distributions, such as the set M. When the set A includes

the distribution EPF
[F ] and the risk function R in (7.20) is a Bregman divergence, then

Theorem 7.4.1 establishes that ĝ = EPF
[F ].

For example, in recent work, two of the authors derived the mean class posterior dis-

tribution for each class for a Bayesian quadratic discriminant analysis classifier [39], and

showed that the classification results were superior to parameter-based Bayesian quadratic

discriminant analysis (using the same prior) for six simulations.

Of particular interest for estimation problems are the Bregman divergence examples

given in Section 7.2.1: total squared difference (mean squared error) is a popular risk
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function in regression [5]; minimizing relative entropy leads to useful theorems for large

deviations and other statistical subfields [19]; and analyzing bias is a common approach to

characterizing and understanding statistical learning algorithms [5].

7.5.1 Case Study: Estimating a Scaled Uniform Distribution

As an illustration, different estimators for estimating a scaled uniform distribution given

independent and identically drawn samples are presented and compared. Let the set of

uniform distributions over [0, θ] for θ ∈ R+ be denoted U . Given independent and identically

distributed samples X1, X2, . . . , Xn drawn from an unknown uniform distribution f ∈ U ,

the generating distribution is to be estimated. The risk function R is taken to be squared

error in all cases.

Bayesian Parameter Estimate

Depending on the choice of the probability measure Λ(θ), the integral (7.19) may not be

finite: For example, using the likelihood of θ with Lebesgue measure is not finite. A standard

solution is to use a gamma prior on θ and Lebesgue measure. Let Θ be a random parameter

with realization θ, let the gamma distribution have parameters t1 and t2, and denote the

maximum of the data as Xmax = max{X1, X2, . . . , Xn}. Then a Bayesian estimate is

formulated [18, p. 240, 285]

E[Θ|{X1, X2, . . . , Xn}, t1, t2] =

∫∞
Xmax

θ 1
θn+t1+1 e

−1
θt2 dθ∫∞

Xmax

1
θn+t1+1 e

−1
θt2 dθ

. (7.21)

The integrals can be expressed in terms of the chi-squared random variable χ2
v with v degrees

of freedom:

E[Θ|{X1, X2, . . . , Xn}, t1, t2] =
1

t2(n+ t1 − a)

P (χ2
2(n+t1−1) <

2
t2Xmax

)

P (χ2
2(n+t1) <

2
t2Xmax

)
. (7.22)

Note that (7.19) presupposes that the best solution is also a uniform distribution.

Bayesian Uniform Distribution Estimate

If one restricts the minimizer of (7.20) to be a uniform distribution, then (7.20) is solved

with A = U . Because the set of uniform distributions does not generally include its mean,
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Theorem 7.4.1 does not apply, and thus different Bregman divergences may give different

minimizers for (7.20). Let PF be the likelihood of the data (no prior is assumed over the

set U), and use the Fisher information metric ([46, 47, 88]) for dM . Then the solution to

(7.20) is the uniform distribution on [0, 21/nXmax]. Using Lebesgue measure instead gives a

similar result: [0, 21/(n+1/2)Xmax]. We were unable to find these estimates in the literature,

and so their derivations are presented in Appendix A.

Unrestricted Bayesian Distribution Estimate

When the only restriction placed on the minimizer g in (7.20) is that g be a distribution,

then one can apply Theorem 7.4.1 and solve directly for the expected distribution EPF
[F ].

Let PF be the likelihood of the data (no prior is assumed over the set U), and use the

Fisher information metric for dM . Solving (7.18) given that the uniform probability of x

is f(x) = 1/a if x ≤ a and zero otherwise, and the likelihood of the n drawn points is

(1/Xmax)n if a ≥ Xmax and zero otherwise,

g∗(x) =

∫∞
max(x,Xmax)

(
1
a

) (
1
an

) (
da
a

)∫∞
Xmax

1
an

da
a

=
n (Xmax)

n

(n+ 1)[max(x,Xmax)]n+1
. (7.23)

Projecting the Unrestricted Estimate onto the Set of Uniform Distributions

Consider what happens when the unrestricted solution g∗(x) given in (7.23) is projected

onto the set of uniform distributions with respect to squared error. That is, one solves for

the uniform distribution h(x) over [0, a] such that:

â = arg min
a∈[0,∞)

∫ ∞

0
(h(x)− g∗(x))2dx. (7.24)

The problem is straightforward to solve using standard calculus and yields the solution â =

21/nXmax. This is also the solution to the problem (7.20) when the minimizer is restricted to

be a uniform distribution and the Fisher information metric over the uniform distributions

is used (as discussed in Section 7.5.1). Thus, the projection of the unrestricted solution

to (7.20) onto the set of uniform distributions is the same as the solution to (7.20) when
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the minimizer is restricted to be uniform. One can conjecture that under some conditions

this property will hold more generally: that the projection of the unrestricted minimizer of

(7.20) onto the set M will be equivalent to solving (7.20) where the solution is restricted to

the set M.

7.5.2 Simulation

A simulation was done to compare the different Bayesian estimators and the maximum

likelihood estimator. The simulation was run 1, 000 times: each time n data points were

drawn independently and identically from the uniform over [0, 1], and estimates were formed.

Figure 7.1 is a log-log plot of the average squared errors between the estimated distribution

and the true distribution.

For the Bayesian parameter estimator given in (7.22), estimates were calculated for three

different sets of Gamma parameters, (t1 = 1, t2 = 1), (t1 = 1, t2 = 3), and (t1 = 1, t2 = 100).

The plotted error is the minimum of the three averaged errors for the different Gamma priors

for each n. The plotted Bayesian distribution estimates used the Fisher information metric

(very similar simulation results were obtained with the Lebesgue measure).

Given more than one random sample from the uniform, the unrestricted Bayesian distri-

bution estimator (thick line) always performed better than the other estimators (as it should

be by design). Of course, asymptotically as n→∞, all of the estimates will converge on the

truth. For n = 1, the Bayesian parameter estimate performs better. One may believe this is

due to the (in this case correct) bias of the prior used for the Bayesian parameter estimate.

The dotted line rises upwards at n = 155 because the Bayesian parameter estimate was

uncomputable for more than 155 data samples (we used Matlab v. 14 to evaluate (7.22),

and for 155 data samples or more the numerator and denominator of (7.22) were determined

to be 0, leading to an indeterminate estimate).

Three interesting conclusions are supported by the simulation results. First, the Bayesian

estimates do improve significantly over the maximum likelihood estimate (dashed line). Sec-

ond, although the truth is uniform, the unrestricted Bayesian distribution estimate chooses a

non-uniform solution (thick line), which does significantly better than either of the Bayesian
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Figure 7.1: The plot shows the log of the squared error between an estimated distribution
and a uniform [0, 1] distribution, averaged over one thousand runs of the estimation simu-
lation. The dashed line is the maximum likelihood estimate, the dotted line is the Bayesian
parameter estimate, the thick solid line is the Bayesian distribution estimate that solves
(7.20), and the thin solid line is the Bayesian distribution estimate that solves (7.20) but
the minimizer is restricted to be uniform.

uniform estimates (thin line and dotted line). Third, the Bayesian parameter estimate (dot-

ted line) and the Bayesian uniform distribution estimate (thin line) perform quite similarly.

For n < 10 the Bayesian parameter estimate works better, but for n > 10, the Bayesian

uniform distribution estimate is slightly better. Although these two estimates perform sim-

ilarly, the Bayesian uniform distribution estimate [0, 21/nXmax] is a more elegant solution

than the parameter estimate (7.22), and is easier to compute and to work with analytically.
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7.6 Discussion

A general Bregman divergence for functions and distributions has been defined that can

provide a foundation for results in statistics, information theory and signal processing.

Theorem 7.4.1 is important for these fields because it ties Bregman divergences to expec-

tation. As shown in Section 7.5, Theorem 7.4.1 can be directly applied to distributions to

show that Bayesian distribution estimation simplifies to expectation when the risk function

is a Bregman divergence and the minimizing distribution is unrestricted.

Bayesian distribution estimation was considered in Section 7.5 where the minimizer is

restricted to a particular set of distributions, which may be particularly useful in circum-

stances where the expectation of a random distribution with respect to its likelihood (or

the appropriate posterior) is not finite.
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Chapter 8

CONCLUSION AND FEATURE WORKS

This chapter summarizes the main conclusion of the dissertation, discusses its impact

and limitations, and suggest directions for future research.

8.1 Summary of Main Contributions

The first contribution of this dissertation is the definition of functional Bregman divergence

which is a general Bregman divergence for functions and distributions, as was discussed

in Chapter 7. We showed that functional Bregman divergence generalizes vector Bregman

divergence and Jones-Byrne’s and Csiszár’s point-wise formulation of Bregman divergence

as shown in Proposition 7.2.2 and Proposition 7.2.3. Examples are shown for total square

difference, relative entropy, and square bias. We showed that square bias is a functional

Bregman divergence, which was not previously seen in the literature despite the importance

of minimizing bias being a common approach in estimation and statistical learning algo-

rithms. In this example the functional φ can not be defined using the point-wise Bregman

divergence definition. We showed that the functional Bregman divergence has many of the

same properties as the standard vector Bregman divergence.

Furthermore in Section 7.5, Theorem 7.4.1, it was shown how the proposed functional

definition allows us to extend Banerjee et al.’s [14] work to the continuous case. This

theorem showed that when the minimizing distribution is unrestricted then the expectation

of a set of functions minimizes the expected functional Bregman divergence. Theorem 7.4.1

can provide a foundation for results in statistics, information theory, signal processing, and

statistical learning because it ties Bregman divergence to expectation. This theorem has

direct application to the Bayesian estimation of distributions as opposed to the Bayesian

estimation of parameters of distributions.

The algorithmic contribution comes from the derivation of regularized data adaptive
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algorithms based on prior information and the Fisher information measure over statistical

manifold of Gaussian distributions and applying them to pattern classification tasks. In

Chapter 5 we showed that the proposed BDA7 classifier performs generally better than RDA,

EDDA, and QB over twelve benchmark datasets and ten simulations when the number of

dimensions is large compared to the number of training samples. Key aspects of the BDA7

classifier are that the seed matrix in the inverted Wishart prior defines the maximum of

the prior, and that using a coarse estimate of the covariance matrix as the seed matrix

pegs the prior at a relevant part of the distribution-space. We established an analytic link

between Bayesian discriminant analysis and regularized discriminant analysis. In Chapter

4 we presented a functional equivalence between minimizing the expected misclassification

costs and minimizing the expected Bregman divergence of class conditional distributions

and also showed that distribution-based formulation of the Bayesian quadratic discriminant

analysis classifier is related to the standard parameter-based formulation. We showed that

the distribution-based Bayesian quadratic discriminant analysis classifier for a fixed data-

dependent prior achieved the best result out of a number of non-cross-validated Gaussian

model classifiers when there are relatively few data samples.

A third contribution of this dissertation is that we proposed local Bayesian quadratic

discriminant analysis (local BDA) classifier as a simpler, closed-form alternative to Gaussian

mixture models. In Chapter 6 we showed that on fourteen real datasets, local Bayesian QDA

can achieve higher accuracy than the local nearest means classifier [65, 12], recently proposed

local support vector machine classifier SVM-KNN [13], Gaussian mixture model, k-NN, and

classifying by local linear regression. Furthermore, we showed that the local BDA decision

boundary is locally quadratic over any region of the feature space where the neighborhood

is constant.

Furthermore, we extended the discussion on estimation in Chapter 2, where we presented

Bayesian estimation using Bregman divergence risk function and showed that the mean of

the posterior pdf is the optimal Bayesian estimation. In Chapter 3 we showed that a

generalized form of Laplace smoothing for weighted k nearest-neighbors class probability

estimates can reduce the error rate by a large multiplicative factor when the misclassification

costs are highly asymmetric.
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8.2 Future Work

This section discusses a number of limitations of this dissertation, open questions, and

suggests directions for future research.

There are some results for the standard vector Bregman divergence that have not been

extended here. It has been shown that a standard vector Bregman divergence must be the

risk function in order for the mean to be the minimizer of an expected risk [14, Theorem 3

and 4]. The proof of that result relies heavily on the discrete nature of the underlying vectors,

and it remains an open question as to whether a similar result holds for the functional

Bregman divergence. Another result shown for the vector case which is an open question

in the functional case is convergence in probability [14, Theorem 2]. Also, it remains to be

shown how to find a functional φ and derivative that yields the Itakura-Saito distance.

This dissertation and [14] showed that the mean minimizes the average Bregman diver-

gence. Then one can ask oneself whether it can be shown that the standard deviation also

minimizes some general loss functions or Bregman loss functions. This motivates the idea

of how to define a Bregman divergence over the space of positive definite matrices or in

general over the spaces of matrices. It is common in statistics to use quadratic loss and

Stein loss for covariance estimation. Can we show that quadratic and Stein losses are also

a Bregman divergence?

It is common in Bayesian estimation to interpret the prior as representing some actual

prior knowledge, but in fact prior knowledge is often not available or difficult to quantify.

Another viewpoint is that a prior can be used to capture coarse information from the data

that may be used to stabilize the estimation [39, 81]. In practice, priors are sometimes chosen

in Bayesian estimation to tame the tail of likelihood distributions so that expectations will

exist when they might otherwise be infinite [18]. This mathematically convenient use of

priors adds estimation bias which may be unwarranted by prior knowledge. An alternative to

mathematically convenient priors is to formulate the estimation problem as a minimization

of an expected Bregman divergence between the unknown distribution and the estimated

distribution, and restrict the set of distributions that can be the minimizer to be a set for

which there is a solution. Open questions are how to find or define a “best” restricted set of
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distributions for this estimation approach, and how such restrictions affect the estimation

bias and variance.

A practical algorithm BDA7 in Chapter 5 uses cross-validated data dependent priors. It

cross-validates degrees of freedom q ∈ {d, 2d, . . . 6d} and seven models for seed matrix Bh of

the inverted Wishart prior. Cross-validation has its obvious advantages, but one practical

downside is that it slows down the computation by manyfold. For BDA7 classifier, there is

slow down by a factor of 42. Maybe it is possible to make smarter choices for cross-validation

parameters, especially for the degrees of freedom q. For example, are there patterns one

can use to decide whether to try out higher values of q for a given choice of Bh? A recipe

for finding the smart choices for q and Bh based on data dependent optimization criterion

or semi-definite programming or high dimensional hypothesis testing will be beneficial to

both researchers and practitioners. Modeling hyper prior over q and Bh could be another

possible direction for future research.

In Chapter 5 BDA7 does as well or better than other classifiers when there were few

data points compared to the number of dimension. But, when one has lot of data, BDA7

has too much model bias to be a general purpose classifier. It is well known that Gaussian

mixture model classifiers work well for a variety of problems. It would be interesting an

research direction as how to effectively integrate distribution-based Bayesian ideas into a

mixture model classifier.

Finally, the problems addressed by this dissertation do not cover all aspects of estimation

and minimizing risk in statistical learning. There are many other aspects that would be

interesting to investigate further, e.g., regularization, shrinkage, and statistical challenges

with high dimension [49, 3, 89, 90], regularization by gradient descent pathfinding [91], gen-

eralized discriminant analysis based on optimization criterion [51], sparse Bayesian learning

and relevance vector machine [92], and Bayes point machine [93]. While the time scale of a

Ph.D. is too short to explore all these problems, I am excited at the prospect of continuing

research on estimation, statistical learning and their applications in the future.
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Appendix A

PROOFS

A.1 Proof of Theorem 2.4.1

Proof: Applying theorem 2.1, the desired minimizer is

θ∗ = arg min
φ
EΘ[dψ(Θ, φ)] ≡ EΘ[Θ], (A.1)

for any Bregman divergence R. Thus,

θ∗g =

∫
θ θg

∏G
g=1 θ

αg
g dθ∫

θ

∏G
g=1 θ

αg
g dθ

. (A.2)

Using Dirichlet’s integral [94, pgs. 32-34] equation,

θ∗g =

(∏G−1
i=1 Γ(αi + 1)

)
Γ(αg + 2)

(∏G
j=g+1 Γ(αi + 1)

)
Γ(G+ 1 +

∑G
j=1 αj)

Γ(G+
∑G

j=1 αj)∏G
i=1 Γ(αi + 1)

=
(αg + 1)

∏G
j=1 Γ(αg + 1)∏G

j=1 Γ(αj + 1)

Γ(G+
∑G

j=1 αj)

Γ(G+ 1 +
∑G

j=1 αj)

=
αg + 1∑G
g=1 αg +G

�

A.2 Proof of Theorem 4.4.1

Proof: The proof employs the following identities [57, 95],∫
µ

exp
[
−nh

2
tr(Σ−1(µ− X̄)(µ− X̄)T)

]
dµ =

(
2π
nh

) d
2

|Σ|
1
2 , (A.3)∫

Σ>0

1

|Σ|
q
2

exp[−tr(Σ−1B)]dΣ =
Γd(

q−d−1
2 )

|B|
q−d−1

2

, (A.4)

(A.5)
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where Γd(·) is the multivariate gamma function

Γd(a) =
(

Γ
(

1
2

)) d(d−1)
d

d∏
i=1

Γ
(
a− d− i

2

)
. (A.6)

To expand (4.15), first we simplify (4.17). The posterior (4.18) requires calculation of the

normalization constant αh,

αh =
∫

Σh

∫
µh

`(Nh, T )p(Nh)
dµdΣh

|Σh|
d+2
2

.

Substitute `(Nh, T ) from (4.19) and p(Nh) from (4.20),

αh =
∫

Σh

∫
µh

exp[−nh
2 tr(Σ−1

h (µh − X̄h)(µh − X̄h)T)]

(2π)
nhd

2 |Σh|
nh+q

2

exp
[
−1

2
tr(Σ−1(Sh + Bh)

]
dΣhdµh

|Σh|
d+2
2

.

Integrate with respect to µh using identity (A.3):

αh =
1

(2π)
nhd

2

(
2π
nh

) d
2
∫

Σh

exp[−1
2trΣ−1

h (Sh + Bh)]

|Σh|
nh+q+d+1

2

dΣh.

Next, integrate with respect to Σh using identity (A.4):

αh =
1

(2π)
nhd

2

(
2π
nh

) d
2 Γd(

nh+q
2 )∣∣∣Sh+Bh

2

∣∣∣nh+q

2

. (A.7)

Therefore the expectation ENh
[Nh] is

ENh
[Nh(X)] =

∫
M
Nh(X)f(Nh)dMh

=
1

αh(2π)
nhd

2

∫
Σh

∫
µh

exp
[
−1

2tr
(
Σ−1

h (X− µh)(X− µh)T
)]

(2π)
d
2 |Σh|

1
2

.
exp

[
−1

2tr(Σ−1
h (Sh + Bh))

]
|Σh|

nh+q

2

exp
[
−nh

2
trΣ−1

h (µh − X̄h)(µh − X̄h)T
] dµhdΣh

|Σh|
d+2
2

.

Integrate with respect to µh and Σh using identities (A.3) and (A.4), and equation (4.23)

to yield

ENh
[Nh(X)] =

1

αh(2π)
dnh
2 (nh + 1)

d
2

Γd(
nh+q+1

2 )

|Ah|
nh+q+1

2

.

Substitute the value of αh from (A.7),

ENh
[Nh(X)] =

1

(2π)
d
2

n
d
2
hΓd(

nh+q+1
2 )|Sh+Bh

2 |
nh+q

2

(nh + 1)
d
2 Γd(

nh+q
2 )|Ah|

nh+q+1

2

.
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Simplify the multivariate gamma function Γd using (A.6):

ENh
[Nh(X)] =

1

(2π)
d
2

n
d
2
hΓ(nh+q+1

2 )

(nh + 1)
d
2 Γ(nh+q−d+1

2 )

|Sh+Bh
2 |

nh+q

2

|Ah|
nh+q+1

2

, (A.8)

where Ah is given by equation (4.23). Substituting (A.8) into (4.15) proves the theorem.

�

A.3 Proof of Theorem 4.4.3

The posterior requires calculation of the normalization constant βh,

βh =
∫

Σh

∫
µh

`(Nh, T )p(Nh)
dµdΣh

|Σh|
d+2
2

.

Substitute `(Nh, T ) from (4.19) and p(Nh) from (4.25),

βh =
∫

Σh

∫
µh

exp[−nh
2 tr(Σ−1

h (µh − X̄h)(µh − X̄h)T)] exp[−1
2 tr(Σ−1

h Sh)]

(2π)
nhd

2 |Σh|
nh
2

[
1

|Σh|
d+1
2

]
dΣhdµh

|Σh|
d+2
2

.

Integrate with respect to µh using identity (A.3):

βh =
1

(2π)
nhd

2

(
2π
nh

) d
2
∫

Σh

exp[−1
2tr(Σ−1

h Sh)]

|Σh|
nh+2d+2

2

dΣh.

Next, integrate with respect to Σh using identity (A.4):

βh =
1

(2π)
nhd

2

(
2π
nh

) d
2 Γd(nh+d+1

2 )∣∣∣Sh
2

∣∣∣nh+d+1

2

. (A.9)

Therefore the expectation ENh
[Nh] is

ENh
[Nh(X)] =

∫
M
Nh(X)f(Nh)dMh

=
1

βh(2π)
nhd

2

∫
Σh

∫
µh

exp
[
−1

2tr
(
Σ−1

h (X− µh)(X− µh)T
)]

(2π)
d
2 |Σh|

1
2

.
exp

[
−1

2tr(Σ−1
h Sh)

]
|Σh|

nh+d+1

2

exp
[
−nh

2
trΣ−1

h (µh − X̄h)(µh − X̄h)T
] dµhdΣh

|Σh|
d+2
2

.

Integrate with respect to µh and Σh using identities (A.3) and (A.4), and equation (4.27)

to yield

ENh
[Nh(X)] =

1

βh(2π)
dnh
2 (nh + 1)

d
2

Γd(nh+d+2
2 )

|Th|
nh+d+2

2

.
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Substitute the value of βh from (A.9),

ENh
[Nh(X)] =

1

(2π)
d
2

n
d
2
hΓd(nh+d+2

2 )|Sh
2 |

nh+d+1

2

(nh + 1)
d
2 Γd(nh+d+1

2 )|Th|
nh+d+2

2

.

Simplify the multivariate gamma function Γd using (A.6):

ENh
[Nh(X)] =

1

(2π)
d
2

n
d
2
hΓ(nh+d+2

2 )

(nh + 1)
d
2 Γ(nh+d+1

2 )

|Sh
2 |

nh+d+1

2

|Th|
nh+d+2

2

, (A.10)

where Th is given by equation (4.27). Substituting (A.10) into (4.15) proves the theorem.

�

A.4 Proof of Proposition 7.2.2

A constructive proof is given such that there is a corresponding functional Bregman diver-

gence dφ[f, g] for a specific choice of φ : A∞ → R, where A1 is the function space A with

p = 1, and where ν =
∑n

i=1 δci and f, g ∈ A∞. Here, δx is the Dirac measure (such that all

mass is concentrated at x) and {c1, c2, . . . , cn} is a collection of n distinct points in Rd.

For any x ∈ Rn, define φ[f ] = φ̃(x1, x2, . . . , xn), where f(c1) = x1, f(c2) = x2, . . . , f(cn) =

xn. Then the difference is

∆φ[f ; a] = φ[f + a]− φ[f ]

= φ̃ ((f + a)(c1), . . . , (f + a)(cn))− φ̃ (x1, . . . , xn)

= φ̃ (x1 + a(c1), . . . , xn + a(cn))− φ̃ (x1, . . . , xn) .

Let ai be short-hand for a(ci), and use the Taylor expansion for functions of several variables

to yield

∆φ[f ; a] = ∇φ̃(x1, . . . , xn)T (a1, . . . , an) + ε[f, a]‖a‖L1 .

Therefore,

δφ[f ; a] = ∇φ̃(x1, . . . , xn)T (a1, . . . , an) = ∇φ̃(x)Ta,

where x = (x1, x2, . . . , xn) and a = (a1, . . . , an). Thus from (3), the functional Bregman

divergence definition (7.1) for φ is equivalent to the standard vector Bregman divergence:

dφ̃[f, g] = φ[f ]− φ[g]− δφ[g; f − g]

= φ̃(x)− φ̃(y)−∇φ̃(y)T (x− y). (A.11)
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�

A.5 Proof of Proposition 7.2.3

A constructive proof of the first part of the proposition is given by showing that given a

Bs,ν , there is an equivalent functional divergence dφ. The second part of the proposition is

shown by example: the squared bias functional Bregman divergence given in Section 7.2.1

is an example of a functional Bregman divergence that cannot be defined as a pointwise

Bregman divergence.

Note that the integral to calculate Bs,ν does not always turn out to be finite. To ensure finite

Bs,ν , explicitly constrain limx→0 s
′(x) and limx→0 s(x) to be finite. From the assumption

that s is strictly convex, s must be continuous on (0,∞). Recall from the assumptions that

the measure ν is finite, and that the function s is differentiable on (0,∞).

Given a Bs,ν , define the continuously differentiable function

s̃(x) =


s(x) x ≥ 0

−s(−x) + 2s(0) x < 0.

and specify φ : L∞(ν) → R as

φ[f ] =
∫
X
s̃(f(x))dν.

Note that if f ≥ 0,

φ[f ] =
∫
X
s(f(x))dν.

Because s̃ is continuous on R, s̃(f) ∈ L∞ whenever f ∈ L∞, so the integrals always make

sense.

It remains to show that δφ[f ; ·] completes the equivalence when f ≥ 0. For h ∈ L∞,

φ[f + h]− φ[f ] =
∫
X
s̃(f(x) + h(x))dν −

∫
X
s(f(x))dν

=
∫
X
s̃(f(x) + h(x))− s(f(x))dν

=
∫
X
s̃′(f(x))h(x) + ε (f(x), h(x))h(x)dν

=
∫
X
s′(f(x))h(x) + ε (f(x), h(x))h(x)dν,
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where

s̃(f(x) + h(x)) = s̃(f(x)) + s̃′(f(x))h(x)

+ ε(f(x), h(x))h(x)

= s(f(x)) + s′(f(x))h(x)

+ ε(f(x), h(x))h(x),

because f ≥ 0. On the other hand, if h(x) = 0 then ε(f(x), h(x)) = 0 and if h(x) 6= 0 then

|ε(f(x), h(x))| ≤ | s̃(f(x) + h(x))− s̃(f(x))
h(x)

|+ |s′(f(x))|.

Suppose {hn} ⊂ L∞(ν) such that hn → 0. Then there is a measurable set E such that its

complement is of measure 0 and hn → 0 uniformly on E. There is some N > 0 such that

for any n > N , |hn(x)| ≤ ε for all x ∈ E. Without loss of generality assume that there is

some M > 0 such that for all x ∈ E |f(x)| ≤M . Since s̃ is continuously differentiable there

is a K > 0 such that max{s̃′(t) subject to t ∈ [−M − ε,M + ε]} ≤ K and by the mean value

theorem

| s̃(f(x) + h(x))− s̃(f(x))
h(x)

| ≤ K,

for almost all x ∈ X. Then

|ε(f(x), h(x))| ≤ 2K,

except on a set of measure 0. The fact that h(x) → 0 almost everywhere implies that

|ε(f(x), h(x))| → 0 almost everywhere, and by Lebesgue’s dominated convergence theorem

the corresponding integral goes to 0. As a result the Fréchet derivative of φ is

δφ[f ;h] =
∫
X
s′(f(x))h(x)dν. (A.12)

Thus the functional Bregman divergence is equivalent to the given pointwise Bs,ν .

Additionally it has been noted that the assumptions that f ∈ L∞ and that the measure

ν is finite are necessary for this proof. Counterexamples can be constructed if f ∈ Lp or

ν(X) = ∞ such that the Fréchet derivative of φ does not obey (A.12). This concludes the

first part of the proof.
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To show that the squared bias given in Section 7.2.1 is an example of a functional Bregman

divergence that cannot be defined as a pointwise Bregman divergence one must prove that

the converse statement leads to a contradiction.

Suppose (X,Σ, ν) and (X,Σ, µ) are measure spaces where ν is a non-zero σ-finite measure

and that there is a differentiable function f : (0,∞) → R such that(∫
ξdν

)2

=
∫
f(ξ)dµ, (A.13)

where ξ ∈ A1, the set of functions A with p = 1. Let f(0) = limx→0 f(x), which can be

finite or infinite, and let α be any real number. Then∫
f(αξ)dµ =

(∫
αξdν

)2

= α2

(∫
ξdν

)2

= α2

∫
f(ξ)dµ.

Because ν is σ-finite, there is a measurable set E such that 0 < |ν(E)| < ∞. Let X\E

denote the complement of E in X. Then

α2ν2(E) = α2

(∫
IEdν

)2

= α2

∫
f(IE)dµ

= α2

∫
X\E

f(0)dµ+ α2

∫
E
f(1)dµ

= α2f(0)µ(X\E) + α2f(1)µ(E).

Also,

α2ν2(E) =
(∫

αIEdν

)2

.

However, (∫
αIEdν

)2

=
∫
f(αIE)dµ

=
∫
X\E

f(αIE)dµ+
∫
E
f(αIE)dµ

= f(0)µ(X\E) + f(α)µ(E);
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so one can conclude that

α2f(0)µ(X\E) + α2f(1)µ(E) = f(0)µ(X\E) + f(α)µ(E). (A.14)

Apply equation (A.13) for ξ = 0 to yield

0 =
(∫

0dν
)2

=
∫
f(0)dµ = f(0)µ(X).

Since |ν(E)| > 0, µ(X) 6= 0, so it must be that f(0) = 0, and (A.14) becomes

α2ν2(E) = α2f(1)µ(E) = f(α)µ(E) ∀α ∈ R.

The first equation implies that µ(E) 6= 0. The second equation determines the function f

completely:

f(α) = f(1)α2.

Then (A.13) becomes (∫
ξdν

)2

=
∫
f(1)ξ2dµ.

Consider any two disjoint measurable sets, E1 and E2, with finite nonzero measure. Define

ξ1 = IE1 and ξ2 = IE2 . Then ξ = ξ1 + ξ2 and ξ1ξ2 = IE1IE2 = 0. Equation (A.13) becomes∫
ξ1dν

∫
ξ2dν = f(1)

∫
ξ1ξ2dµ. (A.15)

This implies the following contradiction:∫
ξ1dν

∫
ξ2dν = ν(E1)ν(E2) 6= 0, (A.16)

but

f(1)
∫
ξ1ξ2dµ = 0. (A.17)

�

A.6 Proof of Theorem 7.4.1

Let

J [g] = EPF
[dφ(F, g)] =

∫
M
dφ[f, g]P (f)dM

=
∫
M

(φ[f ]− φ[g]− δφ[g; f − g])P (f)dM, (A.18)
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where (A.18) follows by substituting the definition of Bregman divergence (7.1). Consider

the increment

∆J [g; a] = J [g + a]− J [g] (A.19)

= −
∫
M

(φ[g + a]− φ[g])P (f)dM −
∫
M

(δφ[g + a; f − g − a]

−δφ[g; f − g])P (f)dM, (A.20)

where (A.20) follows from substituting (A.18) into (A.19). Using the definition of the

differential of a functional (see Appendix A, (B.1)), the first integrand in (A.20) can be

written as

φ[g + a]− φ[g] = δφ[g; a] + ε[g, a] ‖a‖L1(ν) . (A.21)

Take the second integrand of (A.20), and subtract and add δφ[g; f − g − a],

δφ[g + a; f − g − a]− δφ[g; f − g]

= δφ[g + a; f − g − a]− δφ[g; f − g − a] + δφ[g; f − g − a]− δφ[g; f − g]
(a)
= δ2φ[g; f − g − a, a] + ε[g, a] ‖a‖L1(ν) + δφ[g; f − g]− δφ[g; a]− δφ[g; f − g]
(b)
= δ2φ[g; f − g, a]− δ2φ[g; a, a] + ε[g, a] ‖a‖L1(ν) − δφ[g; a], (A.22)

where (a) follows from (B.3) and the linearity of the third term, and (b) follows from the

linearity of the first term. Substitute (A.21) and (A.22) into (A.20),

4J [g; a] = −
∫
M

(
δ2φ[g; f − g, a]− δ2φ[g; a, a] + ε[g, a] ‖a‖L1(ν)

)
P (f)dM.

Note that the term δ2φ[g; a, a] is of order ‖a‖2L1(ν), that is,
∥∥δ2φ[g; a, a]

∥∥
L1(ν)

≤ m ‖a‖2L1(ν)

for some constant m. Therefore,

lim
‖a‖L1(ν)→0

‖J [g + a]− J [g]− δJ [g; a]‖L1(ν)

‖a‖L1(ν)

= 0,

where,

δJ [g; a] = −
∫
M
δ2φ[g; f − g, a]P (f)dM. (A.23)
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For fixed a, δ2φ[g; ·, a] is a bounded linear functional in the second argument, so the inte-

gration and the functional can be interchanged in (A.23), which becomes

δJ [g; a] = −δ2φ
[
g;
∫
M

(f − g)P (f)dM, a

]
.

Using the functional optimality conditions (stated in Appendix B), J [g] has an extremum

for g = ĝ if

δ2φ

[
ĝ;
∫
M

(f − ĝ)P (f)dM, a

]
= 0. (A.24)

Set a =
∫
M (f − ĝ)P (f)dM in (A.24) and use the assumption that the quadratic functional

δ2φ[g; a, a] is strongly positive, which implies that the above functional can be zero if and

only if a = 0, that is,

0 =
∫
M

(f − ĝ)P (f)dM, (A.25)

ĝ = EPf
[F ], (A.26)

where the last line holds if the expectation exists (i.e. if the measure is well-defined and

the expectation is finite). Because a Bregman divergence is not necessarily convex in its

second argument, it is not yet established that the above unique extremum is a minimum.

To see that (A.26) is in fact a minimum of J [g], from the functional optimality conditions

it is enough to show that δ2J [ĝ; a, a] is strongly positive. To show this, for b ∈ A, consider

δJ [g + b; a]− δJ [g; a]
(c)
= −

∫
M

(
δ2φ[g + b; f − g − b, a]− δ2φ[g; f − g, a]

)
P (f)dM

(d)
= −

∫
M

(
δ2φ[g + b; f − g − b, a]− δ2φ[g; f − g − b, a] + δ2φ[g; f − g − b, a]

−δ2φ[g; f − g, a]
)
P (f)dM

(e)
= −

∫
M

(
δ3φ[g; f − g − b, a, b] + ε[g, a, b] ‖b‖L1(ν) + δ2φ[g; f − g, a]− δ2φ[g; b, a]

− δ2φ[g; f − g, a]
)
P (f)dM

(f)
= −

∫
M

(
δ3φ[g; f − g, a, b]− δ3φ[g; b, a, b] + ε[g, a, b] ‖b‖L1(ν)

−δ2φ[g; b, a]
)
P (f)dM, (A.27)

where (c) follows from using integral (A.23); (d) from subtracting and adding δ2φ[g; f − g−

b, a]; (e) from the fact that the variation of the second variation of φ is the third variation of
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φ; and (f) from the linearity of the first term and cancellation of the third and fifth terms.

Note that in (A.27) for fixed a, the term δ3φ[g; b, a, b] is of order ‖b‖2L1(ν), while the first

and the last terms are of order ‖b‖L1(ν). Therefore,

lim
‖b‖L1(ν)→0

∥∥δJ [g + b; a]− δJ [g; a]− δ2J [g; a, b]
∥∥
L1(ν)

‖b‖L1(ν)

= 0,

where

δ2J [g; a, b] = −
∫
M
δ3φ[g; f − g, a, b]P (f)dM +

∫
M
δ2φ[g; a, b]P (f)dM. (A.28)

Substitute b = a, g = ĝ and interchange integration and the continuous functional δ3φ in

the first integral of (A.28), then

δ2J [ĝ; a, a] = −δ3φ
[
ĝ;
∫
M

(f − ĝ)P (f)dM, a, a

]
+
∫
M
δ2φ[ĝ; a, a]P (f)dM

=
∫
M
δ2φ[ĝ; a, a]P (f)dM (A.29)

≥
∫
M
k ‖a‖2L1(ν) P (f)dM

= k ‖a‖2L1(ν) > 0, (A.30)

where (A.29) follows from (A.25), and (A.30) follows from the strong positivity of δ2φ[ĝ; a, a].

Therefore, from (A.30) and the functional optimality conditions, ĝ is the minimum.

�

A.7 Derivation of Bayesian Distribution-based Uniform Estimate Restricted
to a Uniform Minimizer

Let f(x) = 1/a for all 0 ≤ x ≤ a and g(x) = 1/b for all 0 ≤ x ≤ b. Assume at first that

b > a; then the total squared difference between f and g is∫
x
(f(x)− g(x))2dx = a

(
1
a
− 1
b

)2

+ (b− a)
(

1
b

)2

=
b− a

ab

=
|b− a|
ab

,

where the last line does not require the assumption that b > a.
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In this case, the integral (7.20) is over the one-dimensional manifold of uniform distributions

U ; a Riemannian metric can be formed by using the differential arc element to convert

Lebesgue measure on the set U to a measure on the set of parameters a such that (7.20) is

re-formulated in terms of the parameters for ease of calculation:

b∗ = arg min
b∈R+

∫ ∞

a=Xmax

|b− a|
ab

1
an

∥∥∥∥ dfda
∥∥∥∥

2

da, (A.31)

where an is the likelihood of the n data points being drawn from a uniform distribution

[0, a], and the estimated distribution is uniform on [0, b∗]. The differential arc element
∥∥∥ dfda∥∥∥2

can be calculated by expanding df/da in terms of the Haar orthonormal basis { 1√
a
, φjk(x)},

which forms a complete orthonormal basis for the interval 0 ≤ x ≤ a, and then the required

norm is equivalent to the norm of the basis coefficients of the orthonormal expansion:∥∥∥∥ dfda
∥∥∥∥

2

=
1
a3/2

. (A.32)

For estimation problems, the measure determined by the Fisher information metric may be

more appropriate than Lebesgue measure [46, 47, 88]. Then

dM = |I(a)|
1
2da, (A.33)

where I is the Fisher information matrix. For the one-dimensional manifold M formed by

the set of scaled uniform distributions U , the Fisher information matrix is

I(a) = EX

(d log 1
a

da

)2


=
∫ a

0

1
a2

1
a
dx =

1
a2
,

so that the differential element is dM = da
a .

Solves (7.20) using the Lebesgue measure (A.32); the solution with the Fisher differential

element follows the same logic. Then (A.31) is equivalent to

arg min
b
J(b) =

∫ ∞

a=Xmax

|b− a|
ab

1
an+3/2

da

=
∫ b

a=Xmax

b− a

ab

da

an+3/2
+
∫ ∞

b

a− b

ab

da

an+3/2

=
2

(n+ 1/2)(n+ 3/2)bn+3/2
− 1

b(n+ 1
2)X

n+ 1
2

max

+
1

(n+ 3/2)Xn+3/2
max

.
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The minimum is found by setting the first derivative to zero,

J ′(b̂) =
2

(n+ 1/2)(n+ 3/2)
(n+ 3/2)

b̂n+5/2
+

1

b̂2(n+ 1/2)Xn+1/2
max

= 0

⇒ b̂ = 2
1

n+1/2Xmax.

To establish that b̂ is in fact a minimum, note that

J ′′(b̂) =
1

b̂X
n+1/2
max

=
1

2
3

n+1/6X
n+7/2
max

> 0.

Thus, the restricted Bayesian estimate is the uniform distribution over [0, 2
1

n+1/2Xmax].

�
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Appendix B

RELEVANT DEFINITIONS AND RESULTS FROM FUNCTIONAL
ANALYSIS

For the aid of the reader, this appendix explains the basic definitions and results from

functional analysis used in this paper. This material can be found in standard books on the

calculus of variations, including the book by Gelfand and Fomin [87].

Let
(
R
d,Ω, ν

)
be a measure space, where ν is a Borel measure d is a positive integer,

and define a set of functions A =
{
a ∈ Lp(ν) subject toRd → R, a ≥ 0

}
where 1 ≤ p ≤

∞. The subset A is a convex subset of Lp(ν) because for a1, a2 ∈ A and 0 ≤ ω ≤ 1,

ωa1 + (1− ω)a2 ∈ A.

Definition of continuous linear functionals

The functional ψ : Lp(ν) → R is linear and continuous if

1. ψ[ωa1 +a2] = ωψ[a1]+ψ[a2] for any a1, a2 ∈ Lp(ν) and any real number ω (linearity);

2. There is a constant C such that |ψ[a]| ≤ C‖a‖ for all a ∈ Lp(ν).

Functional Derivatives

1. Let φ be a real functional over the normed space Lp(ν). The bounded linear functional

δφ[f ; ·] is the Fréchet derivative of φ at f ∈ Lp(ν) if

φ[f + a]− φ[f ] = 4φ[f ; a]

= δφ[f ; a] + ε[f, a] ‖a‖Lp(ν) , (B.1)

for all a ∈ Lp(ν), with ε[f, a] → 0 as ‖a‖Lp(ν) → 0.

2. When the second variation δ2φ and the third variation δ3φ exist, they are described
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by

4φ[f ; a] = δφ[f ; a] +
1
2
δ2φ[f ; a, a]

+ ε[f, a] ‖a‖2Lp(ν) (B.2)

= δφ[f ; a] +
1
2
δ2φ[f ; a, a]

+
1
6
δ3φ[f ; a, a, a]

+ ε[f, a] ‖a‖3Lp(ν) ,

respectively, where ε[f, a] → 0 as ‖a‖Lp(ν) → 0 . The term δ2φ[f ; a, b] is bilinear with

respect to arguments a, b, and δ3φ[f ; a, b, c] is trilinear with respect to a, b, c.

3. Suppose {an}, {fn} ⊂ Lp(ν), moreover an → a, fn → f ,where a, f ∈ Lp(ν). If

φ ∈ C3(L1(ν);R) and δφ[f ; a], δ2φ[f ; a, a], and δ3[f ; a, a, a] are defined as above

then δφ[fn; an] → δφ[f ; a], δ2φ[fn; an, an] → δ2φ[f ; a, a], and δ3φ[fn; an, an, an] →

δ3φ[f ; a, a, a], respectively.

4. The quadratic functional δ2φ[f ; a, a] defined on normed linear space Lp(ν) is strongly

positive if there exists a constant k > 0 such that δ2φ[f ; a, a] ≥ k ‖a‖2Lp(ν) for all

a ∈ A. In a finite-dimensional space, strong positivity of a quadratic form is equivalent

to the quadratic form being positive definite.

5. Using (B.2) we have for φ

φ[f + a] = φ[f ] + δφ[f ; a] +
1
2
δ2φ[f ; a, a]

+o(‖a‖2),

φ[f ] = φ[f + a]− δφ[f + a; a] +
1
2
δ2φ[f + a; a, a] + o(‖a‖2),

where o(‖a‖2) stands for a function which goes to zero as ‖a‖ goes to zero even if it

is divided by ‖a‖2. Adding the above two equations yields

0 = δφ[f ; a]− δφ[f + a; a] +
1
2
δ2φ[f ; a, a]

+
1
2
δ2φ[f + a; a, a] + o(‖a‖2),
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which is equivalent to

δφ[f + a; a]− δφ[f ; a] = δ2φ[f ; a, a] + o(‖a‖2), (B.3)

because

|δ2φ[f + a; a, a]− δ2φ[f ; a, a]| ≤ ‖δ2φ[f + a; ·, ·]− δ2φ[f ; ·, ·]‖‖a‖2

and we assumed φ ∈ C2, so δ2φ[f + a; a, a] − δ2φ[f ; a, a] is of order o(‖a‖2). This

shows that the variation of the first variation of φ is the second variation of φ. A

procedure like the above can be used to prove that analogous statements hold for

higher variations if they exist.

Functional Optimality Conditions A necessary condition for a functional J to have an

extremum (minimum) at f = f̂ is that

δJ [f ; a] = 0, and δ2J [f ; a, a] ≥ 0,

for f = f̂ and for all admissible functions a ∈ A. A sufficient condition for a functional J [f ]

to have a minimum for f = f̂ is that the first variation δJ [f ; a] vanishes for f = f̂ , and its

second variation δ2J [f ; a, a] is strongly positive for f = f̂ .
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