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ABSTRACT

Early classification of time series is important in time-
sensitive applications. An approach is presented for early
classification using generative classifiers with the dual objec-
tives of providing a class label as early as possible while guar-
anteeing with high probability that the early class matches the
class that would be assigned to a longer time series. We give
a specific algorithm for early quadratic discriminant anal-
ysis (QDA), and demonstrate that this classifier meets the
requirement of reliable early classification.

Index Terms— classification, minorization, Pareto opti-
mal

1. INTRODUCTION

The ability to confidently classify time-series data as soon
as possible is critical in military, medical, and commercial
applications. For example, matching internet users to adver-
tisements as soon as possible increases the chance of being
able to serve them a profitable ad before they go offline.
Making such classification decisions from less data generally
carries increased risk of error, thus it is desirable that one be
able to judge whether the classification would change if one
waited for more data. We formalize this as the two goals:

Timeliness: classify the time series as early as possible;

Reliability: guarantee that with probability greater than
or equal to some threshold, the class label assigned early
matches the classification decision given a longer signal.

Recently, Xing et al. developed early classification on
time-series (ECTS) based on the nearest-neighbor (NN) clas-
sifier [1]. In this paper we develop an approach for early
classification of signals using a generative classifier, with a
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focus on the quadratic discriminant analysis (QDA) classifier.
We prove that our early classifier decision will meet a desired
reliability. Equivalently, we provide a reliability bound on
the classifier’s decision for every point in time. Experiments
show that our approach is both early and reliable, that it per-
forms well compared to the ECTS algorithm, and provides
the user with a parameter to choose the trade-off between
reliability and timeliness.

2. EARLY GENERATIVE CLASSIFICATION

We assume that we are given iid training pairs {(xi, yi)}Ni=1,
where xi ∈ Rd is the ith sampled time-series vector with cor-
responding class label yi ∈ G for some discrete set of class la-
bels G. A generative classifier uses the labeled training data to
estimate the parameters of the generating distribution for each
class: p(x|y). At test time, the generative classifier classi-
fies an unlabeled test example x according to the class which
maximizes the a-posteriori probability given estimates of the
generating distribution and class prior:

ŷ(x) = max
y∈G

p̂(y|x)

≡ min
y∈G

qy(x) and qy(x) = −2 log(p̂(x|y)p̂(y)). (1)

For the early classification problem, instead of the “full” time-
series x ∈ Rd, we take as given the partial time series xt,k ∈

Rt for some 0 ≤ t ≤ d, where x =
[
xTt,k xTt,u

]T
, and

xt,u ∈ Rd−t is not known. We treat the unknown portion of
the time series xt,u as a random variable, Xt,u, whose dis-
tribution we estimate from the training data. For each class
y ∈ G, we bound the possible classifier score qy(x) for the
probable values of the unknown part of the signal:

qmax
y,t = max

xt,u∈A
qy(x) (2)

qmin
y,t = min

xt,u∈A
qy(x), (3)

where the set A is defined such that Pr(Xt,u ∈ A) ≥ τ ; see
Section 3 for details on A. Then, the following lemma gives
conditions for making reliable early decisions.



Lemma: Let X =
[
xTt,k X

T
t,u

]T
. If qmax

g,t ≤ qmin
h,t for

some g and all h 6= g, then Pr(ŷ(X) = g) ≥ τ .
Proof: Let B be the event ŷ(X) = g and C be the event

Xt,u ∈ A, and by the lemma’s condition there is a g for which
qmax
g,t ≤ qmin

h,t for all h 6= g. Then Pr(B|C) = 1, as there is
no realization of Xt,u in A that results in class g not having
the minimum in (1). Therefore,

Pr(B) = Pr(B|C)Pr(C)︸ ︷︷ ︸
≥τ

+ Pr(B|C̄)Pr(C̄)︸ ︷︷ ︸
≥0

≥ τ. �

3. EARLY QDA

Next, we choose the constraint setA in (2) and (3) for the case
of a quadratic discriminant analysis (QDA) classifier. QDA
generalizes linear discriminant analysis [2], and models the
generating distribution as Gaussian, p̂(x|y) = N (x; µ̂y, Σ̂y),
so that (1) becomes

qy(x) = (x−µ̂y)T Σ̂−1y (x−µ̂y)+ln(|Σ̂y|)−2 ln(p̂(y)). (4)

3.1. Chebyshev Constraint

We first construct the constraint set A using the multidimen-
sional Chebyshev inequality, which states that for a random
variable Xt,u ∈ Rd−t with mean mt,u and covariance Rt,u:

Pr
(
(Xt,u −mt,u)

T R−1
t,u (Xt,u −mt,u) ≤ α2

)
≥ 1− d− t

α2
.

(5)
Thus Pr(Xt,u ∈ A) ≥ τ implies

A =

{
xt,u

∣∣∣ (xt,u −mt,u)
T R−1

t,u (xt,u −mt,u) ≤
d− t

1− τ

}
.

(6)
Note that A in (6) is non-empty for τ ∈ (−∞, 1], although
τ ≤ 0 provides an uninformative lower bound on the reliabil-
ity of the classifier. Nevertheless, smaller values of τ reduce
the size of A, and will result in earlier classification. Next, let

µ̂y =

[
µ̂y,k
µ̂y,u

]
and Σ̂−1y =

[
Skk Sku
Suk Suu

]
be the sample mean and covariance, partitioned into the
known and unknown subsets. Substituting (4) and (6) into
optimization problems (2) and (3) produces

qmax
y,t = max

xt,u∈A
(xt,u − b)TSuu(xt,u − b) + c (7)

qmin
y,t = min

xt,u∈A
(xt,u − b)TSuu(xt,u − b) + c, (8)

where A is given by (6) with

b = µ̂y,u − S−1uu Suk(xt,k − µy,k)

c = log(|Σy|) + (xt,k − µ̂y,k)TSkk(xt,k − µ̂y,k)

− 2 log(p̂(y)) + 2(xt,k − µ̂y,k)TSkuµ̂y,u

− (xt,k − µ̂y,k)TSkuS
−1
uu Suk(xt,k − µ̂y,k).

Since the matrix Suu is positive semi-definite, the objective
function is convex and the min problem in (8) can be solved
using standard convex optimization techniques.

Strong duality holds for any problem with a quadratic ob-
jective and quadratic constraints [3], so although the max
problem in (7) is non-convex, qmaxy,t can be found solving the
dual problem which is a convex semidefinite program (SDP)
[3, Appendix B]. However, we found that solving the max
problem by the dual SDP was computationally prohibitive.
Instead, we use a minorization approach [4] to reach a local
solution of the max problem iteratively. A function g(x|x(m))
is said to minorize function f(x) if f(x(m)) = g(x(m)|x(m))
and f(x) ≥ g(x|x(m))∀x. Since the objective function in (7)
is convex, by Jensen’s inequality

f(xt,u) ≥ f(x
(m)
t,u ) + (xt,u − x

(m)
t,u )T∇f(x

(m)
t,u )

= (x
(m)
t,u − b)TSuu(x

(m)
t,u − b) + c (9)

+ (xt,u − x
(m)
t,u )T (2Suux

(m)
t,u − 2Suub).

Therefore, the function

g(xt,u|x(m)
t,u ) = 2xTt,uSuu(x

(m)
t,u − b)− x

(m)T

t,u Suux
(m)
t,u

+ bTSuub + c

is a linear function that minorizes the objective function in (7).
We can solve for the xt,u which gives a local maximum for
(7) by iteratively solving the convex optimization problem:

xmt,u =argmax
xt,u

g(xt,u|xmt,u) (10)

s.t. (xt,u −mt,u)TR−1t,u(xt,u −mt,u) ≤ d− t
1− τ

.

3.2. Näive Bayes Constraints

Recall our goal of classifying x as early as possible with reli-
ability ≥ τ . From our general problem formulation, given in
Section 2, it is clear that the constraint set has a great impact
on the earliness of the classifier. Since the Chebyshev con-
straint set (6) guarantees reliability≥ τ for any distribution of
the unknown data, it may be overly conservative. Therefore,
we develop two constraint sets based on a Gaussian assump-
tion for the unknown data. Because these constraint sets rely
on the Gaussian assumption for the unknown data, they can
result in earlier decisions than the Chebyshev constraint.

Näive Bayes assumes that the covariates of a random vari-
able are independent [2], so that p(Xt,u) is given by

p (Xt,u(1), . . . ,Xt,u(d− t)) =

d−t∏
`=1

p (Xt,u(`)) , (11)

where Xt,u(`) is the `th element of Xt,u(`). Further applying
a Gaussian assumption, we have Xt,u ∼ N (mt,u, R), where



R is a diagonal matrix. Then, the smallest set A such that
Pr(Xt,u ∈ A) ≥ τ is given by

Pr
(

(Xt,u −mt,u)
T
R−1t,u (Xt,u −mt,u) ≤ β2

)
= τ

≡Pr

d−t∑
`=1

(
Xt,u(`)−mt,u(`)√

Rt,u(l, l)

)2

≤ β2

 = τ

≡Pr
(
Zt,u ≤ β2

)
= τ, (12)

where Zt,u =
∑d−t
`=1

(
Xt,u(`)−mt,u(`)√

Rt,u(l,l)

)2

is a chi-squared

random variable with d − t degrees of freedom [5]. Given
a desired reliability rate τ , we solve for β2 that satisfies (12)
using the chi-squared inverse cdf, and denote that value as
β2(τ). The resulting constraint set is given by

A =
{
xt,u| (xt,u −mt,u)

T
R−1t,u (xt,u −mt,u) ≤ β2(τ)

}
.

(13)
A second constraint set that stems from the näive Bayes

Gaussian assumption is a box constraint. We define the box
constraint set to be

A = {xt,u|xt,u(`) ∈ [mt,u(`)− s(`), mt,u(`) + s(`)],∀`} ,
(14)

By näive Bayes, the constraint boundaries are set indepen-
dently for each covariate, s(`), by solving for the s(`) that sat-
isfies Pr(Xt,u(`) ∈ [mt,u(`)−s(`), mt,u(`)+s(`)]) = τ

1
d−t

that results in Pr(Xt,u ∈ A) = τ . Substituting the box con-
straint set in (14) into the min and max problems yields

qmax
y,t = max

xt,u

(xt,u − b)TSuu(xt,u − b) + c (15)

s.t. xt,u(`) ≤mt,u(`) + s(`), ` = 1, ..., d− t
xt,u(`) ≥mt,u(`)− s(`), ` = 1, ..., d− t,

qmin
y,t = min

xt,u

(xt,u − b)TSuu(xt,u − b) + c (16)

s.t. xt,u(`) ≤mt,u(`) + s(`), ` = 1, ..., d− t
xt,u(`) ≥mt,u(`)− s(`), ` = 1, ..., d− t.

The optimal xt,u for (15) and (16) can be solved alge-
braically. For the max problem in (15), each xt,u(`) lies at
the edge of the box that maximizes the distance from b(`).
Similarly, for the min problem in (16), xt,u(`) = b(`) if
b(`) ∈ [mt,u(`)− s(`), mt,u(`) + s(`)]. Otherwise, xt,u(`)
lies at the edge of the box that minimizes the distance to b(`).

3.3. Estimation of the mean and variance parameters

For each method, we estimate the mean mt,u and covariance
Rt,u of Xt,u using the training data under a joint Gaussian
assumption, as follows. We first estimate the class indepen-
dent maximum likelihood mean, ˆ̄x, and regularized maximum

likelihood covariance, Σ̂, from the training data. Assuming
that the the complete time series X is Gaussian distributed,[

Xt,k

Xt,u

]
∼ N

([
ˆ̄xt,k
ˆ̄xt,u

]
,

[
Σ̂k,k Σ̂k,u
Σ̂u,k Σ̂u,u

])
,

then the mean and covariance of Xt,u given Xt,k = xt,k is

mt,u = ˆ̄xt,u + Σ̂u,kΣ̂−1k,k(xt,k − ˆ̄xt,k)

Rt,u = Σ̂u,u + Σ̂u,kΣ̂−1k,kΣ̂k,u.

Although the time series vector is assumed to be jointly
Gaussian when estimating the mean and covariance, the maxi-
mum and minimum QDA scores using the Chebyshev bounds
in (7) and (8) do not require Gaussian assumption, but hold for
any distribution with mean mt,u and covariance Rt,u.

4. EXPERIMENTS

In this section we perform experiments using one synthetic
and four real datasets from the UCR Time Series Page [6].
In all experiments, we implement a local version of QDA [7]
that fits the mean and covariance for class y by choosing the
k nearest class y neighbors to the test sample. Additionally,
we use diagonal class covariance matrices, Σ̂y , in (4).

In all figures, we plot Pareto curves for the early QDA
classifier by varying the value of τ . Varying τ provides a
tradeoff between reliability and earliness, with smaller values
resulting in earlier classification but lower reliability, and vice
versa for larger values of τ . In all figures we plot reliability,
the percentage of early labels that match the final labels, vs.
the average early classification time over the test samples.

The tradeoff between reliability and earliness is shown
explicitly in Fig. 1 using the Synthetic Control dataset and
early QDA with the Chebyshev constraint set (6). A result
of note in this figure is that, although the value of τ given
by the Chebyshev inequality meets the desired reliability, we
can achieve the target reliability with earlier classification by
reducing τ . For instance, suppose that we want reliability of
≥ 95%. By setting τ = 0.95, we achieve reliability of 100%
with average early classification time of 57.8. At τ = −15,
we still achieve reliability of 95.6% and an average early clas-
sification time of 22.88. This indicates that in practice we can
set τ by cross-validation given enough training data.

Due to space constraints, we chose four diverse real
datasets from the UCR repository according to the following
criteria: longest time-series length (Lightning-2), shortest
time-series length (ECG), most training data (Two Patterns),
and fewest training data (Face Four). We show the results for
ECTS [1] and for early QDA with the three constraint sets:
the Chebyshev constraint set for values of τ between -400
and 0.95, and the näive Bayes constraint sets for values of τ
between 10−80 and 0.95. We also plot two baselines, ‘Fixed
t QDA’ and ‘Fixed t 1-NN’, that classify a test sample at time
t with a classifier trained only on training data up to time t.



0 10 20 30 40 50 60
40

50

60

70

80

90

100

Average Early Classification Time

R
e
lia

b
ili

ty

τ = −400
τ = −250

τ = −150

τ = −100

τ = −75

τ = −50

τ = −25
τ = −15

τ = −1
τ = −0.25 τ = 0.95

ECTS

Fig. 1. Pareto optimal curve for the Synthetic Control dataset.
The black boxes show the results for the indicated value of τ
using early QDA with the Chebyshev constraint set (6).

We plot the results in Fig. 2. We can see that in all plots
the Chebyshev constraint is more conservative than the con-
straints based on the näive Bayes Gaussian assumption, as
the average classification time for τ = 0.95 (the rightmost
plot point) is the greatest under the Chebyshev constraint. We
can also see that the reliability of early QDA and ECTS dom-
inates the respective ‘fixed t /methods. Finally, comparing
early QDA directly to ECTS, we can see that early QDA dom-
inates ECTS in reliability in all experiments.

5. CONCLUSIONS

We have presented an early classification framework for gen-
erative classifiers that guarantees high reliability, and have
provided an implementation for early quadratic discriminant
analysis (early QDA). Experimental results show that early
QDA performs well in practice when compared to baseline
methods that classify at a fixed time t and compared to ECTS.
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