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ABSTRACT

We consider the problem of classifying a signal that is the out-
put of a linear, time-invariant channel in the presence of addi-
tive noise, given two distinct sets of labeled data: one dataset
of examples of the signals input to the channel, and a sec-
ond dataset of example signals corrupted by the channel. We
propose a distribution-based Bayesian quadratic discriminant
analysis classifier that uses the input examples along with a
model for the channel to form a prior for the likelihood of the
output examples. Preliminary experiments with this proposed
transfer BDA classifier show that it effectively uses both sets
of data and is also robust to errors in channel modeling.

Index Terms— Bayesian methods, classification algo-
rithms, machine learning algorithms, signal processing algo-
rithms, multipath channels

1. INTRODUCTION

A recent topic of interest in classification is the transfer of
knowledge gained in one domain to a classification task in
a new domain [1]. In many signal processing applications,
such a scenario arises because a signal to be classified, z, is
the output of a random unknown linear, time-invariant (LTI)
channel, h, with additive noise, w:

z = h ∗ x+ w. (1)

For example, the signal x could be an acoustic or seismic sig-
nal which propagates through some unknown multipath chan-
nel. Alternatively, the signal to be classified could be an im-
age and the channel, h, could represent some unknown point
spread function. In the remainder of this paper, we will refer
generally to test signals z as residing in the target domain and
signals x as residing in the source domain.

We note that within the field of transfer learning there are
many approaches to make use of both source and target do-
main training samples [1], however, our approach differs from
previous literature in that we assume we also have a model
linking the source and target domain, as given by (1). Other
related research has focused on a special case of our problem
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formulation, where the learner is given a set of source domain
training examples, X = {(xi, yi)}nsi=1 where xi ∈ Rds and
yi ∈ Y are the ith feature vector and class label, that it must
use to classify the test point z. Researchers have proposed
several approaches to this problem. One such approach is to
first perform blind deconvolution of z followed by classifi-
cation, and there are many examples of this approach in the
literature, for example [2].

Other approaches to classifying z make use of side infor-
mation in the form of estimated or simulated channel exam-
ples, {ĥi}, that are assumed to be drawn iid from the same
distribution as the random channel in (1). The method of ’vir-
tual training examples’ creates a virtual training set with fea-
ture vectors ẑi = xi ∗ ĥi using the source examples in X and
the channel examples, and then uses these examples to train a
target domain classifier using standard classification methods
[3, 4]. Alternatively, the channel can be modeled as a realiza-
tion of a random Gaussian variable, and the ĥi can be used
to estimate the mean and covariance of the Gaussian distri-
bution. In [5], the training examples and channel model are
used to train a quadratic discriminant analysis (QDA) classi-
fier in the target domain, which is referred to as joint QDA,
and experiments showed that joint QDA outperforms both
blind deconvolution then classification and joint deconvolu-
tion and classification of z. Finally, in [6] a Gaussian random
channel model is used to adapt the kernel function used to
train an SVM classifier for classification of z using the train-
ing set X . Results showed that in many cases this expected
kernel approach is comparable in performance to a local form
of joint QDA.

In this paper we extend the above formulations to con-
sider the more general case where, in addition to the train-
ing set X , we also have a labeled target domain training set
Z = {(zj , yj)}ntj=1 zj ∈ Rdt , yj ∈ Y . We assume that the
elements in Z are generated according to zj = hj ∗ xj + wj
where the xj are unknown, but are drawn iid from the same
distribution as the members of X and that the hj are realiza-
tions of the random channel drawn iid from the same distribu-
tion as h. Like several of the other approaches above, we also
assume that we have a mechanism for estimating the mean,
µ̂h, and covariance, Σ̂h, of the channel distribution (ie., from
channel examples). However, unlike the above approaches,



we make the more practical assumption that these estimates
may be biased or inaccurate estimates of the true channel pa-
rameters, and build robustness to inaccurate channel model-
ing into our algorithm.

2. DISTRIBUTION-BASED BAYESIAN QDA FOR
TRANSFER LEARNING

In order to make use of both the source and target domain
training sets, we use the framework of distribution-based
Bayesian QDA to classify test point z. Distribution-based
Bayesian QDA was first proposed by Srivistava et al. [7]
as an alternative to regularization when the estimation of
model parameters in QDA is ill-posed. QDA estimates one
maximum-likelihood Gaussian distribution for each class.
Alternatively, distribution-based Bayesian QDA computes
the expected Gaussian distribution for each class.

Our Bayesian QDA differs significantly from the work
of Srivistava in our random model for the class-conditional
Gaussians. Specifically, we use the source domain training
data X to form a prior probability over the space of Gaussian
distributions for each class. In this way, the source domain
data regularizes the estimates of the target domain class con-
ditional distributions. In addition, by using the source domain
data to form a prior, the prior’s hyperparameters can be used
to create robustness to inaccurate channel modeling.

Distribution-based Bayesian QDA models the class-
conditional signal likelihood p(z|Y = y) as a random Gaus-
sian distribution, p(z|Y = y) = NZ|y(z) with realization
NZ|y(z), and classifies the test point z according to the class
which maximizes the expected a-posteriori probability:

ŷ = arg max
y∈Y

ENZ|y
[
NZ|y(z)

]
p̂(Y = y), (2)

where the last term in (2) is an estimate of the a-priori proba-
bility of class y.

The expected distribution in (2) can be written as

ENZ|y
[
NZ|y(z)

]
=

∫
M

NZ|y(z)r(NZ|y)dM, (3)

where M is an appropriate measurable space and r(NZ|y)
is the probability of the Gaussian distribution. As was done
in [7], we set M to be the set of all Gaussian distributions
parameterized by µz|y ∈ Rd and Σz|y ⊂ S where S is the
cone of d × d positive semi-definite matrices. Furthermore,
we set the differential element, dM = dµz|ydΣz|y .

We propose to let r(NZ|y) in (3) be the posterior proba-
bility density of NZ|y given the training sets X and Z:

r(NZ|y) = p(NZ|y|Z,X ) = γ−1
y p(Z|NZ|y,X )p(NZ|y|X ).

(4)
The γ−1

y term in (4) is a normalization constant, the second
term is the likelihood function of data in Z , and the third term
is the prior distribution of NZ|y given by the source data. If

we represent Zy and Xy as the elements of the training sets
with only class label y then we can expand (4) as:

r(NZ|y) = γ−1
y p(Zy|NZ|y)p(NZ|y|Xy)

|Y|∏
i=1
i 6=y

p(Zi|NZ|y,X ),

(5)
where we have assumed that p(NZ|y) is independent of the
training samples in X that are not in class y given the sam-
ples in y. The terms within the product in (5) are likelihood
functions for the target data in classes other than y given the
conditional distribution NZ|y and the source data. Although
it may be possible to use these likelihoods to improve the es-
timation of the posterior probability, in this study we assume
p(Zi|NZ|y,X ) = p(Zi) for i 6= y; therefore, (5) reduces to:

r(NZ|y) ∼ γ−1
y p(Zy|NZ|y)p(NZ|y|Xy) (6)

The first probability in (6) is a Gaussian likelihood func-
tion, and can be written in terms of the mean µz|y and covari-
ance Σz|y of NZ|y as

p
(
Zy|NZ|y(µz|y,Σz|y)

)
= (2π)

−dtnsy
2 |Σz|

−nsy
2

· e
−nsy

2 (µz|y−z̄y)TΣ−1
z|y(µz|y−z̄y)

e
−1
2 tr(VyΣ−1

z|y) (7)

where z̄y is the sample mean from the training set Zy with
nsy elements and Vy =

∑nsy
i=1(zi − z̄y)(zi − z̄y)T , zi ∈ Zy .

To solve the posterior distribution in (6), we must model a
prior, p(NZ|y|Xy) . We make the assumption that the proba-
bility of the mean and covariance ofNZ|y can be decomposed
as:

p(NZ|y|Xy) = p(µz|y|Σz|y,Xy)p(Σz|y|Xy).

Specifically, we use a Normal-inverse Wishart distribution for
the prior:

p(NZ|y|Xy) = N
(
µz|y;my,

Σz|y

ty

)
IW (Σz|y;By, αy).

(8)
The joint distribution in (8) has four hyperparameters, and
we note that the mean of the inverse Wishart distribution is

By
αy−dt−1 .

We set my and By in (8) to match the mean and scaled
covariance of Z given the channel model (1), the side infor-
mation about the channel (µ̂h and Σ̂h), our estimate of the
noise variance, and estimates of the class conditional mean
and covariance µ̂x|y and Σ̂x|y from Xy . That is, we set

my = µ̂h ∗ µ̂x|y, and (9)

By = (α− dt − 1) (10)

·
(

(Σ̂h + µ̂hµ̂
T
h ) ∗ ∗(Σ̂x|y + µ̂x|yµ̂

T
x|y)−mym

T
y + σ̂2

wI
)
,

where ∗∗ represents 2-D convolution. We leave the discussion
of setting parameters ty and αy to the next section.



The product of (7) and (8) gives the posterior density of
the random distribution NZ|y . The posterior distribution is

r(NZ|y) = N
(
µz|y;m′y,

Σz|y

t′y

)
IW(Σz|y;B′y, α

′
y) (11)

with parameters

m′y =
nsy z̄y + tymy

nsy + ty
, t′y = nsy + ty,

B′y = By +
nsyty
nsy + ty

(z̄y −my)(z̄y −my)T + Vy,

α′y = αy + nsy.

We can now evaluate the expected value of the random
normal distribution ENZ|y [NZ|y(z)] by substituting the pos-

terior density (11) into (3). Defining Cy
4
=

t′y
2(t′y+1) (m′y −

z)(m′y − z)T + 1
2B
′, the integral in (3) evaluates to

ENZ|y [NZ|y(z)]

=
|B′y|α

′
y/2Γdt

(
α′y+1

2

)
t
′dt/2
y

(2π)dt/22α
′
ydt/2Γdt(α

′
y/2)(t′y + 1)dt/2|Cy|(α

′
y+1)/2

.

(12)

Substituting (12) into (2) gives the final classification rule,
and we call the resulting classifier transfer BDA.

3. CHANNEL MODEL ROBUSTNESS VIA CROSS
VALIDATION

From (8), we can see that the parameters ty and αy control
the variance of the priors for the mean and covariance, respec-
tively. Since the means for the prior values are derived from
the source data and the channel side information, as shown
in (9) and (10), these parameters represent our level of confi-
dence in the source data and channel information.

We can allow the data to select these parameters for us by
performing cross validation using the target data training set,
Z , and then choosing the ty and αy which produce the lowest
error. As opposed to cross validating ty and αy individually
for each class, we choose one set of K cross validation pa-
rameters {νk}, k = 1, ...K and at the kth cross validation
trial set ty = νk

nsy
nty

and αy = ty + dt + 1 where nsy and nty
are the numbers of source and target domain training exam-
ples for class y. In the case that two or more cross validation
parameters tie, we choose the largest, as ties are most likely
to occur when there are few target training examples to cross
validate over, and thus we should place more reliance on the
source training data.

4. SIMULATION EXPERIMENT

We test the performance of transfer BDA by performing a bi-
nary classification simulation similar to that in [5]. A source

Table 1. Class conditional mean and covariance.
µx|y[m] Σx|y[m, p]

Class 1
1
4 square(6πm/100) 1

100

(
δ[m− p] + e−|m−p|/20

)
Class 2

1
4 sin(6πm/100) 1

100

(
δ[m− p] + e−(m−p)2/10

)

training set of 150 signals, {xi}, is generated iid Gaussian
with class conditional parameters given in Table 1. Target
training data and test data are generated for each class by first
drawing an iid sample from the class conditional source dis-
tribution, then convolving the source signal with an iid sam-
ple from the channel distribution, and AWGN is added (with
the variance fixed) to achieve the desired signal to noise ra-
tio (SNR) computed as SNR = 10 log10(E[z2]/σ2

w). In all
cases, the a-priori probability for each class is 0.5.

We model a random Laplacian channel with mean µh and
scale parameter bh; that is, the distribution of h is

p(h[m]|µh[m], bh[m]) =
1

2bh[m]
e
|−h[m]−µh[m]|

bh[m] . (13)

We set µh[m] = δ[m]−0.6δ[m−49]+0.1δ[m−99], bh[m] =
0.2e−0.024m, and m = 0, ..., 99.

Our algorithm, and several of those we compare to, also
requires a mechanism from which to estimate the channel
mean and covariance. In order to do this, we generate i =
1, ..., 20 noisy channel examples according to

ĥi = hi + εi, (14)

where each hi is an iid realization of (13) and εi is a zero-
mean AWGN noise signal with covariance σ2

ε I . The addition
of the noise, εi, to the channel examples models the likely sce-
nario that the given channel examples are noisy examples of
the real channel taken from field measurements or generated
by a modeling tool such as the Sonar Simulation Toolset [8].
Therefore, σ2

ε = 0 is the optimistic scenario that the channel
measurements are noise free. We use these twenty channel
examples to estimate the mean of h and the diaganol of the
covariance of h.

For comparison, we also plot the performance of several
other classifiers. We compared to two methods that use only
the target training data T : regularized discriminant analysis
(RDA) [9] and a Gaussian radial basis function SVM. We
also compare to joint QDA, which uses the source training
data and the channel examples (14) to build a QDA classifier
in the target domain [5]. Finally, we plot the performance of
an SVM using the method of virtual examples. This method
was implemented using a pooled training data set consisting
of both the target training data Z as well as 150 labeled vir-
tual examples ẑi = xi∗ĥi generated by convolving the source
training data with channel examples (14). Each source signal



was used to create one virtual example by randomly select-
ing one of the twenty channel examples. One could gener-
ate multiple virtual examples from each source signal; how-
ever, this could degrade classification performance as the ad-
ditional virtual examples will mute the influence of the target
examples. This virtual example method is the closest compar-
ison to transfer BDA in that it uses both the target and source
training data. For both SVM methods, we cross-validate over
the target data to select the kernel bandwidth.

Results for all methods with two different values of chan-
nel estimation error, and at two different SNR levels are
shown in Tables 2 and 3. These tables give the average test
error over twelve experimental runs with different source
and target training sets as well as different channel exam-
ples. Results highlighted in boldface tie for the lowest mean
error according to a signed Wilcoxon rank test with a 5%
significance level.

Results show that the scarcity of target data results in poor
performance of the methods which rely solely on target exam-
ples. In general, transfer BDA outperforms all other methods,
particularly in Table 3, when the channel estimates are noisier.

Table 2. Error rate for the classification of z = h∗x+w when
the channel examples (14) are generated with σ2

ε = 0.02.

5. CONCLUSION

We have presented an approach to classifying the noisy out-
put of a random channel. Transfer BDA is able to make use
of data from both the source domain and target domain, as
well as from channel examples, in order to improve perfor-
mance over approaches that rely on target data alone. Most
importantly, by using the source data to model a prior with
flexible hyperparameters, our approach exhibits a degree of
robustness to channel estimation and modeling errors. Results
show that transfer BDA outperforms other channel robust ap-
proaches, particularly in the presence of channel estimation
errors.

Table 3. Error rate for the classification of z = h∗x+w when
the channel examples (14) are generated with σ2

ε = 0.05.
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