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Abstract

We present local discriminative Gaussian
(LDG) dimensionality reduction, a super-
vised dimensionality reduction technique for
classification. The LDG objective function is
an approximation to the leave-one-out train-
ing error of a local quadratic discriminant
analysis classifier, and thus acts locally to
each training point in order to find a map-
ping where similar data can be discriminated
from dissimilar data. While other state-of-
the-art linear dimensionality reduction meth-
ods require gradient descent or iterative solu-
tion approaches, LDG is solved with a single
eigen-decomposition. Thus, it scales better
for datasets with a large number of feature
dimensions or training examples. We also
adapt LDG to the transfer learning setting,
and show that it achieves good performance
when the test data distribution differs from
that of the training data.

1. Introduction

Dimensionality reduction is the mapping of high-
dimensional data into a lower-dimensional space while
retaining as much of the information content of the
data as possible. As a preprocessing step for super-
vised classification algorithms, dimensionality reduc-
tion achieves several important goals. It reduces the
storage requirements and algorithm complexity by re-
ducing the input space of the data. It can improve per-
formance of learning algorithms by rejecting spurious
or noisy features prior to training and testing. Dimen-
sionality reduction can also protect against overfitting
by reducing the number of parameters learned by the

Appearing in Proceedings of the 29 th International Confer-
ence on Machine Learning, Edinburgh, Scotland, UK, 2012.
Copyright 2012 by the author(s)/owner(s).

classifier.

We present a method for supervised dimensionality re-
duction that is based on a local discriminative Gaus-
sian (LDG) criterion. The discriminative Gaussian cri-
terion is a smooth approximation to the leave-one-out
cross-validation error of a quadratic discriminant anal-
ysis (QDA) classifier, so it seeks a mapping where a
quadratic boundary separates the classes. Because this
goal of separation by class may be difficult to achieve
globally, our criterion instead operates locally to each
training point.

The considered objective function is non-convex with
no analytical solution; however, we present an approxi-
mation that is solved via a maximal eigenvalue decom-
position. The simplicity of the solution is an advan-
tage over other state-of-the-art dimensionality reduc-
tion techniques that require iterative solution meth-
ods or more complex generalized eigenvalue decompo-
sitions.

We perform experiments for supervised dimensionality
reduction, and for dimensionality reduction for trans-
fer learning. We show that on datasets with a large
number of feature dimensions, other state-of-the-art
algorithms are either intractably slow or exhibit nu-
merical instability, whereas LDG is able to extract a
useful mapping even when the number of features in
the original data is in the thousands. We also show
that LDG can be easily extended to the transfer learn-
ing setting, where the training data is drawn from a
different distribution than the test data. Experiments
show that LDG is effective in this setting as well.

2. Problem Formulation

We take as given a set of labeled training data
{(xi, yi)}ni=1, with xi ∈ Rd and yi ∈ {1, 2, ...,m} being
the ith feature vector and class label respectively.

We wish to find a matrix B ∈ Rd×l, l < d such that the
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reduced-dimensionality feature vectors {BTxi} can be
separated according to class. We measure this separa-
bility by the performance of a generative classifier. Let
p(xi|yi) be the likelihood of xi given class yi, estimated
from the other n− 1 training sample pairs. Then the
leave-one-out cross-validation error of a maximum a-
posteriori (MAP) classifier acting on the mapped fea-
tures measures the separation achieved by B:

n∑
i=1

I

(
p(BTxi|yi)p(yi) < max

j
p(BTxi|j)p(j)

)
, (1)

where the indicator function I(·) is one if its argument
is true and zero otherwise.

The discontinuity of the indicator function in (1)
makes it difficult to minimize. In order to arrive at a
smooth, differentiable objective function that approx-
imates (1), we substitute a log for the indicator and a
sum for the max:

f(B) =

n∑
i=1

log

(∑m
j=1 p(B

Txi|j)p(j)
p(BTxi|yi)p(yi)

)
. (2)

In related work, p(xi|j) was assumed to be a Gaus-
sian mixture model (GMM), and the objective was to
learn a parameter vector, Θ, of GMM weights, means,
and variances that minimized f(Θ) with p(xi|j,Θ) re-
placing p(BTxi|j) in (2) (Ma & Chang, 2003). The
learned parameters were shown to improve the GMM
classification performance over the parameters learned
by maximimum likelihood estimation. In that work,
(2) is motivated as maximizing the mutual informa-
tion between the class labels and the feature vectors.

We assume p(xi|j) is Gaussian, N (xi;µi,j ,Σi,j). How-
ever, to reduce the model bias of assuming one Gaus-
sian per class, we model p(xi|j) as locally Gaussian
(Garcia et al., 2010). That is, we estimate the param-
eters of the Gaussian for point xi and class j by finding
the k nearest class j neighbors, in Euclidean distance,
to training point xi and using these points to estimate
the Gaussian’s maximum likelihood mean and covari-
ance. To reduce estimation variance, we model each
covariance matrix as a scaled identity Σi,j = σ2

i,jI,
where I is the properly sized identity matrix. There-
fore, p(BTxi|j) = N (BTxi;B

Tµi,j , B
TBσ2

i,j).

Objective (2) is non-convex with no analytical solu-
tion. Gradient-descent or global optimization can be
used, but become computationally expensive if the
number of classes, training samples, or dimensionality
are large. Therefore, we propose a tractable approx-
imation that has an analytical solution. The B that
minimizes our approximation can be used directly (as

we do in our experiments), or as a starting point for a
gradient descent approach to minimizing (2).

We rewrite (2) as

f(B) =

n∑
i=1

(
log
( m∑
j=1

p(BTxi|j)p(j)
)

(3)

− log
(
p(BTxi|yi)p(yi)

))
,

and bound (2) from below with Jensen’s inequal-
ity by replacing the first log term in (3) with∑m
j=1 p(j) log(p(BTxi|j)). Also, we impose the con-

straint thatBTB = I. This constraint simplifies (2) by
making the covariance of the Gaussians in the mapped
space independent of B. Furthermore, it makes for a
unique solution. After taking the log of the Gaussians,
we arrive at the LDG objective:

B∗ = arg min
B∈Rd×l

n∑
i=1

(
1− p(yi)

2σ2
i,yi

∆T
i,yiBB

T∆i,yi (4)

−
m∑

j=1,j 6=yi

(
p(j)

2σ2
i,j

∆T
i,jBB

T∆i,j

))
s.t. BTB = I.

where ∆i,j = µi,j − xi.

Despite the approximations, (4) retains an intuitive
meaning. The B that minimizes the first term in (4) is
the maximum likelihood solution for the correct-class
local Gaussians. The second term is composed of m−1
different terms, each of which, if minimized individu-
ally, will give the maximum likelihood solution for an
incorrect-class Gaussian, i.e. a Gaussian distribution
trained by the local neighbors of xi coming from a
different class. Therefore, (4) can be viewed as a reg-
ularized maximum likelihood estimate, where the reg-
ularization term attempts to minimize the likelihood
of incorrect classes.

2.1. LDG Solution

The B that optimizes (4) can be found with one eigen-
decomposition. Define

V =

n∑
i=1

1

σ2
i,yi

∆i,yi∆
T
i,yi

A =

n∑
i=1

m∑
j=1

p(j)

σ2
i,j

∆i,j∆
T
i,j .
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Then (4) can be written as

B∗ = arg min
B∈Rd×l

1

2
Tr
(
BT (V −A)B

)
(5)

s.t. BTB = I.

Since both V and A are real symmetric matrices, it is
straightforward to show that the solution to (5) is to
set B∗’s columns to be the l smallest eigenvectors of
matrix (V −A).

Additionally, we add a cross-validated regularization
parameter, γ, to (4), which we have found in practice
can produce a mapping that better separates the data:

B∗γ = arg min
B∈Rd×l

n∑
i=1

(
1

2σ2
i,yi

∆T
i,yiBB

T∆i,yi (6)

− γ
m∑
j=1

(
p(j)

2σ2
i,j

∆T
i,jBB

T∆i,j

))
s.t. BTB = I.

The solution to (6) is to set B∗γ ’s columns to be the l
smallest eigenvectors of matrix (V − γA).

3. Related Methods for Linear
Dimensionality Reduction

Fisher discriminant analysis (FDA) (Fisher, 1936)
is a supervised technique that chooses B to maxi-
mize the ratio of the between-class covariance S(b) to
the within-class covariance S(w). The solution is to
choose the top eigenvectors of the generalized eigen-
decomposition S(b)λ = νS(w)λ. FDA has two draw-
backs. First, FDA can perform poorly on multi-modal
data where no single linear boundary separates the
data by class. Second, the between-class covariance
matrix is at most rank m− 1, so FDA can provide at
most m− 1 dimensions.

Local Fisher discriminant analysis (LFDA) (Sugiyama,
2007) alleviates the drawbacks of FDA. LFDA gen-
eralizes FDA by adding a weight based on pairwise
sample distances to the between-class and within-class
covariance matrices. Thus, LFDA is able to sepa-
rate multi-modal data. This change also results in
LFDA being able to provide greater than m − 1 di-
mensions. LFDA is solved using the same generalized
eigen-decomposition as FDA.

Neighbourhood components analysis (NCA) (Glober-
son et al., 2005) is a dimensionality reduction tech-
nique that is based on a smooth approximation to the
leave-one-out k-NN error. The dimensionality reduc-
tion found by NCA was shown to provide good clas-
sification accuracy; however, it suffers from two key

drawbacks. First, the optimization requires gradient
descent, and can be slow for datasets with a large num-
ber of features or training examples. Second, the NCA
optimization must be re-run for any desired number
of final dimensions. This is in contrast to principal
components analysis (PCA), FDA, LFDA, and LDG,
where B can be found once for the largest number of
final dimensions, and then the top submatrices of B
are the optimal solution for fewer dimensions.

Finally, there is a large body of work in distance
metric learning and feature selection that is related
to linear dimensionality reduction. Distance metric
learning addresses the problem of how best to de-
termine the distance between feature vectors in Rd.
Linear distance metric learning is primarily concerned
with finding a positive semi-definite Mahalanobis met-
ric M that gives the distance between xi and x` as√

(xi − x`)TM(xi − x`). Linear dimensionality reduc-
tion can be thought of as finding a low rank Maha-
lanobis metric M , such that M = BBT . The ap-
proaches given in (Globerson & Roweis, 2006; Davis
et al., 2007; Weinberger & Saul, 2009) propose convex
optimization problems for finding M . These meth-
ods suffer from the drawback that rank constraints are
non-convex, and thus the M that they find is typically
not low rank. However, we can perform dimensional-
ity reduction by rewriting the Mahalanobis metric as
M = LΛLT and using a feature selection method on
the resulting zi = Λ1/2LTxi as proposed in (Globerson
& Roweis, 2006; Davis et al., 2007).

4. Dimensionality Reduction
Experiments

We perform experiments to compare LDG to sev-
eral different dimensionality reduction methods: PCA,
FDA, LFDA, NCA, and information theoretic met-
ric learning (ITML) (Davis et al., 2007) with feature
selection using the maximum-relevance, minimum re-
dundancy criterion (MRMR) (Peng et al., 2005). For
the NCA, LFDA, ITML, and MRMR feature selection,
we use code provided by the authors. We evaluate the
performance of the dimensionality reduction methods
via k-NN classification accuracy with k = 3, as was
done in (Weinberger & Saul, 2009).

As a preprocessing step, we standard normalize the
training data so that each feature has a mean of zero
and standard deviation of one. We choose the num-
ber of neighbors used to estimate the local Gaus-
sians for the LDG dimensionality reduction by five-
fold cross-validation using a local QDA classifier (Gar-
cia et al., 2010) on the original data. For LDG,
γ ∈ {.2, .4, .6, .8, 1}, and we choose whichever γ min-
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German Ringnorm Dermatology
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Ionosphere Statlog USPS
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Isolet MNIST Gisette
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P-53 Mutants Arcene Dexter
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Figure 1. Mean classification accuracy over ten random splits of the data. Diamonds mark methods that are statistically
the best or not statistically different from the best with 95% confidence for that dimensionality. FDA, LFDA, ITML, and
NCA are not plotted in some datasets for reasons given in Section 4
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Table 1. Mean training time in seconds and mean classification accuracy when the number of dimensions is chosen by
cross-validation. Bold font highlights methods that were statistically the best or not statistically different from the best
with 95% confidence. Symbol legend: “-” method did not converge in under three hours per training/test split, “nc” not
computable.

Orig Train LDG PCA FDA LFDA ITML NCA
Dim Ex acc time acc time acc time acc time acc time acc time

Diabetes 8 538 71.3 1 67.9 <1 72.7 <1 69.2 <1 69.7 40 70.7 135
Wine 13 125 97.7 <1 95.8 <1 98.5 <1 98.5 <1 97.2 54 97.9 6
Image Seg 19 1617 96.5 4 92.5 2 96.2 1 95.0 3 95.6 138 95.4 4641
German 20 700 71.1 <1 68.9 <1 71.4 <1 71.9 <1 69.5 15 71.1 1015
Ringnorm 20 3000 86.9 9 85.8 5 71.9 1 85.8 6 80.6 23 85.7 9119
Derm 33 256 89.2 <1 92.5 <1 91.5 <1 92.5 <1 93.4 139 95.5 381
Ion 34 246 86.2 <1 85.2 <1 83.2 <1 83.1 <1 84.3 10 89.1 222
Statlog 36 3000 90.1 10 90.1 5 86.6 3 88.3 6 88.0 232 - -
USPS 256 3000 93.5 24 92.0 10 90.9 5 92.6 7 90.8 4886 - -
Isolet 617 3000 87.9 94 73.1 15 88.9 18 90.2 21 - - - -
MNIST 784 3000 89.1 55 87.5 13 76.2 10 32.7 34 - - - -
Gisette 5000 3000 95.5 466 96.7 63 51.5 1983 49.8 2313 - - - -
Mutants 5408 200 90.0 2908 64.8 2 52.0 1946 48.0 2003 - - - -
Arcene 10K 70 76.0 578 61.3 15 53.7 39 nc nc - - - -
Dexter 20K 210 82.0 1325 54.0 3 nc nc nc nc - - - -

imizes the k-NN leave-one-out cross-validation error
at dimensionality equal to the number of classes plus
five. We have found that, in general, a few more di-
mensions than the number of classes present in the
data is a good dimensionality at which to choose γ.
In the case of ties, we select the largest value of γ.
MRMR requires that we discretize the ITML features
for feature selection, and we do so by thresholding at
the mean, as recommended in the authors’ code.

We perform experiments on fifteen datasets, and for
each we average the accuracy over ten random 70/30
splits of the training and test data (up to a maxi-
mum of 3000 training samples). The datasets that we
use can be found either at the UCI Machine Learning
Repository or the Machine Learning Dataset Reposi-
tory. The P53-Mutants dataset contained a large de-
gree of class asymmetry. Therefore, we randomly sam-
pled 143 of the inactive class samples and discarded
the rest in order to make a 50/50 split between inac-
tive and active class data (as opposed to the 1% vs
99% split in the original dataset).

Figure 1 and Table 1 show that for small datasets,
LDG is comparable to other state-of-the-art meth-
ods. However, LDG provides a clear advantage on the
datasets with the largest feature dimensionality.

NCA and ITML failed to converge in under three hours
per training/test split on a standard 2.8 GHz PC for
the datasets marked with “-” in Table 1, and results
for these datasets are not plotted in Figure 1. Figure 1

also shows that ITML has difficulty with the Ringnorm
dataset which as some features that are only noise.

LDG also outperforms FDA and LFDA on some of
the datasets. FDA can provide dimensionality only
up to one fewer than the number of classes, which lim-
its its performance on the Ionoshpere and Ringnorm
datasets. Furthermore, FDA and LFDA exhibit nu-
merical instability in some of the datasets with large
feature dimensionality due to the fact that the within-
class covariance matrix is underdetermined. Thus, the
generalized eigenvalue decomposition that these algo-
rithms solve fails to find discriminative dimensions.
LFDA returns complex eigenvalues for the Arcene and
Dexter datasets, and FDA does the same on the Dex-
ter dataset; thus, the LFDA and FDA results are not
computable for these datasets.

In Table 1, we show the average classification accuracy
when the dimensionality is chosen by leave-one-out
cross-validation. We do this by increasing the dimen-
sionality until the cross-validation accuracy decreases
by adding another dimension. The run-time numbers
measure the mean time it takes, in seconds, for the
method to produce the dimensions shown in Figure 1
and to select the best dimensionality.

5. LDG for Transfer Learning

In this section, we apply LDG dimensionality reduc-
tion to transfer learning. In transfer learning, we wish
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to classify test data drawn from some unknown target
domain distribution of feature vectors and class labels
where we have very few training examples. However,
we assume that we have plenty of training examples
from a source domain that differs from the target do-
main, but is thought to be useful for learning. For
example, in our experiments we treat resized MNIST
handwritten digits as the source and USPS handwrit-
ten digits as the target (see Figure 4).

Let T = {(xi, yi)}nt
i=1 be the target domain training

data drawn iid from some unknown joint distribution
pT (x, y). Let S = {(x`, y`)}ns+nt

`=nt+1 be the source do-
main training data drawn iid from unknown joint dis-
tribution pS(x, y) 6= pT (x, y), with ns >> nt.

The goal in transfer learning is to achieve high clas-
sification accuracy in the target domain by training
a classifier using both sets of training data. There-
fore, one of the goals for dimensionality reduction is
to find a B matrix such that the target domain data
are separated according to class. However, we now
have the added goal that we wish to find a mapping
where the source and target domain distributions are
similar, i.e. pT (BTx, y) ≈ pS(BTx, y). In Figure 2 we
show examples of two different one-dimensional spaces
that have been mapped from some higher-dimensional
space (which is not shown). The left plot is a map-
ping in which the target domain data are separated
according to class, but the source and target domain
distributions are not similar. In the right plot, the
target domain data is separated, and additionally, the
source domain data distribution is similar to that of
the target domain data. Therefore, both the source
and target domain data can be used to train a classi-
fier for the test data using the right-side mapping.

For transfer learning, we weight objective (2) for the
target and source domain training data using param-
eter α,

f(B) = (1− α)

nt∑
i=1

log

(∑m
j=1 p(B

Txi|j)p(j)
p(BTxi|yi)p(yi)

)
(7)

+ α

ns+nt∑
`=nt+1

log

(∑m
j=1 p(B

Tx`|j)p(j)
p(BTx`|y`)p(y`)

)
.

We estimate the parameters of the Gaussian distribu-
tion for target domain point xi using the k nearest
source domain training examples. The first term in
(7) is the primary transfer term. The denominator
in this term finds a B that maximizes the likelihood
of the target domain data for a Gaussian distribution
trained using the local source domain data, thus find-
ing a B that brings the same-class source and target
domain data close together. Conversely, the numer-

 

 Class 1

Class 2

 

 

Source Domain Training Data

Target Domain Training Data

Target Domain Test Data

Target Domain Training Data

Source Domain Training Data

Target Domain Test Data

Figure 2. Two examples of one-dimensional mappings for
transfer dimensionality reduction. In each example, the
target domain is separated, but in the right example the
target domain data matches the source domain data, mak-
ing transfer learning more effective.

ator in the first term seeks a B that minimizes the
likelihood of the different-class source Gaussians, thus
ensuring that the mapping is still discriminative.

The second term in (7) is the normal LDG objective
function for the source domain data only. Thus, if
α = 0.5, (7) is very similar to standard LDG dimen-
sionality reduction acting on the pooled source and
target domain data. We include this term because if
the source and target domain distributions are simi-
lar, then we can set α = 0.5 to train B using as much
data as possible. We choose α by cross-validating over
the target domain training data. In case of ties, we
choose the largest value of α, thereby defaulting to
using as much data as possible. We make the same
approximations as in Section 2 to find an analogous
approximation to (6) for (7).

6. Related Methods for Transfer
Learning

Of the dimensionality reduction techniques described
in Section 3, only ITML has been adapted to the
transfer learning scenario (Saenko et al., 2010). Let
dM (xi, x`) = (xi − x`)TM(xi − x`), the squared Ma-
halanobis distance. The original ITML objective is:

M∗ = arg min
M�0

Tr(M)− log det(M)

s.t. dM (xi, x`) ≤ u, if yi = y` (8)

dM (xi, x`) ≥ v, if yi 6= y`.

For transfer metric learning, the authors propose to
use objective function (8), but generate constraints
only between examples from different domains, i.e.
xi ∈ T ∀i and x` ∈ S ∀`. In this way, they find an
M that makes distances between examples across the
two domains small for same-class data and large for
different-class data. We again use MRMR feature se-
lection to find a dimensionality reduction matrix from
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Amazon DSLR Webcam

Figure 3. Examples of images taken from the Amazon,
DSLR, and Webcam domains.

MNIST USPS

Figure 4. Examples of resized MNIST images and USPS
images.

M as described in Section 3.

7. Transfer Learning Experiments

We conduct transfer learning experiments for two dif-
ferent classification problems. The first is to classify
images according to the category of the object found
in the images, a thirty class problem, with datasets
from three domains: Amazon product images, images
taken with a high-resolution DSLR camera, and im-
ages taken with a low-resolution webcam. Examples
of the back packs category for these three domains
is shown in Figure 3. This dataset was first used by
Saenko, et al., and we use the same preprocessing tech-
niques as described in (Saenko et al., 2010) to featurize
the images, which results in 800 features per image.

In the second problem, the two different domains con-
sist of the grayscale digit images in the MNIST and
USPS datasets. The image features are the raw pixel
values, and the only preprocessing we use is to resize
the MNIST images to 16 x 16 pixels to match the
USPS images. We show examples of images from each
domain in Figure 4.

We compare four dimensionality reduction techniques.
The first is transfer LDG where we choose α from
[0, .1, .3, .5] by k-NN cross-validation at dimensional-
ity equal to the number of classes plus five. We com-
pare to pooled PCA and pooled FDA dimensionality

reduction. These approaches ignore the difference be-
tween the domains by pooling the training data from
each domain and performing standard PCA or FDA.
Finally, we compare to linear ITML for transfer learn-
ing as described in (Saenko et al., 2010) with MRMR
feature selection. We also show results for ITML with
no dimensionality reduction.

We measure performance by k = 3 nearest-neighbor
classification accuracy. We preprocess the data by
standard-normalizing using the mean and variance of
the source domain training data, and we remove any
features that exhibit zero variance in the source or
target domain. The training data consists of all the
source domain data, and exactly two target domain
examples per class.

Figure 5 plots the accuracy averaged over ten random
splits of the target domain test and training data. The
results show that LDG is statistically the best or tied
for the best at many dimensions in all experiments.
Pooled PCA performs well in the datasets where Ama-
zon images act as the source, but fails to perform as
well as LDG on the other datasets. Pooled FDA per-
forms poorly on all of the datasets.

We do not show results for the best dimensionality
chosen by cross-validation, similar to those in Table 1,
due to space constraints. However, we do note that
for the dimensions we have plotted, ITML provides its
highest classification accuracy with no dimensionality
reduction.

8. Conclusions

We have presented LDG dimensionality reduction, a
technique that maps the data to a space where classes
are separated locally to each training point. LDG
is solved via a simple maximal eigenvalue decompo-
sition, and thus scales better than iterative methods
and LFDA for large datasets. Furthermore, we have
shown that LDG dimensionality reduction can be ap-
plied to transfer learning problems with good results.
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Figure 5. Transfer dimensionality reduction results when we randomly sample exactly two target domain training examples
per class. Diamonds indicate that the method was statistically the best or not statistically different from the best with
95% confidence for that dimensionality.
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