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Abstract

Thurstone’s Law of Comparative Judgment provides a method to convert subjective paired com-
parisons into one-dimensional quality scores. Applications include judging quality of different image
reconstructions, or different products, or different web search results, etc. This tutorial covers the pop-
ular Thurstone Case V model and the Bradley-Terry logistic variant. We describe three approaches
to model-fitting: standard least-squares, maximum likelihood, and Bayesian approaches. This tutorial
assumes basic knowledge of random variables and probability distributions.
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1 Why Paired Comparisons?

When comparing different options, one often wishes to assign a single quality score to each option. For
example, you may want to score the quality of different image processing algorithms, or the skill of different
chess players, or the seriousness of different crimes. To illustrate, we place three images of an apple on a
quality scale in Figure 1. For a quality scale, the relative difference between any two quality scores measures
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Figure 1: Image quality scale

how much better one image looks over another image, but defining the placement of zero, and the unit
of measurement is arbitrary. Scales of measurement with these two degrees of freedom (zero placement
and measurement unit) are known as interval scales'because the interval between any two scale values has
meaning, but the numerical value of any single score is arbitrary. Equivalent interval scales can be defined
with different zeros and units. For example, the Fahrenheit and Celsius temperature scales are equivalent
interval scales with different zero placements, and different definitions of the amount of heat represented
by “1 degree.” You can convert between any two equivalent interval scales by shifting and multiplicatively
scaling the scale values.
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Figure 2: Pain Rating (xkecd cartoon by Randall Munroe [2])

How do you gather data to score a set of options? It is tempting to simply ask a bunch of people to score
each of your options: “On a scale of 1 to 10, what is the quality of this image?” (Or “How would you rate
the pain, from one to ten, where ten is the worst pain you can imagine?” as depicted in Figure 2.) However,
people may mean different things by the same score (a 3 to one person may be different than a 3 for another
person). It may be hard to determine specifically what “1” and “10” mean (how bad does an image have
to be to get a 17). It may be inflexible (what if you want to give something a 157). Further, you may care
more about scoring the options in the context of the set, rather than on an absolute scale (you want to
know “How much better does this image look than the other options?” rather than “Does this image look
good?”). Because of these issues, gathering paired comparisons may be more useful than directly asking for
quality scores.

In a paired comparison experiment, you ask, “Is A better than B?” Generally ties are not allowed (or
they may be counted as half a vote for each option). Ideally you would get comparisons for all possible
pairs of options you are judging, but this is not necessary to estimate the scores, and for a large number of

1An alternate scale of measurement is a ratio scale, where the zero value is fixed because it has special meaning e.g. age,
where 0 years is when you are born or Kelvins where 0° K is absolute zero. In a ratio scale we can always compare to 0, so 20
years is twice as old as 10 years, whereas on a interval scale 20° F' is not twice as hot as 10°F. The classification of measurement
scales is discussed by Stevens [1].
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options, may simply be infeasible. There may also be issues of order presentation (which option is presented
first could affect the preference) but in the rest of this tutorial we assume that this issue can be ignored.

1.1 Roadmap

Now that we have described the problem setup, in the next section we define our experimental data (2)
and Thurstone’s statistical model of judgments, which provides a method of estimating the quality score
difference for two options using Thurstone’s Law of Comparative Judgment. We will then extend the
analysis to estimating scores for more than two options using a least squares method (Section 4), a maximum
likelihood method (Section 5), and using the expected value of the score (Section 6). We also discuss Bayesian
methods (7). We illustrate the different approaches with simulations (Section 8). This document ends with
an Appendix of proofs and Matlab code to implement the described functions.

2 Paired Comparison Data

The result of a paired comparison experiment is a count matrix, C, of the number of times that each option
was preferred over every other option,

- (2)

o {# of times option i preferred over option j, i # j
ij = . .
0, i=7

We will assume that each paired comparison is independent, and that we don’t need to know the order that
any of the comparisons occurred. Generally, different pairs may have different total number of comparisons.

3 Models for Comparative Judgment

There are two common models for analyzing paired comparison data (2). We first discuss Thurstone’s model,
and then the Bradley-Terry model.

3.1 Thurstone’s Model

In 1927, Louis Leon Thurstone pioneered psychometrics by using Gaussian distributions to analyze paired
comparisons [3, 4]. Thurstone’s model assumes that an option’s quality is a Gaussian random variable.?
This models the fact that different people may have different opinions on the quality of an option. Each
option’s quality score is taken to be the mean quality of the corresponding Gaussian.

Consider the basic case of two options, where we let the Gaussian random variables A and B represent
the quality of option A and option B respectively,

ANN(/JA’U.»%X% BNN(MB7JQB)'
Their probability density functions (PDFs) are
pala) = 2 o(522), pul) = & ot

where ¢ is the standard normal PDF (zero mean, unit variance),

1 L
¢(r) = Sze 2.

As shown in Figure 3, option A is placed on the quality scale at pa, and option B is placed on the quality
scale at up. Thurstone’s model says that when a person judges whether option A is better than option B,

2In some literature, the distribution of quality values is known as the discriminal process and the variance is the discriminal
dispersion.
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Figure 3: Probability density functions for A and B, the random quality for two options.
represents the quality scale, where each option is placed on the quality scale at its mean.

they draw a realization from A’s quality distribution and a realization from B’s quality distribution, and
then choose the option with the higher quality. Equivalently, they choose option A over option B if their

draw from the random quality difference A — B is greater than zero,
P(A>B)=P(A-B>0).
Since A — B is the difference of two Gaussians, A — B is a Gaussian random variable,

A—=B~N(uap,0aB)
HAB = A — UB
0'124320'124%—0'23—2@450'1403. (3)
where pap is the mean quality difference of A — B, oap is the standard deviation of the random quality
difference A — B, and pap is the correlation between A and B.
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Figure 4: The random quality difference A — B is Gaussian with mean us — pug. P(A > B) is the shaded

area under the PDF curve of A — B.
Therefore the probability of choosing option A over option B (shown in Figure 4) is

P(A>B)=P(A-B>0)
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By the symmetry of the Gaussian,

_ /“AB L1 et g
oo V2mhp
HAB

:/ igf)(ojB)dz
“han

= / T s(b)dt

().

where ®(z) is the standard normal cumulative distribution function (CDF)

B(z) = \/12?/_00 e—t2/2dt=/_;¢(t)dt.

By inverting (4), we can calculate the mean quality difference pap as
pag =0oap® ' (P(A> B)),

where ®~! (x) is the inverse CDF of the standard normal (also known as the probit). The inverse CDF
of the standard normal is also commonly known as the z-score or standard score since it gives the number
of standard deviations that x is from the mean. Although traditionally, getting the z-score required large
lookup tables, modern computers can calculate the inverse CDF function precisely.

Thurstone proposed estimating P(A > B) by the empirical proportion of people preferring A over B,
Cap/(Cap+Cp a). Assuming we know (or can estimate) the standard deviation o4, the estimator for
the quality difference f14p is

. _ Ca.B
= o ——52 ),
HAB = 0AB (CA,B + CB,A> 5)

The estimate (5) is known as Thurstone’s Law of Comparative Judgment.

3.2 Thurstone’s Case V Model

The general model represented by (3) requires the correlation pap and the standard deviation oap (or
o4 and op) to be estimated. In his original paper [3] Thurstone made a number of model simplifications
for tractability.> The simplest and most popular simplification is the Case V model, which assumes that
each option has equal variance and zero correlation (or less restrictively, equal correlations instead of zero
correlations [5]):

2 _ 2
0p4=0pB

paB = 0.

Without loss of generality, set the variances to one half 6% = 0% = 1 so the variance of A — B is one,

2 2 2
oap =04 +0p =1

3 Case I assumes that the correlation pap is constant throughout all comparisons. Case IT adds the assumption that
the general model can be applied to judgments from a group of observers (as opposed to multiple judgments from the same
observer). Case III additionally assumes that A and B are uncorrelated so that pap = 0. Case IV additionally assumes that
the variances approximately equal, 04 = op + €, where ¢ is small. Case V additionally assumes that the variances are exactly
equal, o4 = 0p.
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This sets the scale unit for the interval scale (removing one degree of freedom) so that a quality scale difference
of 1 implies that the mean of A — B is one standard deviation of A — B. This simplifies Thurstone’s Law

given in (5) for Case V to
" - Ca,B
=t ——22 ). 7
jap =7 (a2 —) @

For the rest of this tutorial, we will use these Case V assumptions and refer to this Case V model as
Thurstone’s model.

Another common approach is to assume that 04 = 0% = 1, so that the interval scale is measured in the
number of standard deviations of the random quality (instead of the number of standard deviations of the
random quality difference). Then, 045 = v/2, and Thurstone’s Law for Case Vis fiap = ﬁ¢_1(£ﬁ)'
This makes the equations less convenient, but then the quality scale differences are easily interprefed as the
number of standard deviations of the random qualities. If you want the quality scale values in terms of the
quality standard deviations, you can multiply the quality scale values in this tutorial by /2 (which is ok
since the interval scale may be redefined by multiplicatively scaling the scale values).

3.3 Prior Knowledge

Prior knowledge is easily incorporated into the model by adding values to the count matrix according to
what you believe the proportion of counts should be a priori. Create a matrix B of the proportion of times
you believe one option would be preferred over the other and add a weighted version to the collected data,

C=C+aB.

Then use the new C matrix as if it was the data you collected.

Even if you don’t know what the proportions should be, you can add a constant value to all the counts
to smooth the counts (e.g. add one to all the counts to achieve Laplace smoothing). Using a prior B can
help regularize the estimates and solve the 0-1 problem, as we discuss in Section 4.2.

3.4 The Bradley-Terry model

Ralph Bradley and Milton Terry [6] introduced an alternate model for paired comparisons, also known as
the Bradley-Terry-Luce model (BTL) for Ducan Luce’s extension to multiple variables in [7].

The original Bradley and Terry papers [6, 8, 9] develop the Bradley-Terry model as giving each option a
rating, m; which satisfies

P(choose A over B) = L (9)
TATTB

Luce formulated the “Choice Axiom”, extending the Bradley Terry model to accommodate comparisons of
more than 2 objects, e.g. for 3 options, each rating m; must satisfy,
TA

P(choose A out of A, B, and C) = pp—
TA+ TR+ TC

By changing variables m; = exp(u;/s) (where s is a scale parameter), (9) can be rewritten as

exp(pa/s)
exp(pa/s) +exp(up/s)

L1 KA — UB
D T

P(choose A over B) = P(A>B)=P(A-B>0)=

2s

Equation (10) is 1 — F4_p(0), where F is the CDF of the random variable A — B. Therefore, it is consistent

with (10) to assume that A — B is a logistic random variable with mean 14 — pp and scale parameter s.
Bradley [10] Luce [7] and others noted the similarity to Thurstone’s model in that the Bradley-Terry

model assumes the random quality difference A — B has a logistic distribution where the Thurston assumes
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that the random quality difference A — B is Gaussian. Noting the similarity, in 1959 [7] Luce asked what
distribution of A and B yield a logistic A — B (thus satisfying the “Choice Axiom”). Block and Marschak’s
1960 proof[11] and Holman and Marley’s simplified proof (printed in [12]) show that if A and B have Gumbel
distributions of qualities then A — B is logistic. We offer a simple alternate proof in Appendix B.

Unlike the Gaussian CDF which requires evaluating the erf function, the logistic CDF has a closed-
form expression. We can estimate the quality difference pap = pa — pp by inverting (10) and estimating

P(A > B) as the empirical count proportion % The inverse logistic CDF (also known as the logit)
has a closed-form expression (since tanh™*(z) = 1n(1 + z) — In(1 — 2)]), so the BTL quality difference
estimate is o o
. A,B A,B
=s|lnh({=——""F—)-In|{l— —F—F— . 12
faz < <CA,B + CB,A) < Ca,p +CB,A>> (2

To compare the BTL model scale differences with the Thurstone model ones from (5), equate the variance
by setting s = § Empirically as shown in Figure 5, the logistic CDF is very similar to the Gaussian CDF,
so that using Thurstone’s model or the BTL model produces very similar results. Some people prefer BTL
for computational simplicity (you don’t have to compute the erf function for the inverse Gaussian CDF),
although with modern computers and algorithms, computing the inverse Gaussian CDF is simple, so the
computational aspect is not an issue.

0.9+ Gaussian CDF
0.8} | = = = Logistic CDF 4

0.7 p

06}

o

% 0.5}

% 0.4}
0.3} /
0.2 /
01} g

O L L I L I L I I I
-25 -2 -15 -1 -05 0 05 1 15 2 25
Scale Difference

Figure 5: Gaussian vs Logistic CDF

The logistic CDF has a fatter tail and is slightly more sloped at the inflection point than a Gaussian with
the same mean and variance. This means that the BTL model will estimate slightly smaller scale differences
for proportions near % and slightly larger scale differences for proportions near 0 or 1 when compared with
Thurstone’s model. (For example, if P(A > B) = 0.7, Thurstone’s model would estimate the quality scale
difference to be slightly bigger than a half, but the BTL model would estimate the quality scale difference
to be slightly less than a half.)

4 Model Fitting

Thurstone’s model provides a method of estimating the scale difference for any single pair of options by esti-
mating P(A > B) by the empirical proportion of people preferring A to B. However, when considering more
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than two options, we generally can’t find exact scale values which satisfy all of the scale difference estimates.
(The scale differences form an over-determined system, for example consider we can’t find pa, up, pc such
that pa —up =1, up — pec = 2 and pa — pe = 5.) In this section we detail three different approaches to
estimating the quality scores given more than two options using the Thurstone model (the same approaches
can be applied to the BTL model).

4.1 Thurstone-Mosteller Least Squares Method

To determine the quality scores for a set of m options, Thurstone offered a solution, which Mosteller later

showed was the solution to a least squares optimization problem [5]. Define the vector of quality scores
= [{1, ft2, ..., fm], and let D be an m x m matrix where D; ; = o1 (J#) is the (Case V) Thurstone’s
73 +C5

Law estimate (7) for the quality difference between option ¢ and option j. (You may also use the BTL model
by forming D using the logit from (12).) The least squares estimate for the quality scores p minimizes the
squared error between the quality scores and the Thurstone’s Law pairwise estimates:

i = arg min Z(Dm — (s — ,uj))2~
HERT

This least squares problem has a simple closed-form solution which can be derived from the D matrix.
If we set fi; = 0, the least squares solution is

m m

i=1 i=1

Instead of assuming ji; = 0, another common approach is to assume that the mean of all the fi; is zero. In
this case, the least squares solution is
m
. D; ;

4.2 Least Squares Disadvantages

When estimating quality differences by this least squares method, we will have problems when Cj ; is zero or

ﬁ will be 0 or 1, so that ®~1(0) = —oco and ®71(1) = oo, causing the estimates
for p; and p; to be oo or —oo.

There are a couple of ways to deal with this problem. One solution[13] to the “0/1 problem” is to simply
ignore the 0/1 entries and use an incomplete matrix solution [14, 15]. We argue this is too heavy-handed a
fix in that it ignores important information that the one option is strongly preferred to the other option.

A second solution is to “fix” the 0/1 proportions[13] by adding and subtracting a count or fractional

count to the unanimous pairs:

n; j: the proportion

] 1 ifCi;=0andi#j
Cij = Nij — % if Ci)j =MN4,j and ¢ 7éj (15)
Ci; otherwise

where n; ; £ C; j + Cj; is the total number of comparisons of the (i,5) pair. We will refer to this modified
data matrix as the 0/1 fized data. This can be viewed as correcting for the discrete nature of the count data.
A related solution is to add a count or fractional count to both the 0 and n; ; entries (or add counts to all
entries) of the count matrix; this is equivalent to assuming some prior data (see Section 3.3). These fixes do
change the count matrix, but in a conservative way that biases the counts toward less confidence, and this
fix is not as big a change as simply ignoring 0/1 entries.
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A third solution is to estimate the means by the maximum likelihood estimate, which we detail in Section
5.2. This is the solution we recommend because it does not require ignoring or altering the data (potentially
adding noise).

Another disadvantage to the least squares estimation is that it only looks at the proportion C?%ij
ignoring the total number of judgments, which contains information on the accuracy of the data.

4.3 Incomplete Matrix Solution

Morrissey [14] and Gulliksen [15] independently formulated an incomplete matrix solution to estimate the

quality scores from a subset of the paired comparison data (ignoring missing data or pairs with 0 or 1
Ci’ i
Ci,j-‘rjcj,i
matrix solution is formulated as the least squares solution to a system of equations using only the valid data

entries, where the last equation constrains the p; to have zero mean:

proportions). Use the same matrix D of Thurstone’s Law estimates, D; ; = o1 ( ) The incomplete

D1 1 -1 0 - 0
D3 1 0 -1 - of|™
Dys| |0 1 =1 - of [
0 11 1 ... 1 e

Let d = [D1,2, D13, D23, ...,0] be a vector of all the valid entries in D with a zero in the last entry, and X
be the length(d)xm matrix so that
d=Xu.

As long as XT X is invertible, the incomplete least squares solution can be found by using the Moore-Penrose

pseudoinverse of X
o= (XTXx)"1xTq.

Morrissey’s and Gulliksen’s solutions are equivalent, but Gulliksen directly constructs the X7 X matrix and
X7d vector, so it may be faster or more stable when implemented.

5 Maximum Likelihood Scale Values

First, we show that if there are just two options, the maximum likelihood estimate of the quality score
difference is given by Thurstone’s law (5). Then we give the maximum likelihood estimate for multiple
options (which is not equivalent to the least-squares solutions in the previous section).

5.1 Maximum Likelihood for Two Options

Let the paired judgment data for two options, A and B, be a = C4 g and b = Cp 4. The probability of this
data, given the probability of choosing A over B, has a binomial distribution,

a+b

P(a,b|P(A > B)) = ( .

) P(A> B)*(1 - P(A> B))".
Since we can calculate P(A > B) given the quality scale difference 45, define the likelihood of the pap as
a+b u b
L(pap) = P(a,bluap) = a P(A>B)*P(B > A) (17)

- (a Z b) (pap)"®(—pan)’,
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where we have used the identity P(B > A) =1 — ®(uap) = ®(—pap). The maximum likelihood quality
difference is

fiap = argmax L(uap)
HAB

= arg max @(MAB)‘I(I)(—MAB)I’.

HAB

We may equivalently maximize the log-likelihood

a+b
L(pap) =log P(a,bluap) = log < " > + alog (®(uap)) + blog (P(—pap)), (19)
yielding the optimization

fap = argmax L(uap)
HAB

= arg max alog (®(pap)) + blog (B(—pan)) -

HAB
This may be solved by setting the derivative of the objective to zero,

a b
3Giam) ) T S )

a b
®(pap) 11— @(pap)

. _ _ Ca,B
_ q) 1 a :@ 1 5
HaB (a + b) <CA,B + CB,A) ’

which verifies that Thurstone’s Law yields the maximum likelihood solution if there are only m = 2 options.

0=

¢(—paB)

5.2 Maximum Likelihood for Multiple Options

Extending the two option maximum likelihood estimation described in Section 5, to a comparison of m
options, there is no longer a closed-form solution. Instead, one must solve a convex optimization problem.

Let u be the vector of quality scale values p = [p1, pio, ..., itm]. Define the log-likelihood of u given our
count data, C, as in (19),

L(p|C) £log P(Clu) = > Ci j log(@(pi — 15))-
‘7j
To find the maximum likelihood solution quality scale values, one must solve

arg max g Ci,;log(®(p; — pj))
m —
j

: (21)
subject to Z i = 0.

To find a unique solution, include the constraint that the mean of all the quality scale values is zero as in
(21), or set one of the quality scale values to zero p; = 0.
We show in the appendix that (21) is a convex optimization problem.

UWEETR-2011-0004 10



5.3 Maximum A Posteriori Estimation

One can also form the maximum a posteriori (MAP) estimate, by including a prior on the scale values p(u)

arg max L(p|C) + log(p(w))

subject to Z“i =0.
i

If there is little information about the true scale values that can be used to choose a prior, then we suggest
a Gaussian prior that assumes the different scale values are drawn independently and identically from a
standard normal will reduce the estimation variance and often provide better estimates. In that case the
MAP estimate solves:

2

g

arg max Z Cijlog(® (s — pj)) — Z o

r i.j i (23)
subject to Z i = 0.

This choice of prior performs a Ridge regularization on the scale values [16] and remains a convex optimization
problem.

5.4 Advantages of Maximum Likelihood Estimation

Maximum likelihood estimation is an optimal approach to estimation problems in the sense that it produces
the solution which makes the data most likely. Additionally, this maximum likelihood solution does not
suffer from the 0/1 problem of the least squares methods because the maximum likelihood method does
not use the inverse CDF. The 0 entries in the count matrix do not contribute to the likelihood and p; are
constrained by the other terms in the log-likelihood to keep them from being driven to oo.

Another advantage to the maximum likelihood estimation is that it takes into account the variance in
estimating the data based on the total number of judgments made for each pair. If there is a pair which has
a large number of judgments, the maximum likelihood solution will trust that data more. In comparison, the
least squares estimation only cares about the proportion of judgments m, ignoring the total number
of judgments.

6 Expected Quality Scale Difference

Instead of using the maximum likelihood quality difference, one can estimate the quality difference to be
the expected quality difference where the expectation is taken with respect to the likelihood (or with respect
to the posterior mean if there is a prior). On average, we expect this solution to perform better since this
approach uses the full likelihood information rather than just the maximum of the likelihood.

We only consider the two option case here (multiple options are possible, but requires m-dimensional
numerical integration).

6.1 Expected Quality Estimate

Treat the unknown quality score difference as a random variable U. The likelihood of U is the probability
of observing a people preferring option A, and b people preferring option B, as given in (17),

P(a,b|U = u) = (“ i b)P(A > BJU = u)* P(B > AU = u)".
a

UWEETR-2011-0004 11



Using Bayes rule, the posterior can be written in terms of the likelihood as*

P(a,b|U = u)p(U = u)
P(a,b)

p(U = ula,b) =

1
=2 P(A> B|U =u)* P(B > AU = u)’p(U = u)

_ % ®(u)* (1 — ®(w)’ p(U = u),

where v is a normalization constant

v= [ e (- 2(w) U = ud

o0

If we assume a uniform prior for U over the range [—t,t], then the expected quality scale difference is

1 t
E[U|a,b] = —/ u®(u)*(1 — ®(u))’ du. (24)
2y )y

Alternatively, we could assume a Gaussian prior for U. Using the standard normal, the expected quality
scale difference is

ElUa,b] = i/m W) (1 — B(u))’ ¢(u)du

—o0
Performing a change of variables z = ®(u),

_ ! 1 “z)2*(1 —z)’ dx
_7/0<I>()(1 )? dz.

6.2 Computation of Expected Quality Estimate

Unfortunately, no closed form solution exists, so the integral and the normalizer constant must be numerically
computed. Numerical integration is slow, and may be prone to precision errors depending on the method of
integration. Matlab may be used to attempt to approximate the integral (trapz, quad, quadgk), but Matlab
is limited to machine precision (32 or 64 bits) and may not evaluate the integral accurately enough. (Matlab
may return 0 when the actual solution should be a very small non-zero number). Maple and Mathematica
have more sophisticated numerical integration routines and arbitrary precision calculations, so they may
yield better results.

7 Bayesian Estimation

In the previous section, we considered the quality difference, U, to be a random variable, and estimated it
by taking its expectation. In this section, we instead consider the probability that option ¢ is chosen over
option j to be a random variable, X; ;. We consider the result of performing Bayesian estimation, and the
relation to priors and smoothing.

The count data is generated from a binomial distribution where the parameter z; ;, is an observation of
X

ij
Cij,Cji ~ Binom(C, j,Cj i | wi ;)

P(Cijy Chalai ) o ;909 (1 — g 5)“o.

4Although at first glance P(ula,b) looks similar to a beta distribution, it is parameterized by u, instead of p = ®(u), so it
is not the same. The normalizer must be calculated numerically.
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After observing the data C' and assuming a uniform prior probability on z; ;, the posterior probability of
x; ; has a beta distribution with parameters C' + 1:

Xi,j ~ Beta(mi,j|0i}j +1, Cj’z‘ + 1) (25)
p(ij|Ci g, Cja) ox @iy (1 — i) .
C. .
The maximum a posteriori estimate of x; ; is #; ; = ﬁ (the mode of the beta distribution (25)).
1,J J»t
Then calculate the quality scale difference by setting 2; ; = ®(u; — u;) and inverting, which results in

Thurstone’s law:

C.
s—u, =07 [ ——L )
e (Ci,j + Cj,z‘)

Next, instead of estimating x; ; by its posterior mode, consider estimating x; ; by its posterior mean E[X ;] =
Cij+1

—>» —— Then the resulting estimate of the quality scale difference is
Cij+Cji+2 ¢ e

Coyt 1
i — = )
b i (Ci’j -‘r-Cj’i + 2

This result is equivalent to the Thurstone’s law estimate if one puts a prior of 1 on all the counts, meaning
that a priori you believe that all of the choices are possible. This may also be interpreted as Laplace
smoothing the count data.

8 Illustrative Experiments

We illustrate the different estimation approaches with some simulations. We make n quality observations
for each of pair of m options (simulating surveying n people for their preferences about all possible pairs of
m options). We first generate the true means pq, pa, ..., by, for the m quality score distributions. Then, for
each pairwise comparison for each person, the perceived quality scores for the ith option are drawn IID from
N(pi, 0% = %) as in Thurstone’s Case V. The count data is collected, and f is estimated from the data.

1 trials, 50 people, 5 options

True meanst —+ “+ —+ + —+
LS (0/1 fixed data) - X X X XX
ML ©) O O] ©]0)
;é LS (BTL model, 0/1 fixed data)|- v v v W
2 LS (incomplete data) - A | O mEn
ML (incomplete data) - <> <> <> (}Q
LS (BTL model, incomplete data) -
MAP (Gaussian prior) - ° ° ° °o e
—015 —O.I25 (I) 0.I25 015

Quality Score Value

Figure 6: Results of one trial comparing five options with true qualities (—.5, —.25,0,.25,.5). Plot compares
estimates from least-squares estimate assuming the Thurstone model (“LS”), the maximum likelihood es-
timate assuming the Thurstone model (“ML”, “MAP”), and the least-squares estimate assuming the BTL
model (“LS (BTL model)”).

Fig. 6 illustrates the results of one run of the simulation, with n = 50 people surveyed about all pairs
of m = 5 options. The true mean values are marked on top, and are at (—.5,—.25,0,.25,.5). The mean
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quality estimates are shown on the next rows for the least-squares estimate assuming the Thurstone model,
the maximum likelihood estimate assuming the Thurstone model, and the least-squares estimate assuming
the BTL model.

Mean Squared Emoor

-- Thurstone's Law ¥ |
-- Mean Quality
Maximum Likelihood
% with Prior |
010 |
u_” - L T - - T .
IJJJ‘S. :'”

1 ' 1 1 ' 1 1 ' ' 1 1 1 1 ' 1 1 ' ' 1 1 T OfB
-2 -1 1 2 oty

Figure 7: Result of 10,000 trials with two options. In each trial we simulate 25 people judging each paired
comparison. The mean quality of option A is fixed at 0, and the mean quality of option B is varied along
the x axis.

Fig. 7 shows results for a single pair of options (m = 2), averaged over 10,000 runs of the simulation for
varying true quality-differences. If the true quality difference (shown on the x-axis) is large, then the 0/1
problem occurs (see Sec. 4.2), and the Thurstone’s Law estimate given by (5) is that the quality difference
is “infinite.” For this case of m = 2 options, recall that (5) is also the maximum likelihood estimate. The
green line is the maximum likelihood estimate given a prior of 1 count to both options (this could also be
called a maximum a posterior estimate). This is always well-defined and performs better than Thurstone’s
Law for all quality differences. The red line shows the mean quality estimate as given by (24). This is a
more robust estimate, and as shown in Fig. 7, will perform better than the maximum likelihood with prior
when the true quality difference is large, but may perform worse when the true quality difference is small.

Fig. 8 shows the simulation results when there are m = 10 options. These results were averaged over 1000
runs of the simulation. For each run, the true mean quality of each of the ten options was chosen uniformly
on [—x,x]. Fig. 8 compares the Bradley-Terry model (labeled “BTL”) with the Thurstone model (all results
not labeled “BTL”). We also compare the different methods of solving the 0/1 problem (Section 4.2): the
least squares methods (“LS”) where any 0/1 proportions were“fixed” according to (15) (denoted by “0/1
fix”), Morrissey and Gulliksen’s incomplete matrix solution [14, 15] (denoted by “incomplete”), maximum
likelihood (“ML”), and the maximum a posteriori estimate where the prior is independently and identically
a standard normal on each of the quality scores (“MAP”, from (23)).

We show two different metrics in Fig. 8:

Interval Mean Squared Error: the average squared error in the quality scale difference for each option

UWEETR-2011-0004 14



1000 trials, 25 people, 10 options, true quality: Unif(-x,x)

x107° Choice Probability MSE Interval MSE
—>— LS (01 fixed data) ! "
—_—— I
45 ML . P 1 0.08
—%— LS BTL (0/1 fixed data) :
—O— LS (incomplete data) ! ,é
4t =¢— ML (incomplete data) ! h 8 0.07
LS BTL (incomplete data) ! I
35| —e— MAP (Gaussian prior) " N |
" ’ ; I 0.06
2] i1
> 3r A 7 w
= A o 0.05
g ; 2
2.5 7 [
£ 7/ :
> AP £ 004
2 2 / J
< /7
LNy /
. v S 0.03
’ p
D
b ] 0.02
051 1 0.01F
0 0.5 1 1.5 2 2.5 3 0.5 1 15 2 2.5
X X

Figure 8: Result of 1,000 trials comparing ten options. In each trial 25 people judge each paired comparison.

pair.

Sij = pi — pj = ground truth quality difference

S;; = pi —p; = estimated quality difference
(Sij = S5,)°

Interval MSE = Z ( 1)
m(m —

i#]
Probability Mean Squared Error: the average squared error in the estimated choice probability for each
option pair.

P, ; =P(Q; > Qj) = ®(pi — ;) = ground truth choice probability
P[; = ®(u; — pj) = estimated choice probability

P, — P;.)?
Choice Probability MSE = Z Poy = Fy)
—~ m(m—1)
i#j
When the true qualities are close together, the BTL logistic model performs slightly better than the
Thurstone’s Gaussian model because the logistic CDF has a steeper slope when the probability is % so it
estimates slightly lower values. The least squares methods perform worse as the true means become more

separated, but the maximum likelihood methods perform better.

9 Summary

Fitting Thurstone’s model or the BTL model to paired comparison data can be a useful tool to analyze
the relative qualities of a set of options. Various estimation methods can be used to fit each model. If the
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true quality differences are believed to be separated by at least a standard deviation, then we suggest using
the maximum a posteriori estimate. The maximum a posteriori is advantageous because we have seen it
consistently produce good results, it is an optimal approach to estimation, the data does not need to be
modified to avoid 0/1 problems, and it can be solved efficiently as a convex optimization problem.
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Appendix

Appendix A: The Maximum Likelihood Is A Convex Optimization Problem
We prove that solving for the maximum likelihood scale values [ in (21) is a convex optimization problem.

Definition 1 Log-concave. A function f : R™ — R is log-concave if f(z) > 0 for all z € dom f and log(f(x))
is concave (or equivalently if —log(f(x)) is convex).

Proposition 1 f(x) is log-concave iff f(x) > 0 and (f'(z))? > f"(z)f(x)

Proor This follows from the condition that h(x) = —log(f(x)) is convex iff the second derivative of h(x)
is greater than or equal to zero. n

Lemma 1 The cumulative distribution function of a log-concave differentiable probability density is log-
concave.

PROOF Lemma 1 is proved by Prekopa [17] using measure theory, and by Bagnoli and Bergstrom [18] using
the Cauchy mean value theorem. This is a simple alternate proof. (This proof approach appears in [19] as
exercise 3.55.)

Let g(t) = exp(—h(t)) be a differentiable log-concave probability density function and let the cumulative

distribution be
f(z) = / g(t)dt = / e M qt.

We prove that f is log-concave because it satisfies Proposition 1.
The derivatives of f are

fl(z) = gla) =e "™
(@) =g'(x) = =1 (z)e ") = —b/(2)g(2).

For h/(x) > 0, since f(z) > 0 and g(x) > 0,
f@)f"(z) = —f(x)h'(z)g(x) < 0
(f'(2)* = :

Therefore, by Proposition 1, if A'(x) > 0, then f(z) is log-concave. To show Lemma 1 also holds for h'(z) < 0,
we note that since h is convex,
h(t) > h(z) + ' (z)(t — ).

Taking the negative, exponent and integrating both sides,

/I efh(t) dt < /E efh(;z;)fh’(x)(tfz) dt
— e—h(w)-{-wh'(m)/ e—th'(w) di

o~ h(@)ah!(2) € k(@)

—h'(z)

eih(x)

T w(2)
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Multiplying both sides by —h’(gp)e—h(ﬂt)7
_h/(x)e—h(w) /L =) g4 < o—2h(@)

(@) f(x) < (f'(2))*. n

Theorem 1 Solving for the mazimum likelihood scale values fi in (21)

arg max Z Ci,;log(®(p; — pj))
n i

subject to Z w =0

is a convex optimization problem.

PRrROOF The maximum likelihood solution (21) is equivalent to solving for the fi;; in

arg max ZCW log(®(1ij5))
Hij ij
subjectto i + pjr = pix V4,5, k € {1,...,m}.

The standard Gaussian PDF ¢(z) is log-concave since the second derivative of its log is % log ¢(x) = —1.
So, by Lemma 1 the standard Gaussian CDF ®(z) is also log-concave.

The likelihood }_, ; C; j log(®(p5)) is concave since log(®(z)) is concave and concavity is preserved under
addition and positive scaling. ]

Appendix B: The Difference Of Two Gumbel Random Variables Is A Logistic
Random Variable

We show that the difference of two Gumbel random variables is a logistic random variable. We begin with
some preliminaries.
A Gumbel random variable has the cumulative distribution function (CDF)

e (@—m)/B

F(a;p,B) =e
and probability density function (PDF)

o= (@—1)/8

1
flas,8) = e~ @B
5
The standard Gumbel PDF is -
f(z0,1) =e"%e ¢ .
Any Gumbel PDF can be expressed in terms of the standard Gumbel PDF

T — b
51 (555 0).

faipB) =1 f

Also, since f is a PDF,
B :/ e*x/ﬁefefw/ﬂdx,

1= / e Te ¢ dx.
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A logistic random variable has the cumulative distribution function (CDF)

1
F(a;p,s) = 1_e—G@—n)/s
1 1 T — W
— Z 4+ Ztanh [ =—%
g Tgtan ( 2s >
and probability density function (PDF)
e~ (@—m)/s

flzp,s) = s(1+ ef(xfp,)/s)Q

1 T — U
= — sech’ :
15 ¢ (25)

Any logistic distribution may be expressed in terms of the standard logistic distribution,

F s s) = f(

1)

To show the equality of the two above definitions of the logistic PDF, let z = (x — ) /s (for simplicity), then

—z

¢
(1+e#)2

—Zz

flz) =

e

(1+2e2 + e %)
1

(e +2+e %)

(2 Y
- 4s ez/2+e—z/2

1
 4scosh?(z/2)

W= ® = ®» |

1
=5 sech?(z/2).

Theorem 2 If X and Y are independent standard Gumbel random variables with respective PDF's

x

f(z;0,1) =e "¢
g9(y;0,1) = e_ye_efy,

then X —Y is a logistic random variable with mean u = 0 and scale parameter s = 1.

PROOF The PDF of X —Y can be computed as the convolution f(¢;0,1) * g(—t;0,1):

h(t) = /_Oo f(r;0,)g(7 —¢;0,1)dr

/mfﬁ+ﬁQDﬂﬂQUW

o — () -
:/ e~ (tH7)g—e e Te” ¢ dr

e}
—t

88

_ / 727‘ —(1+e™ ’)e’TdT.

oo
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Change variables to z = e = dz = —e "d7 ,
0
= —e_t/ ze~ (e Dz,
o0
o0 —t
= e*t/ ze~ (e )2,
0

. [ee] —
Since [J° xe™*dx = Z,

—t

B e
(14 e )2
Therefore X — Y is a logistic random variable with ¢ =0 and s = 1. m

Theorem 3 More generally, if X and Y are Gumbel independent random variables with equal scale param-
eters and respective PDFs

f(x; pe, B) = o (@—pz) /B e (F )P

y—py)/B

9y py, B) = e W) Bt :
then X —Y is a logistic random variable with mean p = pi, — py and scale parameter s = 3.

PrROOF The PDF of X —Y can be computed as
b0 = [ 7 Dol ~ tipy. )i
= / f@+ 73 2y B)9(75 py, B)dr
1 L (T — s ) 1 <7’—uy )
= - —0,1) = ;0,1 ) dr.
[5(55 59\

Let z = =M — (7 = 1dr

s B
:;/oof(z_FW’O’l) g(z; Ovl)dz

Using h(t) as defined in (4) from the proof of Theorem 2,

(=)

_t=(rz—py)
e B

B t*(ﬂm*#y)>2'

ﬁ(l—i—e_ B

Therefore X —Y is a logistic random variable with 1 = p, — p, and s = 3. ™
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10 Code

function S = scale_ls (counts)

Use the least squares (complete matrix) solution
(Thurstone 1927, Mosteller 1951) to

scale a pailred comparison experiment using

Thurstone's case V model (assuming sigma”2 = 0.5 for each
quality's distribution)

counts is a n—by—n matrix where
counts (i, j) = # people who prefer option i over option jJ
S is a length n vector of scale values

© 0 N O U oA W N e

o
= o

o o o A A° A0 o o o o o

[
M)

2011—-06—05 Kristi Tsukida <kristi.tsukidalgmail.com>

=
W

[m,mm] = size(counts);
assert (m == mm, 'counts must be a square matrix');

e e
N o o
o°

Empirical probabilities

= counts + counts';

counts ./ (N + (N==0)); % Avoid divide by zero
(eye(m)>0) = 0.5; % Set diagonals to have probability 0.5

-
©

[
©

N
P
P

NN N
N o= O
N

= norminv (P) ;
= —mean(z,1)"';

N

[

n
|

function S = scale_ls_btl (counts)

Use the least squares complete matrix solution to
scale a paired comparison experiment using
Bradley—Terry's logistic model

counts is a n—by-—n matrix where
counts (i, j) = # people who prefer option i over option jJ
S is a length n vector of scale values

© 0 N U A W N e

o0 o0 o o d° o° d° o° oe

[
o

2011—-06—05 Kristi Tsukida <kristi.tsukida@gmail.com>

-
-

o

s = sqrt(3) / pi; % logistic distribution parameter
[m,mm] = size(counts);
assert (m == mm, 'counts must be a square matrix');

HoRE e e
o v W N
o°

Empirical probabilities

= counts + counts';

counts ./ (N + (N==0)); % Avoid divide by zero
(eye(m)>0) = 0.5; % Set diagonals to have probability 0.5

[
-

=
o

N
P
P

[CE I
= o ©
N

= s x log(P ./(1-P)); % logit z—scores
= —mean(z,1)"';

M
N
0

function S = scale_inc(counts, threshold)

Use the Morrisey—Gulliksen incomplete matrix solution to

scale a paired comparison experiment using

Thurstone's case V model (assuming sigma”2 = 0.5 for each
quality's distribution so that any quality difference has
unit variance)

counts is a n—by—n matrix where

counts (i, j) = # people who prefer option i over option j
S is a length n vector of scale values

Scale values are set up to have mean of 0

© 0 N U oA W N e

-
S}

o0 o° o o d° d° A° o° o o

-
o
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12
13
14
15
16

(This code follows Gulliksen's formulation given in Engeldrum's
book, Psychometric Scaling)
2011—-06—05 Kristi Tsukida <kristi.tsukidalgmail.com>

o oo oo oo

17 if nargin < 2 || isempty (threshold)

18 % default threshold on scale difference

19 threshold = 2;

20 end

21

22 [m,mm] = size(counts);

23 assert(m == mm, 'counts must be a square matrix');

24

25 % Empirical probabilities

26 N = counts + counts';

27 P = counts ./ (N + (N==0)); % Avoid divide by zero

28 P(eye(m)>0) = 0.5; % Set diagonals to have probability 0.5
29

30 % Thurstone's law estimates of each pairwise quality difference
31 % (norminv calculates the z—scores or z—value)

32 7 = norminv (P);

33 % Note the diagonal entries are included since diag(Z)=0
34 valid = (abs(Z) < threshold);

35 Z(—valid) = 0;

36

37 d = sum(Z, 1)'; % Vector of column sums

38 M = double(—wvalid); % 0 for valid entries, 1 where |Z(i,j)\ > threshold
39 M(eye(m)>0) = sum(valid); % Set the diagonal values

40

41 S =M\ d; % = inv(M) * d;

1 function S = scale_inc_btl (counts, threshold)

2 % Use the Morrisey—Gulliksen incomplete matrix solution to
3 % scale a paired comparison experiment using the Bradley—Terry—Luce
4 % (BTL) model (assuming that any quality difference has

5 % unit variance)

6 %

7 % counts is a n—by-—n matrix where

8 % counts (i, j) = # people who prefer option i over option j
9 % S is a length n vector of scale values

10 % Scale values are set up to have mean of 0

1 %

12 % (This code follows Gulliksen's formulation given in Engeldrum's
13 % Psychometric Scaling book)

14 % 2011—-06—05 Kristi Tsukida <kristi.tsukida@gmail.com>

15

16 if nargin < 2 || isempty (threshold)

17 % default threshold on scale difference

18 threshold = 2;

19 end

20

21 [m,mm] = size (counts);

22 assert(m == mm, 'counts must be a square matrix');

23

24 % Empirical probabilities

25 N = counts + counts';

26 P = counts ./ (N + (N==0)); % Avoid divide by zero

27 P(eye(m)>0) = 0.5; % Set diagonals to have probability 0.5
28

20 s = sqrt(3) / pi; % set variance to 1

30 Z =35 x log(P ./(1-P)); % logit (inverse logistic CDF)

31

32 % Note the diagonal entries are included since diag(Z)=0
33 valid = (abs(Z) < threshold);
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34 7 (—valid) = 0;

35

36 d = sum(Z, 1)'; % Vector of column sums

37 M = double(—wvalid); % 0 for valid entries, 1 where |Z(i,j)\ > threshold
38 M(eye(m)>0) = sum(valid); % Set the diagonal values

39

490 S =M\ d; %= inv(M) * d;

function S = scale_ml (counts)
Use cvx to compute maximum likelihood scale values
assuming Thurstone's case V model.

Sx = argmax P (counts|S) P(S)
S

= argmin —log P (counts|S)
S

© W N U A W N =

Assume that mean (S)=0.

= e
N R O

CVX can be obtained at http://cvxr.com/cvx/

[
w

o o° o o o° o o° o° o° o° o° o° o

[
IS

2011—-06—05 Kristi Tsukida <kristi.tsukida@gmail.com>

o
o

[m,mm] = size(counts);
assert (m == mm, 'counts must be a square matrix');

o e
® N o

o

counts (eye (m)>0) = 0; % set diagonal to zero

[CE I
= o ©

previous_quiet = cvx_quiet (1);
cvx_begin
variables S(m,1) t;
SS = repmat (S,1,m);
A =8S — 88'; % Aa(i,3) = S(i) — S(3J)

NONONN NN
N o o s W oN

minimize( t );
subject to
—sum (sum(counts.*log-normcdf(a))) < t
sum(S)==0
cvx-end
cvx_quiet (previous_quiet);

W oW W NN
N = O © ®

function S = scale_map (counts)
Use cvx to compute maximum a posterori scale values,
assuming Thurstone's case V model.

Sx = argmax P (counts|S) P(S)
S
= argmin —log P (counts|S) — log P(S)
S

© W N U A W N =

o
o

Assume a Gaussian prior for P(S), and that mean(S)=0.

=R
Noe

CVX can be obtained at http://cvxr.com/cvx/

[
w

o o° o o o° o o° o° o° o° o° o° o

[
IS

2011-06—05 Kristi Tsukida <kristi.tsukida@gmail.com>

=
o o

% std dev for the prior on S
prior_sigma=1;

B e
© o =

[m,mm] = size(counts);
assert (m == mm, 'counts must be a square matrix');

NN
= o
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o

22 counts(eye(m)>0) = 0; % set diagonal to zero

24 previous_quiet = cvx_quiet (1);

25 Ccvx-begin

26 variables S(m,1) t;

27 SS = repmat (S,1,m);

28 A =8S — 8SS'; $ a(i,d) = s(i) — s(IJ)

29

30 minimize( t );

31 subject to

32 —sum (sum (counts.*log-normcdf (aA))) + sum(square(S))/ (2«prior_sigma)
33 sum(S)==0

34 cvx-end
35 cvx_quiet (previous_quiet) ;

<

t

1 function S = scale_ex(a,b)

2 % Use the expected quality scale value to

3 % scale a paired comparison experiment using

4 % Thurstone's case V model (assuming sigma”2 = 0.5 for each

5 % quality's distribution)

6 %

7 % a is the number of times option A is preferred over option B
8 % b is the number of times option B is preferred over option A
9 %

10 % S is the scale values (assuming that S_A = 0)

11 % 2011-06—05 Kristi Tsukida <kristi.tsukidalgmail.com>

12

13 lower_bound = —10;

14 upper-bound = 10;

15 tol = 1e—30;

16

17 % compute normalizer

18 %N=@ (x) (normcdf (x)."a).*((l—normcdf (x))."Db);

19 N=@ (x) exp(a * log(normcdf(x)) + b *» log(l—normcdf (x)));

20 normalizer = quadl (N, lower_bound, upper_bound,tol);

21

22 %F=0@(x) x.*(normcdf (x)."a).*((l—normcdf (x))."b);

23 F=@(x) x .* exp(a * log(normcdf(x)) + b » log(l—normcdf(x)));
24 S_B = quadl (F, lower_bound, upper-bound,tol) / normalizer;

25

26 S = [0 S_B];

1 function fixed_counts = fix_counts (counts)

2 % "fixes" a count matrix so that any pair of comparisons

3 % with zero or N unanimous judgments are set to be

4 % .5 and N—.5 respectively,

5 % where N is the total number of judgments for the pair.

6 %

7 % counts is a count matrix where counts (i, j) is the

8 % number of times option i was preferred over option j.

9 %

10 % fixed._counts(i,j) = 0.5, if counts (i, j) = 0 and i%j
11 % N — 0.5, if counts (i, j) = N and i#j
12 % counts (i, j), otherwise

13 %

14 % 2011-06—05 Kristi Tsukida <kristi.tsukidalgmail.com>

15

16 N = counts+counts'; % Total number of comparisons for each pair
17 zero._counts = (counts == 0); % logical matrix: 1 if counts (i, j)=0
18 N_counts = zero_counts'; % logical matrix: 1 if counts (i, J)=N(i, J)
19

20 fixed_counts = counts;

UWEETR-2011-0004

24




21 fixed_counts (zero_counts) = 0.5;

22 fixed_counts (N_counts) = N(N_counts)—0.5;

23 fixed_counts (N==0) = 0; % If there were no comparisons, don't modify counts
24 fixed_counts (eye(size(counts))>0) = 0; % Set the diagonal to be zero

1 % This is a simple script which estimates scale values

2 % for a paired comparison experiment.

3 %

4 % The maximum likelihood and MAP estimation methods require cvx
5 % to be installed in the Matlab environment.

6 % http://cvxr.com/cvx/

7%

8 % Kristi Tsukida <kristi.tsukida@gmail.com>

9 % June 5, 2011

10

11 % clear variables;

12 % close all;

13

14 % % Generate a count data matrix

15 $ mu = [—-1 —0.5 0 0.5 1];

16 % mu = mu — sum(mu); % force mu to be zero mean

17 % sigma = 1/sqrt(2); % std dev for each quality score

18 % num_judgments_per_pair = 100; % e.g. # people making judgments
19 % num_opt = 5; % options

20 %

21 % count._data = zeros (num-opt);

22 % for num=1l:num_judgments_per_pair

23 % % Each person generates a new quality score for each pair
24 % quality = normrnd (mu(:)+*ones(l,num_opt), sigma);

25 % % Add a count for the higher quality option for each pair
26 % count_data = count_data + bsxfun(@gt, quality, quality');
27 % end

28

29 % Paired comparison count data matrix.

30 % This count_data matrix was generated with the above code.

31 % count_data (i, j) is the number of times option i was

32 % preferred over option j.

33 count_data = [ 0 27 24 4 0

34 73 0 29 10 8

35 76 71 0 37 16

36 96 90 63 0 32

37 100 92 84 68 0 1;

38

39 %

40 % Fix 0/1 proportions in the data

41 % (for use with the least squares estimators)

42 %

43 fixed_count_data = fix_counts (count_data);

44

45 3

46 % Estimate scale values

a7 %

48

49 % Incomplete matrix, maximum likelihood, and MAP methods

50 % don't require the 0/1 fixed data.

51

52 % Z—score threshold for least squares incomplete matrix methods
53 thresh = 2;

54

55 % Least squares method, Thurstone model (Gaussian)

56 % Least squares method should use fixed count data to

57 % "solve" the 0/1 problem.

58 % (Not using the fixed data results in estimates with +Inf or —Inf
59 % scale values for any 0/1 proportion entries)
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60 S_ls_fixed = scale_ls(fixed_count_data);

62 % Incomplete Matrix solution for the Thurstone model (Gaussian)

63 S_inc = scale_inc(count_-data, thresh);

64

65 % Least squares method, BTL model (Logistic)

66 % Least squares method should use fixed count data to

67 % "solve" the 0/1 problem.

68 % (Not using the fixed data results in estimates with +Inf or —Inf
69 % scale values for any 0/1 proportion entries)

70 S_ls_btl_fixed = scale_ls_btl (fixed_count_data);

71

72 % Incomplete Matrix solution for the BTL model (Logistic)
73 S_inc.btl = scale_inc_btl (count_data, thresh);

74

75 % Maximum likelihood method

76 % (Requires cvx)

77 S_.ml = scale_ml (count_data);

Maximum a posteriori (MAP) method
(Requires cvx)

oo oe

81 S_map = scale_map (count_data);
82

83 %

84 % Plot results

85 %

o
=Y
¢}
3
(0]

= ones(size(S-1ls_fixed));

88 scatter(S_.ls_fixed, —l*one, 'bx');
89 hold on;
90 scatter (S_.inc, —2*one, 'bo');

92 scatter(S_.1ls_btl_fixed, —3xone, 'gx');
93 scatter(S-inc-btl, —4xone, 'go');

95 scatter(S-ml, —5xone, '
96 scatter (S_.map, —6*one,
97 hold off;

rx');
)

99 title('Scale values for different methods')

100 xlabel('Scale values')

101 ylabel ('Methods")

102 methods={'Least Squares (with 0/1 fixed data)',

103 'ITncomplete Matrix Solution', ...

104 'BTL model, Least Squares (with 0/1 fixed data)',
105 'BTL model, Incomplete Matrix Solution', ...

106 'Maximum Likelihood',

107 'Maximum A Posteriori Likelihood'};

108 set (gca, 'YTick',—6:—1, 'YTickLabel', fliplr (methods));

100 ylim([—7,0]);
110 grid on;
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