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Abstract— We propose an expectation-maximization (EM)
technique for locating multiple transmitters based on power levels
observed by a set of arbitrarily-placed receivers. Multiple trans-
mitter localization is of interest for uncoordinated cognitive radio
systems, which must identify and transmit over unused radio
spectrum without cooperation from conventional transmitters.
We employ the EM algorithm to reduce the dimensionality of
the maximum-likelihood estimation problem. Because the EM
algorithm finds only a locally optimal solution, we explore the
use of clustering to generate “smart” initial estimates of the
transmitter locations. Simulation results show that, as the number
of sensors increases, the proposed EM technique achieves gains
of up to an order of magnitude over constricted particle swarm
optimization, a popular global optimization technique.

I. INTRODUCTION

As wireless applications advance and expand, available
wireless spectrum has become an increasingly scarce resource.
As a result, a significant focus of recent research has been
the development of efficient methods for identifying and
exploiting open bandwidth. Among the most promising meth-
ods is opportunistic spectrum access, in which users identify
and communicate over unused frequency bands without a
conventional license for the spectrum. Because systems that
perform opportunistic spectrum access must “think” and adapt
to changing conditions, they are also called cognitive radio
systems [1].

In conventional (legacy) communication systems, spectrum
is licensed to particular users who then have exclusive rights
to the allocated bandwidth. Measurement studies have shown,
however, that much of the licensed spectrum is underutilized
much of the time [1]. The goal of a cognitive radio system is
to identify and use the licensed but unused spectrum, thereby
increasing efficiency with which bandwidth is employed.

Cognitive radio systems may be designed to cooperate with
legacy communication systems, possibly requesting permis-
sion to transmit in a certain frequency or time slot, or receiving
information about available spectrum. Such systems are known
as coordinated cognitive radio systems [2]. In this paper, we
focus on uncoordinated cognitive radio systems, which must
determine what spectrum is available for transmission without
cooperation from any legacy systems operating in the band
and geographic region.

A typical goal in the design of uncoordinated cognitive
radio systems is that the cognitive radio systems operate with
minimal disruption to legacy systems. In order to achieve this
goal, cognitive radio nodes must employ opportunistic spec-
trum access, i.e. they must identify spectral holes in which they
can transmit without causing interference to legacy receivers.
In this paper, we assume that cognitive nodes identify spectral
holes based on received power measurements from the legacy
transmitters. In this case, a spectral hole has three aspects:
frequency, space, and time. (Signal parameters may be treated
as an additional aspect when waveforms are observed [3].) We
assume that the cognitive radio system has no prior knowledge
of location or activity patterns of legacy transmitters in the
region.

A common technique for declaring a spectral hole at the
location of a cognitive radio node is based on setting a
detection threshold for the power observed by the node. For
example, consider two cognitive nodes A and B, each sensing
the power in band F0 in their respective locations. If the power
observed at node A and at node B both fall below a threshold
value Pmax, then nodes A and B may communicate in band
F0. The choice of the threshold Pmax will be influenced
by a number of factors, including the level of interference
tolerated by legacy receivers, the desired maximum probability
of disruption of legacy systems, and the nature of signal
propagation in the region of interest.

One of the challenges of spectral hole identification via
power measurements from a single transmitter is the effects of
fading and shadowing in the propagation environment. Errors
due to such effects can be mitigated by sharing measurements
among several cognitive radio nodes [4]. For example, a set
of S cognitive nodes may each sense the power in band F0

and determine whether it falls above or below the threshold
Pmax. The detection results can then be shared among the
nodes via a control channel (only a binary indicator need be
communicated). The likelihood of disrupting a legacy system
can be reduced by applying the rule that if any of the S
nodes senses power above the threshold, none of the nodes
may transmit. If the nodes are near each other geographically,
the collection of several measurements will minimize the
effects of fading and shadowing to produce a more reliable
detection statistic. If the nodes are distributed over a wider



area, however, such a rule may result in overly conservative
decisions, since a single node near a legacy transmitter will
prevent communication by any of the nodes, some of which
may be a safe distance from the legacy system’s coverage area.

II. FINDING SPECTRAL HOLES VIA TRANSMITTER
LOCALIZATION

Recent work has argued that spectral hole identification can
be significantly improved over simple detection-based methods
[5], [6], which limit cognitive radio nodes to very conservative
transmission rules, as described above. One approach to better
exploit the spectrum is to use cooperative sensing to estimate
the approximate locations of transmitters given the power
levels observed by the radio nodes. Once transmitter locations
have been estimated, properties of legacy systems, a maximum
probability of interference, and government regulations can
be employed to determine the radius around each transmitter
in which opportunistic communication must be avoided. Ad-
ditionally, knowledge of transmitter locations allows mobile
cognitive radio nodes to identify a spectral hole at a location
without taking a measurement at that location. Hence, a
cognitive node can determine whether or not it can transmit
from a particular location before it reaches its destination. A
natural extension would be to consider scenarios in which
the primary transmitters are also in motion and to incorporate
simple tracking in the transmitter localization algorithm.

In this work, we describe an iterative technique for estimat-
ing the location of legacy transmitters based on measurements
of received power at the cognitive radio nodes. Significant
research has been conducted to develop efficient and effective
methods for localization in wireless sensor networks. Note,
however, that transmitter localization in a cognitive radio
framework poses a more challenging problem due to the
lack of cooperation between transmitters and receivers. When
sensor localization is performed within a sensor network,
measurements may include signals received from the sensor(s)
to be localized, as well as signals received at the sensor(s) to
be localized. In addition, the transmissions of various sensors
may be scheduled such that only a single sensor is transmitting
at any time. In contrast, the nodes of an uncoordinated
cognitive radio system must estimate the location of legacy
transmitters without any cooperation from or communication
with the transmitters. When only one transmitter is present,
the transmitter location can be determined from three received
power measurements via trilateration. However, when there are
multiple transmitters contributing unknown proportions of the
received power, the non-cooperative localization problem does
not admit a straightforward solution.

We propose to estimate the transmitter locations that max-
imize the likelihood of the observed power measurements,
which we show can be efficiently found by an expectation-
maximization (EM) algorithm. The remainder of the paper
is organized as follows. Section III describes the cognitive
radio and legacy transmitter systems considered in our analysis
and simulation. The EM technique for localization of multiple
transmitters is developed in Section IV, and a method for

generating “smart” initial conditions for the EM algorithm
is discussed in Section V. Section VI provides simulation
results for the EM technique and a global-optimization based
localization algorithm; conclusions are presented in Section
VII.

III. SYSTEM MODEL

Consider M legacy transmitters and N cognitive radio
nodes (sensors) located within a square region of unit area. We
assume that the locations of the M transmitters are unknown
and are denoted by θ = [θ1 θ2 . . . θM ]T , where θi

denotes the two-dimensional location of the ith transmitter.
The locations of the N sensors are assumed to be known but
arbitrary. The cognitive nodes may be affixed, for example,
to vehicles or to individuals, and hence their locations will
be defined by the activities of the “carriers” rather than by
the best geometry for obtaining reliable transmitter location
estimates.

Let dj(θi) denote the two-dimensional Euclidean distance
from the ith transmitter to the jth receiver. We consider a
line-of-sight path loss model in which power is assumed
to decay at a rate proportional to the square of distance
traveled. Note that line-of-sight propagation is a reasonable
assumption for television transmission (one of the first bands
under consideration for opportunistic spectrum access), since
television transmitters are typically quite tall to maximize
coverage and avoid clutter [7]. In addition, all transmitters
are assumed to transmit with known power P0. In practice,
estimation of transmit powers would be required. Estimates
could be based on a combination of measurement data and a
priori information about the nature of potential transmitters in
the band of interest.

With a line-of-sight model, the power received at the jth
sensor from the ith transmitter is given by

PR
ij =

P0

(ρdj(θi))2
, (1)

where ρ is a constant that reflects the carrier frequency and
antenna properties. We consider a simple path-loss model to al-
low clear presentation of the EM-based localization technique.
While it is straightforward to extend the concept of maximum
likelihood estimation to more sophisticated path-loss models
that account for multipath fading and shadowing, deriving a
solution via EM techniques is a more challenging problem
and is currently under investigation. Certainly, the accuracy
of the transmitter location estimates will be a function of
the precision with which the signal propagation is modeled,
and hence all available a priori information should be used
to choose the appropriate path-loss model for any particular
senario. In cases in which the cognitive radio system has
knowledge of the terrain and/or obstacles in the region of
interest, path-loss models such as Longley-Rice, EPM-73, or
TIREM [7] may be used to improve localization accuracy.

Consider M transmitters that transmit in a particular fre-
quency band of interest. The observed power is corrupted by



additive measurement noise, and hence the power measured
in the band of interest by the jth sensor is

rj = wj +
M∑
i=1

PR
ij =

M∑
i=1

hij , (2)

where hij = PR
ij + wij denotes the power from the ith

transmitter to the jth sensor, and wj is a zero-mean Gaussian
random variable with variance σ2. To facilitate the mathe-
matical development of the EM localization algorithm, we
divide each measurement noise component into M parts:
w1j , w2j , . . . , wMj , which are independent and identically
distributed Gaussian random variables with mean zero and
variance σ2/M .

IV. EM LOCALIZATION TECHNIQUE

The goal is to determine the maximum likelihood (ML)
estimate θ̂ of the locations θ of the M transmitters based on
the observed power measurements at each sensor. That is,

θ̂ = arg max
θ

P (r|θ), (3)

where r = [r1 r2 . . . rN ]T . This problem is one of estimating
parameters given superimposed signals; Feder and Weinstein
[8] considered EM algorithms for this class of problems, and
the transmitter localization problem is an application-specific
case of their general development.

Given the transmitter locations θ, the measured sensor
power rj is a Gaussian random variable with mean

∑
i PR

ij

and variance σ2. Let PR
i = [PR

i1 PR
i2 . . . PR

iN ]T , such that
r is a Gaussian random vector with mean µr =

∑
i PR

i and
covariance matrix σ2IN , where IN denotes the N×N identity
matrix. The likelihood is then

P (r|θ) = (2πσ2)−N/2 (4)

exp

− 1
2σ2

(
r −

M∑
i=1

PR
i

)T (
r −

M∑
i=1

PR
i

) .

Taking the log of (4) and ignoring terms independent of θ
results in the log-likelihood function

L(r|θ) = −

(
r −

M∑
i=1

PR
i

)T (
r −

M∑
i=1

PR
i

)
. (5)

The log-likelihood is a complicated function of the trans-
mitter locations θ and does not admit a straightforward ana-
lytic solution, as it often has multiple local maxima. Global
optimization methods can maximize (5) directly, but this is
difficult, as there are 2M unknown parameters, all of which
are coupled via an inner product.

An EM algorithm can be used to efficiently reach a local
maximum of the log-likelihood function. To apply EM, we
must identify “hidden” variables whose likelihood function is
simpler to maximize than that of the observed data. The EM
algorithm alternates between two steps [9]:
(a) Compute the expectation of the likelihood function of the

hidden variables given the observed data and an estimate
of the unknown parameters.

(b) Maximize the expectation of the likelihood of the hidden
variables over the unknown parameters.

For the multiple transmitter localization problem, we propose
to use as hidden variables the set of M×N unknown measured
powers from each transmitter to each receiver
h = [h1 h2 . . . hM ], where hi = [hi1 hi2 . . . hiN ]. The EM
algorithm then takes the following form:

1) Generate an initial estimate θ̂0 for the transmitter loca-
tions. Set k = 1.

2) Compute E[L(h)|r, θ̂k−1].
3) Compute θ̂k = arg maxθ E[L(h)|r, θ̂k−1].
4) If θ̂k has converged, stop. If not, set k = k + 1, and

return to step 2.
Next, we detail how to calculate the quantities in the above

steps. Let PR = [PR
1 PR

2 . . . PR
M ]T . Then akin to (5), the

log-likelihood function of h can be written as

L(h) = −hT K−1h + 2PRT
K−1h− PRT

PR,

where K = σ2IMN . The expectation of L(h) given r and
θ̂k−1 is

E[L(h)|r, θ̂k−1]

= −E[hT K−1h] + 2E[PRT
K−1h]− E[PRT

PR].

Dropping terms independent of θ and denoting E[h|r, θ̂k−1]
as ĥk, we have

E[L(h)|r, θ̂k−1] ∝ 2PRT
K−1ĥk − PRT

PR (6)

∝ −(ĥk − PR)T K−1(ĥk − PR)

= −σ2

M

M∑
i=1

(
ĥk

i − PR
i

)T (
ĥk

i − PR
i

)
,

where the second line is obtained by adding the (θ-
independent) term (ĥk)T K−1ĥk to complete the square.

To compute ĥk, observe that h and r are jointly Gaussian
random vectors and that r can be written in terms of h as
r = Ah, where A is the row-wise concatenation of M N ×N
identity matrices. We use the orthogonality condition [10] to
write

ĥk = PR + KAT (AKAT )−1(r −APR)

= PR +
σ2

NM

(
r −

M∑
i=1

ĥk
i

)
, (7)

where ĥk
i denotes E[hi|θ̂k−1]. Equation (7) can be substituted

into (6) to complete step 2 of the EM algorithm.
Note that, as shown in the last line of (6), E[L(h)|r, θ̂k−1]

is proportional to a sum over M terms, each of which is
dependent on the location of only one transmitter. Hence, the
maximization in step 3 of the EM algorithm can be performed
independently for each transmitter:

θ̂k
i = arg max

θi

(
ĥk

i − PR
i

)T (
ĥk

i − PR
i

)
, i = 1, . . . ,M.

(8)



Direct maximization of the likelihood function of r requires
optimizing over 2M coupled variables, but the above EM algo-
rithm decouples the transmitter locations, thereby transforming
the problem into M 2-dimensional maximizations.

V. SMART INITIAL CONDITIONS

While the EM algorithm is guaranteed to converge to a local
maximum of the likelihood function (5), the function generally
has multiple local maxima, and hence the proposed technique
may not converge to the global maximum likelihood solution
[9]. In order to increase the chances of locating the global
maximum of the likelihood function, we employ multiple
instantiations of the EM algorithm, each with a different
set of initial conditions. In addition, we propose the use of
“smart” initial conditions to improve the performance of the
EM technique.

Since the EM algorithm converges to a nearby local max-
imum of the function of interest, the selection of the initial
location estimates θ̂0 plays a critical role in the success of the
algorithm in reaching the global maximum of the function. In
an effort to generate initial conditions that lie near the global
maximum, we have proposed to generate initial transmitter
location estimates based on a spatial clustering of the cognitive
sensor nodes [6]. The N nodes are grouped into M clusters
based on geographic proximity. The power observed by each
node in a cluster is assumed to be received from a single
(closest) transmitter, and an initial transmitter location estimate
is generated for each cluster. If a cluster includes exactly
three sensors, the location of the cluster’s “effective single
transmitter” is determined via trilateration. For clusters with
fewer than three sensors, one of the non-unique solutions
is chosen; for clusters with more than three sensors, the
transmitter location is chosen to minimize the sum of squared
differences between measured powers and the power predicted
based on (1).

The spatial clustering of the N sensors into M groups
is performed using the k-means clustering algorithm [9]. K-
means is an iterative algorithm that operates by alternating
between computing the centroid of clusters of data points and
reassigning data points to clusters based on the centroid to
which they are nearest. Like the EM algorithm, the k-means
clustering algorithm requires initial conditions, and hence it
can provide different spatial clusterings given different random
initializations of the algorithm. The ability to produce a variety
of clusterings is beneficial for our application, since different
clusterings result in different smart initial estimates θ̂0, which
can in turn be used as initial estimates for different instantia-
tions of the EM algorithm. To ensure a variety of clusterings,
the k-means algorithm is run for only two iterations for each
random start, which generally does not enable the k-means to
converge, but is enough iterations to make the sensors in each
cluster spatially adjacent.

VI. SIMULATION RESULTS

We compare the performance of the proposed EM local-
ization technique to particle swarm optimization (PSO), a

popular global optimization algorithm [11], [12] via simula-
tion. As a cost function for PSO, we employ the sum of the
squared differences between the actual observed power at each
sensor and the predicted received power based on estimated
transmitter locations [6]. The EM and the PSO localization
algorithms are simulated using both random and smart initial
conditions, as described above. We used the variant of PSO
termed constriction PSO.

Fig. 1. Simulation results for the estimation of M = 2 transmitter locations.

Each localization algorithm was simulated for M = 2,
3, and 4 transmitters and for N = 2M to 20 cognitive
radio sensors. Two hundred realizations were simulated for
each (M,N) pair; for each simulation, the locations of the
transmitters and sensors were drawn uniformly from a 1 km
× 1 km square region. For both the EM and PSO approaches,
(2M + 1)2 k-means clusterings were performed to generate
smart initial conditions, but only the unique clusters were
retained. For each realization, the number of random initial
conditions was set equal to the number of unique smart
initial conditions. To limit the maximum number of computa-
tions allowed to perform localization, the EM algorithm was
executed for a maximum of 25 iterations, which generally
allowed convergence. PSO was allowed 1000M guesses at the
transmitter locations, which is a common restriction in global
optimization experimentation [6], [12].

The performance of the EM and PSO localization schemes
is presented in figures 1, 2, and 3 for M = 2, 3, and 3
transmitters, respectively, and for random and smart initial
conditions. Performance is measured in both the mean and
median error in squared distance of the estimated transmitter



Fig. 2. Simulation results for the estimation of M = 3 transmitter locations.

locations relative to the true locations. The figures show that
the EM algorithm achieves better performance than PSO-
based localization in both mean and median, especially as
the number of sensors increases. The EM algorithm shows a
larger performance gain in median squared error than in mean
squared error, which likely indicates that the EM algorithm
significantly outperforms PSO for most iterations but that
EM occasionally becomes trapped in particularly poor local
maxima that are avoided by the global nature of PSO.

Figures 1, 2, and 3 also reveal that, while smart initial
conditions yield significant performance improvements for
PSO-based localization, the use of smart initial conditions
generally has very little effect on the performance of the EM
algorithm. Our analysis shows that the k-means clustering
often generates initial estimates that are similar in location.
Thus, different smart initial conditions often lead EM to
converge to the same local maxima and hence result in no
performance improvement. In contrast, PSO may generate
different results for the same initial conditions when different
initial particle velocities are employed. Smart initial conditions
generate a performance improvement for EM only when the
number of sensors is very small, a condition in which PSO
appears to be the preferable localization technique.

We also employ simulation to study the performance of
the EM and PSO localization techniques as a function of
measurement noise. For these simulations, we assume M = 2

Fig. 3. Simulation results for the estimation of M = 4 transmitter locations.

transmitters. Figure 4 presents the mean and median error in
squared distance for additive noise powers of σ2 = 10−1,
10−2, and 10−3. (While the noise powers are small in an
absolute sense, they are generally quite large relative to the
power received at a sensor some distance from the legacy
transmitters.) Smart initial conditions are used only for the
PSO-based scheme, since they result in no performance im-
provement for EM-based localization.

As expected, the accuracy of the transmitter location esti-
mates generated both localization techniques decreases some-
what as noise power increases. The EM algorithm maintains
a significant performance improvement over PSO localization,
however, and the performance of the EM technique degrades
only slightly as the noise power increases from 10−3 to 10−1.
It is interesting to note that when noise is present, there
is little difference between mean and median measures of
squared error. Such results indicate that the estimation error is
dominated by the inaccuracy introduced by noise rather than
the risk of converging to local maxima.

VII. CONCLUSIONS AND OPEN QUESTIONS

We have presented an EM-based technique for estimating
the locations of multiple transmitters based on measurements
of signal strength. The algorithm is applicable to cognitive
radio environments in which no cooperation can be assumed
between transmitters and sensors. The proposed EM ap-
proach reduces a 2M -dimensional optimization task to M
2-dimensional optimizations. We show via simulation that
the EM localization technique performs well and achieves
significant gains over PSO-based localization, particularly as



Fig. 4. Simulation results for the estimation of M = 2 transmitter locations
in the presence of measurement noise.

the complexity of the problem grows. It should be noted that,
while we measure performance in terms of the accuracy of
transmitter location estimates, the effect of transmitter local-
ization accuracy on the overall performance of the cognitive
radio system is of greater interest. This relationship is clearly
dependent upon transmission policy, acceptable interference
levels, etc., and hence must be studied in such a context. The
work we have presented forms a foundation from which to
research the important issues of how to perform the estimation
without knowledge of the number of transmitters and how
to use estimates of transmitter locations to best improve the
efficiency of cognitive radio systems.
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