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ABSTRACT

In many signal processing applications, a signal to be clas-
sified has been corrupted by a channel and additive noise. A
standard approach is to estimate the clean signal, then classify
it. We consider two robust approaches that account for the es-
timation procedure. The first approach is an application of the
MAP rule for noisy features, and the second is an approach
for discriminative classifiers that treats that training points as
random. An experiment confirms that the robust approaches
offer performance gains.

Index Terms— Classification algorithms, machine learn-
ing algorithms, signal processing algorithms, multipath chan-
nels

1. INTRODUCTION

We consider the dataset shift problem of using training vec-
tors to classify a test vector that is the output of a known linear
system with additive noise. Specifically, we take as given n
labeled training examples T = {(xi, gi)}ni=1 where xi ∈ Rd
is a feature vector and gi ∈ G is a class label. The goal is to
classify a test sample x, where x and its class label and the
n training example pairs are assumed drawn iid from some
joint distribution over Rd × G. However, one does not di-
rectly observe x, instead, one observes the corrupted and test
sample z = Hx + w for z ∈ Rn, for a known H ∈ Rn×d,
with w representing zero mean AWGN with Cov[w] = σ2

wI .
Examples of this set-up are signal and image classification
problems where the training data is collected under controlled
conditions, but the test data is collected in a field environment
in the presence of multipath, blur, or other convolutive noise
[1, 2, 3, 4].

Given H and z, it is common to first form an estimate x̂
of the true test sample x by deconvolution, and then classify
x̂ using a standard classifier trained on T as depicted in Fig-
ure 1. While this can reduce the severity of the dataset shift
problem, it does not solve the problem because x̂ is not iid
with T . Other approaches are to process the training samples
through H to form virtual training samples {ẑi} which are
used to train a classifier for z [4], or to form random training
samples {Ẑi} to train a classifier for z [2, 3].

Fig. 1. Block diagram showing the non-robust classification
of estimate x̂. This classifier assumes that p(x̂, g) = p(x, g),
which is not true in general.

In this work, we investigate how to best classify linear es-
timators of the form x̂ = Gz + y, such as the least-squares
(LS) estimator or linear minimum mean-squared error estima-
tor (LMMSE) [5]. One key question is whether it is possible
to classify the estimate x̂ with the same precision as the origi-
nal test observation z. In Section II, we answer this question,
showing that under certain conditions MAP classification of
z is equivalent to MAP classification of x̂. In Section III,
we apply the noisy features MAP rule to quadratic discrimi-
nant analysis for linear systems. In Section IV, we summarize
the recently proposed expected kernel classifier which treats
the training feature vectors as random [2, 3], and investigate
different expected kernels for the problem of classifying x̂.
Section V demonstrates the value of these robust classifiers
through an illustrative experiment.

2. EQUIVALENCES OF MAP RULES

By the data processing theorem [6], x̂ = Gz + y cannot
contain more information about x’s class label than the
less-processed observation z. Thus, the optimal MAP rule
for classification of z is arg maxg p(z|g). The following
proposition establishes conditions on the estimator so that
arg maxg p(x̂|g) is equivalent to the optimal MAP rule.

Proposition: For z = Hx + w, w ∼ N (0, σ2
wI) and

some linear estimate x̂ = Gz + y, MAP classification of x̂ is
equivalent to MAP classification of z if GT (GGT )−1G is a
projection matrix for H such that GT (GGT )−1GH = H .



Proof. MAP classification of x̂ can be expressed:

ĝ = arg max
g∈G

p(g|x̂)

= arg max
g∈G

p(g)

∫
p(x̂|x)p(x|g)dx. (1)

MAP classification of z can be expressed:

ĝ = arg max
g∈G

p(g|z)

= arg max
g∈G

p(g)

∫
p(z|x)p(x|g)dx. (2)

The decomposition of the MAP rule given in (2) is commonly
referred to as the noisy features rule [7] and we believe was
first applied to classifying noisy test samples by Aitchison and
Lauder [8].

We will show that given the proposition’s conditions
p(x̂|x) is equivalent to p(z|x) up to a constant that does not
depend on g, and thus (1) is equivalent to (2). First,

p(z|x) = N (z;Hx, σ2
wI)

= cz e
− 1

2σ2w
(xTHT−2zT )Hx

where cz is a constant that does not depend on g or x.
Similarly,

p(x̂|x) = N (x̂;GHx+ y,GGTσ2
wI)

= N (Gz;GHx,GGTσ2
wI)

= cx̂ · e
− 1

2σ2w
(xTHT−2zT )GT (GGT )−1GHx

= cx̂e
− 1

2σ2w
(xTHT−2zT )Hx

=
cx̂
cz
p(z|x).

It is easy to show that the linear LS estimator, G =
(HTH)−1HT , meets the projection requirement of the above
proposition. Furthermore, if we assume that Σx is the covari-
ance matrix of x and that σ2

w is the noise variance, then G for
the LMMSE estimator is written as

G = ΣxH(HΣxH
T + σ2

wI)−1. (3)

By rewriting (3) using the Woodbury matrix identity [9]
as G = (Σ−1x + HTH 1

σ2
w

)−1HT 1
σ2
w

, we can see that the
LMMSE estimator also meets the projection requirement of
the proposition.

3. ADAPTING THE QUADRATIC DISCRIMINANT
ANALYSIS CLASSIFIER

A popular model for the class-conditional distribution p(x|g)
used in the MAP rule is the Gaussian [10], leading to linear

Fig. 2. Block diagram showing showing MAP classification
of x̂. This approach adapts the clean trained generative func-
tion p(x|g) to p(x̂|g) in order to reconcile the difference be-
tween training and test distributions.

discriminant analysis (LDA), quadratic discriminant analysis
(QDA), local Bayesian discriminant analysis (BDA) [11], and
Gaussian mixture models. For example, the standard QDA
classifier applied to this problem would first form the linear
estimate x̂ = Gz + y, then classify as

ĝ = arg max
g∈G

p(g)N (x̂; x̄g,Σg) (4)

where x̄g and Σg are the class conditional mean and covari-
ance learned from T . This approach is represented in Figure
1, and is suboptimal because it treats x̂ as though it were x.

Better to use the MAP rule given in (1), derived as
follows. We assume a Gaussian class-conditional distri-
bution p(x|g) = N (x; x̄g,Σg), and note that p(x̂|x) =
N (x̂;GHx + y,GGTσ2

wI) = N (GHx + y; x̂, GGTσ2
wI).

Recall the product of Gaussians rule

N (x; a,A)N (Fx; b, B) = N (Fa; b, FAFT +B)N (x; c, C)
(5)

where the constant C =
[
FTB−1G+A−1

]−1
and

c = C
[
FTB−1b+A−1a

]
.

Applying (5) to p(x̂|x) and p(x|g) as in (1) produces the
closed-form classifier:

ĝ = arg max
g∈G

p(g)N (x̂;GHx̄g+y,GHΣg(GH)T+GGTσ2
w).

(6)
This approach is depicted in Figure 2.

4. ROBUST DISCRIMINATIVE CLASSIFIERS

Discriminative classifiers classify a test point x by minimiz-
ing the empirical risk of a discriminative function over the
training set. We write the discriminative function for class g
and test point x as fg(x, T ) to indicate that it is a function of
the training data as well as the test point and, in some cases,
the class label. The standard discriminative approach to clas-
sifying x̂ would be to simply evaluate fg(x̂, T ) as depicted
in Figure 1. This may be suboptimal because it treats x̂ as
though it were x.

Recent research into robust classifiers proposed an ex-
pected kernel [3] to make kernel classifiers such as the sup-
port vector machine more robust. Given a channel model and



a kernel definitionK, a random training sampleZi = h∗xi =
N could be computed, and the expected kernel between two
random training samples defined as

Kz(Zi, Zj) = EZi|xi,Zj |xj [K(Zi, Zj)]

=

∫ ∫
p(zi|xi)p(zj |xj)K(zi, zj)dzidzj . (7)

We consider instead the random estimates {X̂i} that
would be formed from the training signals, with correspond-
ing distributions

p(x̂i|xi) = N (x̂i;GHxi + y,GGTσ2
w), (8)

and then defining the expected kernel in terms of the random
training estimated signals:

Ke(X̂i, X̂j) = EX̂i|xi,X̂j |xj

[
K(X̂i, X̂j)

]
=

∫ ∫
p(x̂i|xi)p(x̂j |xj)K(x̂i, x̂j)dx̂idx̂j .

(9)

This has the advantage over (7) of using the estimator.
Robust classification of x̂ is then accomplished by training

the discriminative function using the training set of random
samples T̃ = {(X̂i, gi)}Mi=1. At test time, the expected kernel
classifier is presented with a test sample that is not random,
but is instead a determinstic x̂. Therefore, the expected kernel
between x̂ and X̂i is:

Ke(x̂, X̂i) = EX̂i|xi

[
K(x̂, X̂i)

]
=

∫
p(x̂i|xi)K(x̂, x̂i)dx̂i. (10)

It was shown in [3] that if we use a Gaussian radial basis
function as the base kernel with bandwidth parameter γ,

K(x̂, x̂i) = N (x̂; x̂i, γ
−1I), (11)

then we can again use the product of Gaussians rule (5) to
develop a closed form solution for (9) and (10). Figure 3 gives
a block diagram for expected kernel classification of x̂.

The expected kernel rule can be used in any discriminative
classifier that relies on a kernel function. One important dis-
tinction between the expected kernel classifier and the QDA
classifier developed in section 3 is that the results for the ex-
pected kernel classifier depend on the choice of estimate x̂,
for instance, whether LS or MMSE is used. This will be ap-
parent in the results section, where we apply this rule to a
support vector machine (SVM).

5. EXPERIMENTS

We present experimental results to illustrate the advantages of
using the robust generative and discriminative classifiers com-
pared to the non-robust approach of classifying an x̂ as though

Fig. 3. Expected kernel classification of test feature vector
estimate x̂.

it were a true x. We used the benchmark optical dataset from
the UCI Machine Learing Repository. The dataset consists of
8x8 pixel images of handwritten digits 0 through 9,with 3823
training and 1797 test images. The test and training images
are adjusted so that each of the 64 pixels has mean 0 and stan-
dard deviation 1. We corrupt the test data with a Gaussian
blur matrix with 4 by 4 pixel support and standard deviation
0.5 then add AWGN with varying standard deviation.

In the experiment, we compare robust and non-robust ver-
sions of a local Bayesian QDA (local BDA) classifier, de-
scribed in [12]. We show results for the non-robust classifica-
tion of x̂ estimated using both the LS and LMMSE estimator.
We also show results using the noisy features rule given in (6)
applied to local BDA, which was shown in the Proposition to
be the same whether classifying the LS or LMMSE x̂ or z.
In addition, we compared to non-robust versions of the SVM
using the LS and LMMSE estimates x̂ as well as the expected
kernel rule for classification of LS and LMMSE x̂ and z di-
rectly. In this case, the robust approaches are not equivalent,
as is shown in the figure.

Figure 5 shows that the best performing method was the
noisy features rule using local BDA. The best performing
SVM method was classification of LMMSE x̂ using the ex-
pected kernel for LMMSE x̂. The results show that the per-
formance of the expected kernel SVM is highly dependent on
whether we define the expected kernel (and classify) in terms
of LMMSE or LS x̂ or z directly. We believe that one of the
main reasons for this is the selection of the bandwidth param-
eter γ in the base kernel (11). As standard [10], we selected
the bandwidth parameter by cross validation, and in Figure 5
we show the parameter selected by each of the different SVM
methods. This figure shows that the bandwidth parameter is
very sensitive to noise standard deviation in all cases other
than the expected kernel with LMMSE x̂, and this noise sen-
sitivity makes the bandwidth parameter very hard to tune in
practice.

6. CONCLUSIONS

We have proposed and compared robust classifiers based on
the noisy features rule and the expected kernel, and illustrated
that the naive approach of treating an estimate x̂ as the true x
is suboptimal and relies heavily on the accuracy of the esti-
mate.



Fig. 4. Error rate of the robust and non-robust classification methods.

Fig. 5. Gaussian bandwidth parameter chosen during five-
fold cross validation (CV) by each of the different SVM clas-
sification methods.
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