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Abstract Constraining a function to respond monotonically to changes in selected
inputs is a popular shape constraint to capture domain knowledge and regularize a
model. For binary classifiers, a common strategy to produce a monotonic classifier is
to first train a monotonic function, and then threshold it. An open question is whether
better performance is possible by instead optimizing over the set of all monotonic
classifiers. We investigate this for lattice models, which are a state-of-the-art function
class for training multi-dimensional monotonic functions. Monotonic lattice func-
tions require satisfying linear inequality constraints to guarantee monotonicity. We
show that there exist monotonic lattice classifiers that cannot be produced by thresh-
olding a monotonic lattice function. We give quadratic inequality constraints that
form a tighter sufficient condition for a lattice classifier to be monotonic, and show
that these constraints are necessary and sufficient for two-dimensional classifiers.
However, we also provide theoretical results showing that the same classifier ex-
pressability can be achieved by training and thresholding a two-layer lattice function.
Our analysis and simulations lead us to hypothesize that training and thresholding
more flexible monotonic functions will generally be easier and preferable in practice
to optimizing over the set of all monotonic classifiers.

Keywords shape constraints · classification · constrained optimization

1 Introduction

A popular shape constraint is to restrict a nonlinear function to respond only posi-
tively (or only negatively) to selected inputs (see, e.g. [3] [13],[7] [15], [4], [5], [28],
[22], [6], [19], [27]). For example, in classifying whether an applicant should be ap-
proved for a credit card, the classifier decision could be constrained to be monotoni-
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2 Daniel Kraft, Maya R. Gupta

cally increasing with respect to the applicant’s credit score, monotonically decreasing
with respect to the number of prior bankruptcies, and no constraints imposed with
respect to the applicant’s zipcode. Monotonicity constraints are widely-regarded as
making models more trustworthy and interpretable, and can provide useful regular-
ization, particularly when there is domain shift between training and test distributions.

In this paper, we focus on the problem of training monotonic binary classifiers.
This is straightforward for simple models such as linear classifiers or boosted stumps.
However, for more complex function classes, it is a challenging problem to charac-
terize and find the optimal monotonic binary classifier. For example, the set of all
possible monotonic decision tree classifiers are those where the two classifier labels
for every pair of leaves in the final tree satisfies the monotonicity constraints [10].
This is a difficult set to optimize over; Potharst and Feelders [21] considered training
trees on different random samples of the training samples, and then choosing the best
tree out of any that satisfied the monotonicity constraints.

A more common strategy for producing binary classifiers is to train a mono-
tonic discriminant function, and then threshold the monotonic discriminant to pro-
duce a monotonic classifier. For example, if one trains a neural net with non-negative
weights, then it forms a monotonic function [1] (there are many more examples of
this strategy [25], [18], [28]).

However, this strategy is only sufficient and not necessary [15]: one can have a
non-monotonic discriminant that after thresholding produces a monotonic classifier.
See the top-right classifier in Figure 1 for an example. This leads to the open ques-
tion, “If we optimize over the set of all possible monotonic classifiers can we obtain
monotonic classifiers that work better than thresholding monotonic functions?” And
as a stepping stone to answering that, “Can we state the necessary conditions for a
monotonic classifier for any nonlinear smooth function classes?”

In this paper, we answer these two open questions for the function class of lat-
tice models. Lattice models generalize one-dimensional interpolated look-up tables
to multiple dimensions [12] [24] [11]. Because they are parameterized by highly-
structured look-up tables, lattice models have been shown to be particularly well-
suited for learning multi-dimensional functions with shape constraints [15][5][28][14].
Monotonic lattice models have been shown to perform experimentally as well or bet-
ter than monotonic DNN’s or monotonic min-max networks [28]. Next, we give a
brief review of lattice models, then state our main contributions.

1.1 Background on Lattice Models

Lattices are interpolated look-up tables. A lattice function on one-dimension is sim-
ply a piecewise linear function, and one-dimensional lattices been used to approxi-
mate and represent one-dimensional functions for centuries, for example tables for
logarithms [23] [20] and actuarial tables [9]. Multi-dimensional functions can also
be represented and approximated by interpolating multi-dimensional look-up tables,
see Figure 1 for examples of such two-dimensional lattices. Approximating low-
dimensional functions with a look-up table that is later interpolated is also common,
for example four-dimensional two-layer lattice models are a standard way to express
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Fig. 1: Four examples of classifiers defined over D = 2 inputs bounded to the unit
square. Each classifier is formed by thresholding a lattice function at f(x) = 0. A
lattice function is parametrized by a 2 × 2 look-up table defined on the four cor-
ners of the input space. The left functions have parameters (clockwise from the ori-
gin) (−2, 1, 1, 1), and the right functions have parameters (−2, 1, 0,1, 1). The top
functions interpolate their four look-up table values with bilinear interpolation (the
two-dimensional special case of multilinear interpolation), which produces a func-
tion that is a bilinear polynomial (in higher dimensions, a multilinear polynomial).
The bottom functions interpolate the same look-up table values but with simplex in-
terpolation (aka Lovasz extension [2]), which produces a function that is linear on
each of D! simplices; for D = 2 the two simplices are the lower-right and upper-left
triangles (see Gupta et al. 2016 [15] for a discussion on handling the lack of rota-
tional invariance). Our colormap is discontinuous with a jump from blue to yellow at
f(·) = 0, so that the binary classifier’s two classes are shown as blue vs orange. The
functions on the left are monotonically increasing in both inputs. The functions on the
right are not monotonic in either direction. However, thresholding the top-right non-
monotonic function at f(x) = 0 produces a monotonic classifier. Further, we will
show that there does not exist a monotonic lattice function that can be thresholded to
product the top-right classifier decision boundary.
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4 Daniel Kraft, Maya R. Gupta

how a given CMYK color description will be transformed by a particular printer into
a CIELab color value [24]. Given enough look-up table values, lattices can approxi-
mate any bounded continuous function [11].

The parameters of a lattice function are the underlying look-up table values, and
these parameters can be trained using standard empirical risk minimization [12], [11].
Each cell of a D-dimensional lattice function is defined by the 2D look-up table val-
ues at its corners. To evaluate the function at a point inside the cell, the 2D corner
values are linearly interpolated in one of two ways: either with multilinear interpo-
lation (which is the multi-dimensional generalization of bilinear interpolation) at a
computational cost of O(2D), or with simplex interpolation (aka Lovasz extension
[2]) at a computational cost of O(D logD). See Figure 1 for examples of the two
different interpolations.

A one-dimensional lattice function is monotonically increasing if every look-up
table parameter is larger than its left-neighbor. More generally, a multi-dimensional
lattice function is monotonic with respect to an input dimension, if the look-up table
values are always monotonically increasing in that dimension [15]. Thus monotonic-
ity can be ensured by pairwise parameter constraints that force neighboring look-up
table values to be increasing, and these pairwise parameter constraints are linear in-
equality constraints that can be imposed during empirical risk minimization training
[15].

Lattices can be summed into ensembles [5] and cascaded with linear embeddings
into deep models [28], but even for these deep lattice networks, the monotonicity
guarantees still only require pairwise linear inequality constraints on the model pa-
rameters [28]. The open-source Tensor Flow Lattice package is available for learning
monotonic deep lattice networks [17].

1.2 Main Contributions

First, we will show in Section 3 that if one interpolates the look-up table with simplex
interpolation, learning a monotonic lattice model and then thresholding it is in fact
optimal: we show there do not exist monotonic classifiers that cannot be expressed as
a thresholded monotonic lattice.

Second, we show in Section 4 that if instead one interpolates the look-up table
with multilinear interpolation, then there are indeed infinite monotonic classifiers
that are not achievable by thresholding a monotonic lattice model.

Third, we show in Section 4 that it is sufficient for the lattice model parameters to
satisfy a set of quadratic inequality constraints in order to produce a monotonic clas-
sifier, that the given quadratic conditions are looser than the known linear conditions
for a monotonic lattice, and that the given quadratic constraints are both necessary
and sufficient for D = 2 inputs. Thus one can directly train a monotonic classifier by
minimizing empirical risk with quadratic constraints on the lattice parameters.

Fourth, and surprisingly, we show in Section 6 that if one expands the function
class to two-layer lattice models [15], where the first layer calibrates each feature
with a piecewise linear function (represented as a one-dimensional lattice) before
fusing the D calibrated inputs with a multi-dimensional lattice, then one can express
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Monotonicity Shape Constraints for Binary Classifiers 5

any monotonic lattice classifier for D = 2 using a thresholded monotonic calibrated
lattice function. Extension to D ≥ 3 is discussed.

Overall, our investigation leads us to believe that thresholding monotonic func-
tions to produce monotonic classifiers is likely sufficient in practice, and that there is
little to gain in directly trying to learn monotonic classifiers. We discuss our conclu-
sions and hypotheses in Section 8.

2 Preliminaries

Let D be the number of input features, and assume a bounded input domain. Thus,
without loss of generality, we train a function f : [0, 1]D → R, which is thresholded
at 0 to form the binary classifier If>0. Each f is taken to be a single-cell lattice, i.e.
a lattice of size 2D. Most of our results can be generalized to multi-cell lattices by
considering each cell separately. The 2D lattice is parametrized by the set {vx ∈ R}
of 2D parameters, with x ∈ VD = {0, 1}D corresponding to the set of vertices of
the D-unit-hypercube. For an input vector of feature values ξ ∈ [0, 1]D, the model’s
output is f(ξ) =

∑
x∈VD

vxθx(ξ), where θx is the interpolation weight on vertex x
for the input ξ. In the following, we denote the dth component of ξ by ξd. The exact
definition of θx(ξ) depends on whether one uses multilinear interpolation or simplex
interpolation, as detailed below. In either case, the interpolation weights are defined
such that f(x) = vx for all vertices x ∈ VD.

Recall a function g is said to be monotonically increasing if g(ξ) never decreases
as ξd increases for any d. For simplicity, we use the term monotonic to mean mono-
tonically increasing unless explicitly stated otherwise. A function is called partially
monotonic if monotonicity holds for some subset of the input dimensions, but not all
[8]. For simplicity, we prove many of our results for monotonicity; but most can be
easily extended to partial monotonicity.

3 Simplex Interpolation

Let us first consider the case where the look-up table is interpolated using simplex
interpolation, as defined in Subsection 5.2 of Gupta et al. 2016 [15] and also de-
scribed, for example, in Weiser and Zarantonello 1998 [26]. Simplex interpolation is
equivalent to the Lovasz extension in submodularity [2]. Simplex interpolation im-
plicitly partitions the unit cube [0, 1]D into the D! simplices that touch on the main
diagonal spanning from (0, . . . , 0) to (1, . . . , 1), such that for each permutation π
of {1, . . . , D}, the corresponding simplex is Sπ =

{
ξ ∈ RD

∣∣ 0 ≤ ξπ(1) ≤ · · ·
≤ ξπ(D) ≤ 1. On each such simplex S, the restriction f |S of f to S is the linear
interpolation of the parameters vx corresponding to the simplex’s D + 1 vertices.
Thus, f |S is the unique hyperplane that passes through the simplex’s D + 1 ver-
tices. Simplex interpolation yields a well-defined, continuous interpolation function
f : [0, 1]D → R that is piecewise linear. In practice, simplex interpolation is very
useful because it is fast to evaluate due to its O(D logD) complexity (rather than
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6 Daniel Kraft, Maya R. Gupta

the O(2D) complexity of multilinear interpolation), and produces good classification
results [15][5].

Lemma 3 of Gupta et al. 2016 [15] states that pairwise linear inequality con-
straints must be satisfied for a simplex-interpolated lattice function to be monotonic.
In Theorem 1, we show the same criteria determines whether the corresponding clas-
sifier is monotonic, and hence for simplex interpolation, there are no monotonic lat-
tice classifiers that are not also monotonic lattice functions.

Theorem 1. Let f be defined through simplex interpolation on a D-unit-hypercube
and assume that the binary classifier If>0 is monotonic and non-degenerate such
that v(0,...,0) < 0 < v(1,...,1). Then f is monotonic on [0, 1]D.

Proof Let S be any simplex Sπ as introduced above, and note that it always contains
the vertices a = (0, . . . , 0) and b = (1, . . . , 1). We can also find points ξa, ξb ∈ S◦ in
the interior of S, arbitrarily close to a and b. In particular, we can assume f(ξa) <
0 < f(ξb) by continuity of f . Then, by the intermediate-value theorem, there exists
ξ ∈ S◦ with f(ξ) = 0.

Next, note that f |S is an affine function. If it is not increasing, then there is a
dimension d such that the partial derivative ∂f/∂ξd in this dimension is strictly
negative—throughout the whole of S. Thus, in particular, ∂f(ξ)/∂ξd < 0. This
means that there exists ε > 0 small enough such that ξ ± εd̂ ∈ S, where d̂ is the
unit vector in direction d, and also f(ξ + εd̂) < 0 < f(ξ − εd̂). But this contradicts
the assumption that If>0 is a monotonic classifier on S. Hence, f must be increasing
on S. Since S was arbitrary and f is continuous across the boundaries of simplices,
f is increasing on the whole of [0, 1]D.

4 Multilinear Interpolation

For the rest of this paper, we focus on multilinear interpolation. Multilinear interpo-
lation is the multi-dimensional generalization of the common bilinear interpolation.
Of all the possible ways one can linearly interpolate the vertices of a hypercube, mul-
tilinear interpolation is the maximum entropy solution [16]. In contrast to simplex
interpolation, there exist monotonic classifiers that can only be produced by thresh-
olding a non-monotonic multilinear function, as shown in the top-right picture in
Figure 1.

The multilinear interpolation weight on vertex x ∈ VD of the D-unit-hypercube
is defined for ξ ∈ [0, 1]D as

θx(ξ) =

D∏
d=1

ξxd

d (1− ξd)1−xd . (1)

Multilinear interpolation then applies these weights to the 2D lattice vertices:

f(ξ) =
∑
x∈VD

vxθx(ξ). (2)
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Monotonicity Shape Constraints for Binary Classifiers 7

4.1 The Subset Criterion for Monotone Classifiers

One of the key analytical properties of a multilinear function f is that its partial
derivatives ∂f/∂ξd are independent of ξd. From this property, we establish the fol-
lowing subset criterion for the monotonicity of a classifier If>0:

Lemma 2. Let f be a multilinear interpolation function and d = 1, . . . , D one of the
dimensions. Then the classifier If>0 is monotonic in dimension d if and only if{

ξ ∈ [0, 1]D−1
∣∣ f(ξ1, . . . , ξd−1, 0, ξd, . . . , ξD−1) > 0

}
⊂
{
ξ ∈ [0, 1]D−1

∣∣ f(ξ1, . . . , ξd−1, 1, ξd, . . . , ξD−1) > 0
}
.

(3)

Proof Assume first that If>0 is a monotonic classifier, and let ξ be in the left-hand
side of (3). Since f(ξ1, . . . , ξd−1, 0, ξd, . . . , ξD−1) > 0 and If>0 is monotonic in
dimension d, it follows that f(ξ1, . . . , ξd−1, 1, ξd, . . . , ξD−1) > 0 must be true as
well. This shows that ξ is also in the right-hand side of (3), so that the subset relation
holds.

Now assume that (3) is true. We have to show that If>0 is monotonic in dimension
d. For this, let ξ, ζ ∈ [0, 1]D with ξi = ζi for all i 6= d and ξd < ζd. We have to show
that If>0(ξ) ≤ If>0(ζ). Assume to the contrary that f(ξ) > 0 and f(ζ) ≤ 0 for
some ξ and ζ. Let us define ξ and ξ such that

ξ
i
= ξi = ξi = ζi for i 6= d,

ξ
d
= 0 ≤ ξd < ζd ≤ ξd = 1.

If f(ξ) > 0, then also f(ξ) > 0 according to (3). Since f is linear in dimension
d, this implies that f(ζ) > 0, contradicting our assumption. A similar argument
applies if both f(ξ) ≤ 0 and f(ξ) ≤ 0 are true. Thus, it remains to consider the case
f(ξ) ≤ 0 < f(ξ). But then, the mean-value theorem and the observation made above
about multilinear functions imply that ∂f/∂ξd > 0 along the line through ξ and ζ.
This means that f(ζ) > f(ξ), which is also a contradiction.

The left-hand side of (3) is the set of points on the ξd = 0 “lower” face of the
input hypercube that the classifier labels positive. The right-hand side is the set of
points on the “upper” face with ξd = 1. Thus Lemma 2 states that the classifier is
monotonic if and only if the set of “lower-face positive points” is a subset of the
“upper-face positive points”.

4.2 Quadratic Constraints Are Necessary and Sufficient for D = 2

For the special case of D = 2, we show that the Lemma 2 can be written as quadratic
constraints on the look-up table values:

Corollary 3. Let D = 2 and let f be the bilinear interpolation for the parameters
v00, v01, v10 and v11. Assume v00 < 0 < v11. Then If>0 is monotonic if and only if

v00v11 ≤ v01v10. (4)
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8 Daniel Kraft, Maya R. Gupta

Proof We apply Lemma 2, for which we have to show that (4) is equivalent to (3)
for both d = 1 and d = 2. Assume first that v01v10 ≥ 0. In this case, (4) is always
fulfilled since v00v11 < 0 by assumption. If v01, v10 ≥ 0, then the right-hand side
of (3) contains at least (0, 1], so that (3) is fulfilled as well. If v01, v10 ≤ 0, then the
left-hand side is empty with the same conclusion.

It remains to consider the case v01 · v10 < 0. Without loss of generality, we can
assume that v01 < 0 < v10 is the case. In this case, (3) is trivially fulfilled for d = 1
since the left-hand side is empty and the right hand side is [0, 1]. So what we have to
show is equivalence of (4) to this simplified version of (3):

{ξ ∈ [0, 1] | f(ξ, 0) > 0} ⊂ {ξ ∈ [0, 1] | f(ξ, 1) > 0} .

Using the bilinear form of f , this subset relation can be rewritten as

ξv10 + (1− ξ)v00 > 0 ⇒ ξv11 + (1− ξ)v01 > 0.

Noting v10 − v00 > 0 and v11 − v01 > 0, this can be reformulated equivalently to:

ξ >
−v00

v10 − v00
⇒ ξ >

−v01
v11 − v01

.

Requiring this for all ξ ∈ [0, 1] is equivalent to

−v00
v10 − v00

≥ −v01
v11 − v01

⇔ v00v11 ≤ v01v10.

Note that, as above in Theorem 1, the assumption v00 < 0 < v11 only excludes
trivial cases (where all inputs are mapped to a single class) for a monotonic classifier.

4.3 Quadratic Constraints: Sufficient for Monotonic Classifiers

For D ≥ 3, we use (3) to show that a set of 2D−1 quadratic constraints forms suf-
ficient conditions for monotonicity of a lattice classifier. Without loss of generality,
we consider monotonicity with respect to the dth input. Let f : [0, 1]D−1 → R and
f : [0, 1]D−1 → R be the multilinear interpolation functions on the lower and upper
faces of the full hypercube with respect to d, i.e.

f(ξ) = f(ξ1, . . . , ξd−1, 0, ξd, . . . , ξD−1),

f(ξ) = f(ξ1, . . . , ξd−1, 1, ξd, . . . , ξD−1).

For any x ∈ VD−1, let vx ∈ R denote a look-up table parameter corresponding to
vertices of the lower face such that their dth coordinate is zero and the other D − 1
coordinates are given by the coordinates of x. Similarly, vx ∈ R denotes a look-up
table parameter corresponding to vertices on the upper face with dth coordinate equal
to one. In other words, f(x) = vx and f(x) = vx for all x ∈ VD−1.

Theorem 4. Let f be a multilinear interpolation function of dimension D, and f , f
as introduced above. Then a sufficient condition for (3) and thus the monotonicity of
the classifier If>0 in dimension d is any of:
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Monotonicity Shape Constraints for Binary Classifiers 9

1. vx ≤ 0 for all x ∈ VD−1, or vx > 0 for all x.
2. There exists x ∈ VD−1 with vx · vx > 0 such that for all y ∈ VD−1 \ {x}:

vy |vx| ≤ vy |vx| . (5)

Proof If the first condition is true, then (3) follows by the properties of interpolation.
Otherwise if the second condition is true for some x ∈ VD−1, then for all y ∈ VD−1 \
{x}:

vy |vx| ≤ vy |vx| ⇔ vy ≤ vy
∣∣∣∣vxvx

∣∣∣∣ = vy ≤ vy
(
vx
vx

)
.

The right inequality is trivially also satisfied for y = x. Thus with α = vx/vx > 0,
we have f ≤ αf . This finishes the proof, since If>0 = Iαf>0.

For D = 2, Theorem 4 actually turns into Corollary 3 and is an equivalent char-
acterization of monotonicity for the classifier. For D ≥ 3, the condition is only suf-
ficient and not necessary, as quantified in Table 1. Next we verify that if the lattice
function is monotonic, it does satisfy these sufficient conditions. In the next section,
we will, however, see that the sufficient conditions of Theorem 4 are strictly looser
than only requiring the entire function to be monotonic (which can be achieved by
satisfying linear constraints [15]).

Theorem 5. Let f be a multilinear interpolation function as before, and let f and
f be as introduced above. Assume that f is monotonic with respect to dimension d.
Then the conditions of Theorem 4 are satisfied for f and f .

Proof Note first that monotonicity of f implies v ≤ v for all parameters. If there is
no x ∈ VD−1 with vx · vx > 0, then the first condition of Theorem 4 must be true: If
vx > 0 were true for any x, then also vx ≤ 0 would have to be true. But this is not
possible due to monotonicity, showing that, in fact, vx ≤ 0 must be the case for all
x ∈ VD−1.

Next, let us assume that vx, vx < 0 is true for at least one x ∈ VD−1. Further-
more, let us assume ∣∣∣∣vxvx

∣∣∣∣ ≤ ∣∣∣∣vyvy
∣∣∣∣ , (6)

for all other y 6= x with vy, vy < 0. (In other words, we consider that pair of both-
negative parameters that has the smallest ratio |v| / |v|.) We can now show that the
second condition of Theorem 4 holds for this x:

For this, let y ∈ VD−1 \ {x} be fixed. If vy ≤ 0 ≤ vy , then (5) holds trivially,
since the left-hand side is non-positive and the right-hand side non-negative. If 0 ≤
vy ≤ vy , then (note that |vx| ≤ |vx|):

vy ≤ vy ⇒ vy |vx| ≤ vy |vx| ≤ vy |vx| ,

so that (5) holds also in this case. The only case that remains to consider now is
vy ≤ vy < 0. In that case, note that (6) holds for y. This implies:∣∣∣∣vxvx

∣∣∣∣ ≤ ∣∣∣∣vyvy
∣∣∣∣ ⇒ |vy| |vx| ≤

∣∣vy∣∣ |vx|
⇒ vy |vx| ≥ vy |vx| .
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This, in turn, shows that (5) holds again.
If vx, vx > 0 for one x ∈ VD−1, then a similar argument can be applied to show

the claim.

5 How Tight Are These Sufficiency Conditions for Monotonic Classifiers?

In this section we give a quantitative sense of how large the set of monotonic classi-
fiers is compared to the set of thresholded monotonic functions for lattices, and thus
a quantative sense of how tight our given sufficient conditions in Theorem 4 are.

We draw random lattices for D ∈ {2, 3, 4}, where for each random lattice each
of its 2D lattice parameters is chosen independently and uniformly from [−1, 1]. We
discard any lattices that result in a constant classifier (the parameters are all positive
or all negative) to exclude trivial cases, which happens for 12.5% of random D = 2
lattices, but only 0.8% of random D = 3 lattices. The columns of Table Table 1
show the number of random lattice classifiers that are: (i) monotonic functions on
all D inputs (using the necessary and sufficient linear constraints [15]), (ii) satisfy
the new sufficient quadratic constraints of Theorem 4, and (iii) form a monotonic
classifier. To check if a lattice is a monotonic classifier, for D = 2 and D = 3, we
can check analytically. For D = 4 we approximate the subset criterion of Lemma 2
by discretizing the sets on a fine grid, such that the statistic given in the last column
for 4D is both an approximation and an exact upper bound.

Table 1: The three right-most columns show the count of random lattices that satisfy
the column headings. For the 100 million sample of 4D classifiers, we have marked
the last column N/A, as we were computationally unable to establish this number.

# Inputs # Samples Monotonic Quadratic Sufficient Conditions Monotonic
Function Satisfied Classifier

2D 1 000 000 83 203 214 300 214 300
3D 1 000 000 1 168 18 650 27 602
4D 1 000 000 1 53 ≤ 204
4D 100 000 000 8 5 597 N/A

Table 1 shows that the set of lattices that form monotonic functions is about than
the set of monotonic classifiers, and the gap becomes bigger as the input dimension
D rises. Our quadratic sufficient conditions narrow the gap, but we did find D = 3
and D = 4 classifiers that did not satisfy the quadratic conditions. As expected, the
simulation did not discover any D = 2 monotonic classifiers that failed the quadratic
conditions, consistent with our Corollary 3 showing the quadratic conditions are also
necessary for D = 2.

Table 1 also gives a sense of what a strong regularizer monotonicity constraints
are, in that only a small fraction of random lattice functions are monotonic.
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6 Calibrated Lattices with Multilinear Interpolation

A more flexible model and generally better accuracy can be achieved by using a two-
layer calibrated lattice model that first passes each feature through its own “calibra-
tor” - a one-dimensional lattice (which is simply a piecewise linear function), before
feeding the D calibrated values into a multi-dimensional lattice [24], [15], [5], [28].

A calibrator cd(ξd) can approximate any continuous, bounded, one-dimensional
function if the look-up table parameterizing it is given enough values. Taking this to
the extreme to simplify our analysis, we will assume that a calibrator cd, for d =
1, . . . , D, is simply a continuous and surjective mapping cd : [0, 1]→ [0, 1].

Let a calibrated multilinear lattice be described by the tuple (f, c1, . . . , cD) where
f is the multilinear lattice function and cd is the calibrator for feature d. The output
of a calibrated lattice function g is then

g : [0, 1]D → R, ξ 7→ f(c1(ξ1), . . . , cD(ξD)).

By composition of monotonicity, a calibrated lattice function g is monotonic in di-
mension d if the lattice f itself is monotonic in this dimension and also cd is mono-
tonic.

Calibration makes a 2D lattice model significantly more flexible and expressive.
In fact, we show its additional expressiveness is enough to completely close the gap
between monotonic lattices and monotonic classifiers for special cases in low dimen-
sions. For higher dimensions, we will see in Section ?? that the same is true at least
empirically for numerical experiments.

Let f∗ denote a multilinear interpolation function that forms a monotonic clas-
sifier such that If∗>0. We investigate whether or not there exists a calibrated lattice
function g that is fully monotonic in the sense that both its multi-dimensional interpo-
lation function f and its calibrators are monotonic, and that when thresholded yields
the same classifier as f∗ itself:

f∗(ξ) > 0 ⇔ f(c1(ξ1), . . . , cD(ξD)) > 0.

6.1 Two-Input Case

Let D = 2 and denote the two inputs as (ξ, ζ) ∈ [0, 1]2. The monotonic classifier
formed by f∗ is completely characterized by its decision boundary {(ξ, ζ) ∈ [0, 1]2

|f∗(ξ, ζ) = 0}. We restrict our analysis to the non-pathological cases where this de-
cision boundary can be parametrized (for instance, by the implicit-function theorem)
as d∗ : [0, ξ]→ [0, 1], where f∗(ξ, d∗(ξ)) = 0 for all ξ ∈ [0, ξ].

For the upper bound, we have either ξ = 1 if f∗(1, 0) < 0 or ξ ∈ (0, 1) with
f∗(ξ, 0) = 0. This assumes a monotonic classifier and f∗(0, 0) < 0, which just
excludes trivial cases. Under suitable assumptions of a smooth and non-degenerate
decision boundary, the function d∗ is actually smooth itself and injective, so that it its
inverse d∗−1 exists. By the increasing monotonicity of the classifier, d∗ and d∗−1 are
strictly decreasing.
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Next, we show that given another function f (which can be monotonic) we can
construct calibrators that transform its decision boundary d to replicate the target
decision boundary d∗:

Theorem 6. Let f∗, d∗, f and d be as discussed above, and let c1 be a given, mono-
tonic calibration function. For simplicity, assume f∗(0, 1) = f∗(1, 0) = 0, so that
d∗ and d∗−1 are defined on [0, 1]. The same shall be true also for f and d. Then the
calibrated lattice g(ξ, ζ) = f(c1(ξ), c2(ζ)) yields the same classifier as f∗ if and
only if the calibration functions satisfy

c2 = d ◦ c1 ◦ d∗−1. (7)

Proof Fix ζ arbitrarily. Then for all ξ, the following are equivalent:

f∗(ξ, ζ) > 0 ⇔ ζ > d∗(ξ) ⇔ ξ > d∗−1(ζ).

Similarly,
f(c1(ξ), c2(ζ)) > 0 ⇔ c2(ζ) > d(c1(ξ)).

Thus, the classifiers of f∗ and g are the same if and only if

ξ > d∗−1(ζ) ⇔ c2(ζ) > d(c1(ξ))

holds for all ξ. This is the case if and only if

c2(ζ) = d(c1(d
∗−1(ζ))),

which finishes the proof.

Our assumption of f∗(0, 1) = f∗(1, 0) = 0 in Theorem 6 clarifies the argument
and leads to the elegant form of (7). More general situations can be reduced to this
case by scaling the lattice and considering suitable subdomains.

Corollary 7. For D = 2, any monotonic target classifier f∗ as above can be repro-
duced by a monotonic calibrated lattice.

Proof Choose the lattice f such that

f(0, 0) < 0, f(0, 1) = f(1, 0) = 0, f(1, 1) > 0

and note that this is, in particular, a monotonic lattice.
Choose c1(ξ) = ξ. Then note that c2 = d ◦ d∗−1 constructed according to (7)

is the composition of two decreasing functions, which is itself monotonic. The claim
now follows from Theorem 6.

6.2 Higher Dimensions: Theoretically Calibration Is Not Sufficient

A similar (although more complex) construction can be applied for D = 3 in special
cases. This also implies that when we try to match a given target classifier f∗ forD ≥
3, then all infinite-dimensional degrees of freedom from the calibration functions are
completely removed. The only flexibility that remains is in some of the parameters
of the lattice f , which is not enough to fully fit an arbitrary target decision in higher
dimensions. This suggests that for D ≥ 3 monotonic calibrated lattice functions will
not be sufficient to express every monotonic lattice classifier.
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7 Simulations

We investigated via simulations whether this theoretical gap is likely to be important
in practice. In our simulations the target classifier is a monotonic lattice classifier de-
fined on [0, 1]4. For each run of the simulation, we randomly generated a new target
classifier by randomly independently drawing each of the 24 lattice parameters uni-
formly from [−1, 1], forming the discriminant function f(x) by multilinear interpola-
tion of the 24 lattice parameters, and thresholding f(x) at 0 to form a binary classifier.
If the resulting binary classifier was degenerate in that it classified everything as one
class, we discarded the run. If the resulting binary classifier did not satsify the suffi-
cient quadratic conditions to be monotonic for all four inputs, we discarded the run.
In this way, each run of the simulation we had a random monotonic lattice classifier.
We then sampled N = 100 training examples xi ∈ [0, 1]D uniformly independently
randomly from the unit hypercube, and evaluated the classifier to form the training
label yi = If(xi)>0. We similarly sampled 1000 IID test samples.

For each target classifier, we compared training (i) monotonic lattice function,
(ii) monotonic calibrated lattice function, (iii) monotonic lattice, (iv) monotonic cal-
ibrated lattice. All training minimized the empirical risk on the training examples
using the hinge loss and projected gradient descent with a fixed step size of 0.1 and
10,000 epochs. For the monotonic functions, after each gradient step we projected
onto the necessary linear inequality constraints [15]. For the monotonic classifiers,
after each gradient step we attempted to project onto the necessary nonconvex set of
quadratic inequality constraints by alternately projecting onto convex subsets of the
quadratic constraints for 100 rounds. For the calibrated models, we alternately opti-
mized the calibrator layer and lattice layer: each epoch we took a gradient descent
step for the lattice parameters (with fixed calibrator parameters) and then took a gra-
dient descent step for the calibrator parameters (with fixed lattice parameters). Once
trained, each model was thresholded at f(x) > 0 to form a binary classifier.

Table 2 shows the results for 1,000,000 runs of the simulation, which resulted in
51 monotonic classifiers, so the train and test accuracy numbers are averaged over the
51 fitted models and the 51 corresponding sets of 1,000 test samples.

As expected, the monotonic lattice function was not the best performer, as it was
not flexible enough to model the true function in some cases. However, the test ac-
curacy of the three other models was not statistically significantly different on aver-
age. This is in-line with our theoretical analysis, which suggests that by calibrating a
monotonic lattice function one gains substantial flexibility.

8 CONCLUSIONS

We investigated whether there it is possible, and whether it is useful, to train us-
ing constrained empirical risk minimization monotonic classifiers without requiring
an underlying monotonic discriminant. We focused on lattice models, because they
are a state-of-the-art function class for shape-constrained machine learning, and are
amenable to analysis. We gave new quadratic inequality constraints that are necessary
and sufficient for a D = 2 input lattice classifier to be monotonic, and formed tighter
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Table 2: Test accuracy for simulated monotonic binary classifiers on the [0, 1]4 do-
main.

Function Class Mean Test Accuracy

Monotonic Lattice Function 95.4%
Monotonic Lattice Classifier 97.4%
Calibrated Monotonic Lattice Function 97.4%
Calibrated Monotonic Lattice Classifier 97.2%

sufficient conditions than known linear inequality constraints for higher-dimensional
models.

However, we showed that one can also express anyD = 2 monotonic lattice clas-
sifier by thresholding a monotonic two-layer calibrated lattice function. That is, a
more flexible monotonic function gives the same classifier expressiveness. While this
result does not strictly generalize to higher dimensions, our simulations for D = 4
were consistent with this result, and lead us to hypothesize that in practice the most
effective way to achieve a good monotonic classifier is by training a more flexi-
ble monotonic discriminant function, and then thresholding the monotonic discrim-
inant to produce a monotonic classifier. Here, we used two-layer monotonic lattice
functions, but more flexible deep lattice networks You:2017 and multi-cell lattices
Garcia:12 can also can be trained by constrained optimization with easy-to-enforce
sparse linear inequality constraints.

Further, in practice, thresholding monotonic functions has the practical advantage
the decision threshold can be tuned after training for a desired recall or precision
without breaking the monotonicity property, whereas a monotonic classifier is only
guaranteed to be monotonic for the specific decision threshold it was trained for,
reducing the ability to adjust the decision threshold after training and still guarantee
monotonicity.

However, if latency or CPU is at a premium, then training a one-layer mono-
tonic classifier can be more efficient and thus preferable to thresholding a two-layer
monotonic function.

References

1. Archer, N.P., Wang, S.: Application of the back propagation neural network algorithm with mono-
tonicity constraints for two-group classification problems. Decision Sciences 24(1), 60–75 (1993)

2. Bach, F.: Learning with submodular functions: A convex optimization perspective. Foundations and
Trends in Machine Learning 6(2) (2013)

3. Barlow, R.E., Bartholomew, D.J., Bremner, J.M.: Statistical inference under order restrictions; the
theory and application of isotonic regression. Wiley (1972)

4. Bonakdarpour, M., Chatterjee, S., Barber, R.F., Lafferty, J.: Prediction rule reshaping. ICML (2018)
5. Canini, K., Cotter, A., Fard, M.M., Gupta, M.R., Pfeifer, J.: Fast and flexible monotonic functions

with ensembles of lattices. Advances in Neural Information Processing Systems (NIPS) (2016)
6. Chen, Y., Samworth, R.J.: Generalized additive and index models with shape constraints. Journal

Royal Statistical Society B (2016)

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Monotonicity Shape Constraints for Binary Classifiers 15

7. Chetverikov, D., Santos, A., Shaikh, A.M.: The econometrics of shape restrictions. Annual Review
of Economics (2018)

8. Daniels, H., Velikova, M.: Monotone and partially monotone neural networks. IEEE Trans. Neural
Networks 21(6), 906–917 (2010)

9. Farr, W.: On the construction of life tables, illustrated by a new life table of the healthy districts of
england. Journal of the Institute of Actuaries 9, 121–141 (1860)

10. Feelders, A.J., Pardoel, M.: Pruning for monotone classification trees. Springer Lecture Notes on
Computer Science 2810, 1–12 (2003)

11. Garcia, E.K., Arora, R., Gupta, M.R.: Optimized regression for efficient function evaluation. IEEE
Trans. Image Processing 21(9), 4128–4140 (2012)

12. Garcia, E.K., Gupta, M.R.: Lattice regression. In: Advances in Neural Information Processing Sys-
tems (NIPS) (2009)

13. Groeneboom, P., Jongbloed, G.: Nonparametric estimation under shape constraints. Cambridge Press,
New York, USA (2014)

14. Gupta, M.R., Bahri, D., Cotter, A., Canini, K.: Diminishing returns shape constraints for interpretabil-
ity and regularization. Advances in Neural Information Processing Systems (NeurIPS) (2018)

15. Gupta, M.R., Cotter, A., Pfeifer, J., Voevodski, K., Canini, K., Mangylov, A., Moczydlowski, W.,
Esbroeck, A.V.: Monotonic calibrated interpolated look-up tables. Journal of Machine Learning Re-
search 17(109), 1–47 (2016). URL http://jmlr.org/papers/v17/15-243.html

16. Gupta, M.R., Gray, R.M., Olshen, R.A.: Nonparametric supervised learning by linear interpolation
with maximum entropy. IEEE Trans. on Pattern Analysis and Machine Intelligence 28(5), 766–781
(2006)

17. Gupta, M.R., Pfeifer, J., You, S.: Tensor flow lattice: Flexibility empowered by
prior knowledge (2017). URL https://ai.googleblog.com/2017/10/
tensorflow-lattice-flexibility.html

18. Kalai, A.T., Sastry, R.: The isotron algorithm: High-dimensional isotonic regression. Conference on
Learning Theory (COLT) (2009)

19. Luss, R., Rosset, S.: Bounded isotonic regression. Electronic Journal of Statistics 11(2), 4488–4514
(2017)

20. Perry, J.: Practical Mathematics. Wiley and Sons (1899)
21. Potharst, R., Feelders, A.J.: Classification trees for problems with monotonicity constraints. ACM

SIGKDD Explorations pp. 1–10 (2002)
22. Pya, N., Wood, S.N.: Shape constrained additive models. Statistics and Computing (2015)
23. Sang, E.: On last-place errors in Vlacq’s table of logarithms. Proceedings of the Royal Society of

Edinburgh 8, 371–376 (1875)
24. Sharma, G., Bala, R.: Digital Color Imaging Handbook. CRC Press, New York (2002)
25. Sill, J., Abu-Mostafa, Y.S.: Monotonicity hints. Advances in Neural Information Processing Systems

(NIPS) pp. 634–640 (1997)
26. Weiser, A., Zarantonello, S.E.: A note on piecewise linear and multilinear table interpolation in many

dimensions. Mathematics of Computation 50(181), 189–196 (1988)
27. Wellner, J.A.: Some theory for estimation with shape constraints (2008). URL https://www.

stat.washington.edu/jaw/RESEARCH/TALKS/niad.pdf
28. You, S., Canini, K., Ding, D., Pfeifer, J., Gupta, M.R.: Deep lattice networks. Advances in Neural

Information Processing Systems (NIPS) (2017)

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://jmlr.org/papers/v17/15-243.html
https://ai.googleblog.com/2017/10/tensorflow-lattice-flexibility.html
https://ai.googleblog.com/2017/10/tensorflow-lattice-flexibility.html
https://www.stat.washington.edu/jaw/RESEARCH/TALKS/niad.pdf
https://www.stat.washington.edu/jaw/RESEARCH/TALKS/niad.pdf

