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Abstract—We consider estimating multiple transmitter loca-
tions based on received signal strength measurements by a
sensor network of randomly located receivers. This problem is
motivated by the search for available spectrum in cognitive radio
applications. We create a quasi expectation maximization (EM)
algorithm for localization under lognormal shadowing. Simulated
performance is compared to random guessing and to global
optimization using constriction particle swarm (CPSO). Results
show that the proposed quasi EM algorithm outperforms both
alternatives given a fixed number of guesses, and the performance
gap grows as the number of transmitters increases.

Index Terms—transmitter localization, expectation-
maximization, spectrum sensing, cognitive radio, sensor
network, particle swarm optimization

I. BACKGROUND AND MOTIVATION

WE propose a quasi expectation-maximization (EM)
algorithm to address the problem of estimating the lo-

cations of multiple transmitters based on power measurements
at multiple receivers under lognormal shadowing. Natural
applications of this solution are those in which localization of a
non-cooperative entity is required. For example, uncoordinated
cognitive radio systems identify pockets of unused spectrum
available for transmission, often called spectral holes, without
cooperation from any legacy systems operating in the region.
Accurate estimation of the locations of the legacy-system
transmitters would increase the degree to which cognitive radio
nodes could identify and exploit unused spectrum without
causing interference.

The localization problem considered here is more chal-
lenging than the standard problem of localization in wireless
sensor networks because we assume there is no cooperation
or feedback with the transmitters. When only one transmitter
is present, the transmitter location can be determined from
three received power measurements via trilateration, or from
a larger number of sensors via a least-squares estimate.
However, when there are multiple transmitters contributing
unknown proportions of the observed power at each receiver,
the non-cooperative localization problem does not admit a
straightforward solution.

In related work, Mark and Nasif addressed the transmitter
localization problem under the assumption that only one
primary transmitter is present in the region of interest [1].
Dogandzic and Amran [2] have derived an EM solution
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to the single transmitter localization problem under fading
and shadowing, but even in that case the solution is highly
complex, requiring multivariate numerical integration. Raman
et. al conducted an experimental study of transmitter localiza-
tion performance but deemed localizing multiple transmitters
that are simultaneously active too difficult when only signal
strength is observed [3].

In earlier work we considered estimating the locations of
multiple transmitters in the presence of additive white Gaus-
sian noise (AWGN) [4], [5], which can be considered a special
case of the general problem of superimposed signal parameter
estimation under additive noise treated by Feder and Weinstein
[6]. In this paper, we consider the more realistic lognormal
shadowing model, which has been empirically validated to
accurately model received power variations due to obstacles
in the signal path [7]. As the joint distribution of the hidden
and observed random variables in the lognormal model does
not produce an analytic EM algorithm, we present a quasi EM
algorithm.

II. SYSTEM MODEL

Let the unknown two-dimensional locations of the M trans-
mitters be denoted by θ = [θ1 θ2 . . . θM ]T ∈ RM×2, where
θi is the location of the ith transmitter. We assume that M is
known, that all transmitters have the same constant transmit
power P0, and that the locations of the N receivers are known
but arbitrary. The problem is then to determine the maximum
likelihood (ML) estimate θ̂ of θ based on the observed power
measurements at the receivers: ideally, θ̂ = arg maxθ p(r|θ),
where r = [r1 r2 . . . rN ]T and rj ∈ R+ is the observed
power at the jth receiver.

Let dj(θi) ∈ R+ denote the Euclidean distance from the
transmitter located at θi to the jth receiver. Consider a log-
distance path loss model such that the noise-free received
power at the jth receiver from the ith transmitter is given
by Sij = ρP0

(
d0

dj(θi)

)n
, where ρ is a constant that reflects

the carrier frequency and antenna properties, n represents the
path loss exponent, and d0 is the close-in reference distance
[7].

We assume that lognormal shadowing occurs independently
for each transmitter-receiver pair. The resulting unknown
measured power from the ith transmitter to the jth receiver
is modeled as the random variable Hij = Sij10

Xij
10 , where

Xij ∼ N (0, σ2) is the gain in dB due to shadowing. The
unknown measurements Hij are related to rj , the observed
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power at the jth receiver, by

rj =
M∑
i=1

Hij . (1)

Finally, let the set of all M ×N unknown measured powers
be H = [H1 H2 . . . HM ], where Hi = [Hi1 Hi2 . . . HiN ].

III. ITERATIVE LOCALIZATION TECHNIQUE FOR
LOGNORMAL SHADOWING

Under independent lognormal shadowing, the likelihood
function of H conditioned on transmitter locations θ is the
product of MN lognormal densities:

p(H = h|θ) =
M∏
i=1

N∏
j=1

10 log10 e

hijσ
√

2π
e−

(10 log10(hij)−10 log10(Sij))
2

2σ2 .

From (1), the observed power rj is the sum of M lognormal
random variables. No analytic distribution exists for the sum of
lognormal random variables, and hence no closed-form expres-
sion for E[H|r, θ̂] can be obtained, which would complicate
the expectation step of the EM algorithm.

The following quasi EM approach avoids the conditional
likelihood computation required by the true EM approach,
and notably does not require any knowledge or estimation of
the shadowing variance. The algorithm alternates between (a)
estimating each transmitter location independently based on
an allocated percentage of the power received at each receiver
(Step 4, analogous to the maximization step of the true EM
algorithm); and (b) allocating a percentage of the power
received at each receiver to each transmitter proportional to
the expected received power given the last transmitter location
estimates (Steps 2 and 3, analogous to the expectation step
of the true EM algorithm). This approach is not limited
to lognormal shadowing; in fact, it can be applied to any
stochastic model.

STEP 1: Randomly generate initial estimate θ̂ of the M
transmitter locations.

STEP 2: Given the current estimate θ̂, determine the expected
power in dB at the jth receiver from the ith transmitter for
i = 1 to M and j = 1 to N :

eij = E[10 log10Hij ] = E
[
10 log10

(
Sij10

Xij
10

)]
= 10 log10(ρP0) + 10n log10

(
d0

dj(θ̂i)

)
.

STEP 3: Normalize the expected values eij so that they give
a total power at each receiver equal to the observed power at
that receiver:

ẽij = 10 log10

(
rj10

eij
10∑

i 10
eij
10

)
.

Note that this normalization is proportional, as opposed to
the additive normalization prescribed by the EM algorithm
for AWGN [5]. We chose to use proportional normalization
based on preliminary results and to avoid situations where an

additive correction results in a negative power.

STEP 4: Using the expected values ẽij , re-estimate the trans-
mitter locations by minimizing the sum of squared dB error:

θ̂i = arg min
θ̃i

N∑
j=1

(
ẽij − 10 log10

(
ρP0d

n
0

dj(θ̃i)n

))2

.

Note that minimizing the sum of squared dB power error
is intuitively pleasing under lognormal shadowing, since
the power at receiver j due to transmitter i is a Gaussian
random variable in the log domain, and hence squared error
is inversely proportional to likelihood.

STEP 5: If the chosen stopping criterion is not yet met, return
to Step 2. (In our simulations, we stop after a fixed number
of iterations.)

To increase the likelihood that the global minimum of the
cost function is reached, the quasi EM algorithm is run to
convergence multiple times with different sets of random ini-
tial conditions. The final estimate of the transmitter locations is
chosen to be the solution that yields the lowest sum-of-squared
log-power errors:

C(θ̂) =
N∑
j=1

(
log10 rj − log10

M∑
i=1

(
ρP0d

n
0

dj(θ̂i)n

))2

. (2)

Figure 1 shows an example of a transmitter-receiver ge-
ometry and the associated sum-of-squared-log-power-errors
cost function (given in (2)) used to judge possible transmitter
locations and select the best estimate. In this example, M = 2,
and N = 5. One transmitter’s location is estimated perfectly
(to generate a cost function that can be plotted in three
dimensions), and the figure shows the cost associated with
each possible estimate of the second transmitter’s location.

IV. EXPERIMENTS

We compare the performance of the proposed quasi EM
technique to the global optimization method constriction par-
ticle swarm optimization (CPSO) [8] and to random guessing.
CPSO searches the (M × 2)-dimensional θ-space to directly
minimize the sum-of-squared log-power errors cost function
(given by (2)) that we use to compare results from different
initial conditions for the quasi EM algorithm. For CPSO,
we use the inertial weight α, cognitive scaling parameter β,
and social scaling parameter γ recommended by Schutte and
Groenwold [8].

In our implementation of CPSO, each particle’s initial
velocity is drawn from a uniform distribution on the interval
[−0.5, 0.5] times the width of the search area. One parti-
cle’s initial location is chosen using the following “smart”
technique. First, the k-means algorithm is run to group the
N receivers into M clusters based on geographic proximity.
Then, we assume that all of the power observed at the receivers
in each cluster is generated by a single transmitter, and find
the least-squares estimate of that transmitter’s location. The
resulting set of estimated M transmitter locations constitutes
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Fig. 1. Top: Example scenario for M = 2 transmitters and N = 5
receivers. Bottom: Associated scaled cost surface used to select the best
estimate of transmitter 2’s location when the location of transmitter 1 is
estimated perfectly.

a “smart” initial (M × 2)-dimensional particle in the CPSO
search space. The rest of the CPSO initial particles are
chosen uniformly and randomly. Preliminary results showing
the advantages of using such smart initial guesses rather than
random guesses and a more detailed description of these smart
initial conditions can be found in [4].

A. Experimental Setup

The region of interest is taken to be a one-kilometer
square, with certain constraints on the transmitter and receiver
geometries. First, transmitters are assumed to be separated by
at least 200 meters, reflecting the physical reality that primary
transmitters using the same frequency band would interfere if
they were too close together. Second, all receivers are assumed
to be at least twice the reference distance d0 = 1 from all
transmitters, a constraint required to guarantee that the log-
distance propagation model yields realistic results [7].

These placement constraints are reflected in the implementa-
tion of the proposed quasi EM algorithm. While the algorithm

is iterating, if any transmitter location estimates are within
100 meters of each other, or if any single estimate is more
than 50% (500 meters) outside the square region of interest,
the algorithm is assumed to be converging incorrectly and the
problematic transmitter(s) are uniformly randomly reassigned
to new locations in the square region. Once the algorithm stops
iterating, any location estimates that lie outside the square
region are clipped to its nearest boundary. In contrast, the
locations of the CPSO particles are clipped every iteration in
order to keep the particles from collecting outside the search
space which makes the search defunct.

The quasi EM algorithm is run M2 times with different
uniformly randomly drawn initial estimates θ̂; the number of
iterations for each initial estimate is fixed at 10. Because the
quasi EM algorithm does not implement the precise expecta-
tion and maximization steps of the true EM algorithm, it is not
guaranteed to converge to a local minimum of the likelihood
function, and theoretical analysis of its convergence behavior
is difficult if not impossible. In simulation, we found that the
quasi EM algorithm typically converges within 10 iterations.
To allow fair comparison with competing schemes, we chose
to perform a fixed number of iterations rather than implement-
ing a convergence-based stopping criterion. In our simulations,
CPSO uses M2 particles, one of which is generated via the
previously described “smart” technique, and is allowed 10
iterations per particle for a total of 10M2 guesses. Similarly,
the random guessing approach makes 10M2 random guesses
(uniformly drawn from the search space) of the transmitter
locations and chooses the random guess that minimizes the
sum-of-squared log-power error cost function given in (2).

B. Results

The simulated performance of the quasi EM, CPSO, and
random guessing algorithms is presented in Figs. 2 and 3.
The chosen performance metric is the average squared distance
error between estimated and true transmitter locations, where
the average is taken over the M transmitters. The values have
been normalized to assume a square of unit area. Performance
figures show the median error over 1000 different random
draws for M = 2 and M = 3 transmitters, N = 2M to
N = 40 receivers, and shadowing variance of σ2 = 4 and
σ2 = 16.

Fig. 2 presents simulation results for M = 2 transmitters.
The quasi EM localization approach produces the smallest
median error across all values of N and both values of σ2

considered, and the performance gap increases as the number
of receivers moves from N = 2M to N = 20. As expected,
performance error for all three localization techniques initially
decreases with increasing N but eventually flattens; as the
number of receivers grows large, the power measurement
provided by each additional receiver is less likely to provide
independent information, and hence the resulting performance
improvements are not significant. The performance advantage
of the quasi EM approach is significantly larger when M is
increased to 3 transmitters, as shown in Fig. 3. In fact, for
N = 40 receivers and the lower noise case (Fig. 3 top),
the quasi EM approach achieves a 10-fold reduction in error
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relative to CPSO and a roughly 50-fold reduction relative to
random guessing.
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Fig. 2. Two transmitters: Median normalized average squared distance error
for σ2 = 4 (top) and σ2 = 16 (bottom).

V. CONCLUSIONS AND OPEN QUESTIONS

We have shown that a quasi EM approach can be effective in
estimating multiple transmitter locations from multiple power
measurements when propagating signals experience lognormal
shadowing. Compared to a state-of-the-art global optimization
method and to random guessing, the proposed quasi EM
algorithm achieves a significant reduction in error when given
the same number of guesses.

Although we focused on lognormal shadowing, other prop-
agation models might also benefit from this quasi EM ap-
proach, which alternates between assigning each receiver some
responsibility for locating a transmitter and using the receiver
locations and their assigned responsibilities to estimate where
the transmitters might be. Also, in this work, we use the sum
of log-power errors as a proxy objective for the function we
would actually like to minimize: the sum of distances between
the estimated and true transmitter locations. It may be that a
more effective proxy cost function exists, and this may indeed
depend on the path loss and noise models.

In the investigation and results presented here, we assume
that the number of transmitters is known and that each
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Fig. 3. Three transmitters: Median normalized average squared distance error
for σ2 = 4 (top) and σ2 = 16 (bottom).

transmits at a known power. How to effectively extend the
estimation algorithms to model an unknown number of trans-
mitters and unknown transmit powers is an open question.
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