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Abstract—Design goals and solutions are proposed for the
display of hyperspectral imagery on tristimulus displays. The
requirements of a hyperspectral visualization depend on the task.
We focus on creating consistent representations of hyperspectral
data that can facilitate understanding and analysis of hyperspec-
tral scenes, and may be used in conjunction with task-specific
visualizations. Fixed linear spectral weighting envelopes are given,
creating natural-looking imagery where hue, brightness, satura-
tion, and whitepoint have meanings consistent with the human
visual system interpretation of natural scenes. For Airborne
Visible/Infrared Imaging Spectrometer images, hue interpretation
of water and vegetation is also preserved. The proposed designs
avoid the preattentive distractions of principal component analysis
imagery, and appear to provide comparable or enhanced spectral
and edge discriminability.

Index Terms—Dimensionality reduction, hyperspectral imaging,
image fusion, multidimensional signal processing, principal com-
ponents analysis (PCA), remote sensing, visualization.

I. INTRODUCTION

HYPERSPECTRAL and multispectral images contain
many more image bands than can be displayed on a

tristimulus display. Tristimulus displays include standard
monitors and LCD displays, and any display has three image
channels, commonly red, green, and blue. Human interaction
with hyperspectral and multispectral images is vital: to direct
computerized methods, to validate automated analysis, and
to make appropriate decisions and interpretations [1]. The
question arises: how to display hyperspectral and multispectral
images in a way that best enables human interaction with the
images and computed results?

All three-band representations of an originally -band image
necessarily represent a loss of information for . For any
visualization scheme, a particular color value could represent
many different -dimensional vectors. Normal human vision
suffers the same problem: many different visible spectra cause
the same L, M, and S cone photoreceptor stimulations. These
metameric spectra are often distinguished by context, shape, and
other visual clues.

If all hyperspectral visualizations lose information, how does
one judge whether a visualization is good? The best criterion
is task-specific and requires a highly specified task and human
tests to see how well a certain visualization enables the task.
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However, we propose that there are also task-independent goals
that can be used to design and evaluate effective visualizations.
In Section II, we list these goals and describe why they are useful
to fast and accurate human interpretation of scenes. The primary
goal we propose is consistency—that a spectra be displayed as
the same color value whenever it appears. Consistent represen-
tations would allow humans to “learn” what different spectra
look like, and be able to identify spectra and interpret scenes.
The metamers that are inherent in all visualizations could be
overcome by shape and contextual features, as in normal human
vision.

We propose visualization solutions in Sections III and IV that
satisfy the consistency goal and are designed to satisfy the other
design goals proposed in Section II. Our visualization solutions
are inspired by the successful human visual system, which con-
verts broadband visible radiation into three signals roughly cor-
responding to red, green, and blue. In Section V, other image
fusion solutions are reviewed and contrasted for hyperspectral
visualizations. The design goals proposed in Section II are them-
selves objective criteria for comparing hyperspectral visualiza-
tions, and we propose additional objective criteria for measuring
spectral discrimination in Section VI. Last, in Section VII we
present the images rendered using the proposed visualization
methods.

II. GOALS FOR HYPERSPECTRAL IMAGE VISUALIZATION

We propose the following design goals for displaying hyper-
spectral imagery. Not all goals will be important for all tasks,
and it may not be possible to achieve all goals simultaneously.
However, each of these goals would increase the effective trans-
mission of information. In Sections III and IV, we present visu-
alization solutions and show how they satisfy these goals in the
following sections.

1) Consistent Rendering: Any given spectrum is always
displayed as the same color value so that it can be easily
recognized across images. This goal also facilitates
comparison between different images. There is a fur-
ther advantage if the rendered colors correspond to an
existing color-association system. This constraint may
be loosened to allow luminance scaling of the display
image, which would result in a spectra being consistently
displayed as the same hue and saturation.

2) Edge Preservation: Edges (at all spatial resolutions) of
the original hyperspectral image are represented faithfully
in the visualization. We discuss objective metrics for this
goal in Section IV. A subgoal is the discriminability of
different spectra in the visualization.
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3) Computational ease: The visualization can be rendered
quickly, enabling real-time interactivity.

4) Equal-energy white point: A pixel with the same re-
flectance value for each spectral band appears as a shade
of gray. Thus, lack of color saturation is related to how
closely an object resembles a gray body diffuse reflector.

5) Smallest effective differences: Visual distinctions are no
larger than needed to effectively show relative differences.
According to Tufte [2], who is a proponent of this de-
sign goal for general visualizations, minimal distinctions
reduce visual clutter, and using smallest effective differ-
ences helps in designing secondary and structural ele-
ments such as arrows, pointer lines, highlights, legends,
etc.

6) Appropriate preattentive features: The visualization min-
imizes preattentive features of the image that distract the
viewer without reason. For example, a small bright sat-
urated color region on a background of a different color
will “pop-out” at the viewer and attract attention [3].

7) Natural palette: Visualizations use a palette and spatial
distribution of colors that is consistent with natural im-
agery. This goal is partly based on the assumption that
humans are well-designed to interpret natural scenes, and
partly based on the misinterpretation caused by strongly
saturated colors. In particular, large regions of strongly
saturated colors rarely appear in nature, and have long
been eschewed by design experts as confusing and dis-
tracting [4], [5]. In fact, strong background coloration
can induce perceived differences in smaller color regions.
These simultaneous contrast effects can make it difficult
to accurately judge quantitative differences between
colors [6]. For example, two small squares of the same
color will actually look increasingly different if viewed
against two backgrounds with strong differences in color.
Conversely, two small squares of different colors can look
the same when viewed against a background that strongly
differs from the foreground. These simultaneous contrast
effects are well-studied visual phenomena [7], [8], and
their effect in maps can be explored on-line with Cynthia
Brewer’s ColorBrewer software (www.colorbrewer.org).
Large regions of saturated color may also induce tem-
poral chromatic adaption, where after staring at one part
of the image other parts of the image then appear to be
different colors due to the afterimage formed [7], [8].

8) Wavelength Shift Invariance: All wavelengths are ac-
corded equal weight. This allows the visualization
method to work equally well for any number of spectral
bands, in any spectral range. This makes a visualization
method easily adaptable to spectral zooming, spectral
panning, or new instrumentation. A basic requirement
is that a monochromatic spike at any wavelength
is displayed with the same luminance. A further desired
feature is that the perceived difference in a color property
(such as hue) between two rendered monochromatic
spectra , depends only on the change in
wavelength .

These goals are consistent with goals for scientific visual-
ization proposed by other researchers. For example, Tyo et al.

[9] propose “anthropometric optimality” which they describe as
“information should be presented in a way that maximizes use-
fulness to the human observer.” Our goals try to achieve this by
taking into account human visual properties, such as our goals of
a natural palette, appropriate preattentive features, equal-energy
white-point, consistent rendering, and edge preservation. The
goal of consistent rendering, or at least relative consistency with
respect to luminance, satisfies the most common natural varia-
tion captured by Tyo et al.’s goal of “ecological invariance,” that
“representations remain qualitatively similar over natural vari-
ation.” Robertson and Callaghan [10] argue that hyperspectral
image displays should communicate data “as effectively and un-
amibiguously as possible.” The above goals aim to support this
larger goal.

III. SPECTRALLY WEIGHTED ENVELOPES

We show that a set of fixed spectral weighting envelopes
create visualizations that perform well according to the goals
stated in Section II, and will yield useful visualizations for a
range of tasks.

The three displayed image bands R, G, and B, will be fixed
linear integrations of the original hyperspectral image weighted
by three different spectral envelopes. This is similar to how
human photopic (daylight) vision works. In photopic human vi-
sion, three different cone types have different spectral sensitivity
envelopes. Each cone absorbs incoming photons of a particular
wavelength with a probability corresponding to the sensitivity
of that cone to that wavelength. In this visualization method,
the probabilistic sensitivity has been replaced by a deterministic
weighting.

Consider an original -band image, where denotes
the reflectance value of the th hyperspectral band of the th row
and th column pixel, where . Let
be the RGB vector for the th row and th column pixel of the
displayed image. Let , , and for
be weights on the th spectral band. Then the proposed visual-
izations are linear integrations of the form

(1a)

(1b)

(1c)

The rest of this section focuses on designing the spectral en-
velopes , , . The three-band visualization commonly formed
from the first three principal components of PCA can be treated
as a set of image-adaptive spectral envelopes , , . However,
we focus on designing fixed spectral envelopes in order to sat-
isfy the consistency goal for representing hyperspectral images.
Fixed spectral weightings also satisfy the design goal of com-
putational ease.
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Fig. 1. Three spectral weighting envelopes are shown. Gaps are the result
of AVIRIS bands that are noisy or contain no data. The top set of envelopes
are the CIE 1964 color matching functions transformed to the sRGB color
space with equal-energy white point and stretched across the available AVIRIS
wavelengths. The second set of envelopes are piecewise linear, designed to map
deep infrared spectra to magenta hues. The third set of envelopes are the PCA
basis spectra extracted from the Moffett Field test image shown in Fig. 4(a).

If the total weight of each spectral weighting envelope is
equal so that

(2)

then the equal-energy white point design goal will be satisfied.
If the spectral weighting envelopes are wavelength shift in-

variant (and assumed to be zero outside of their defined range),
they can be stretched, compressed, shifted, or cropped for spec-
tral zooming, panning, or for use with different instruments. If
the envelopes are derived from continuous functions, this can
be achieved by resampling. Interpolation is needed for discrete
envelopes.

This leaves an enormous set of possible choices for the spec-
tral envelopes , , and . We considered a number of reasonable
designs, two of which are discussed below.

The first design is based on a stretched version of the
CIE 1964 tristimulus color matching functions (CMFs)
(http://cvision.ucsd.edu/), and this design is shown at the top
of Fig. 1. The color matching functions for a particular wave-
length were derived in experiments that determine how much
of each of three primary colored lights (red, green, blue) had
to be mixed together to give a viewer the same impression as
a monochromatic light of that wavelength [11]. As noted by
Polder and van der Hijden [12], a hyperspectral image that
covers the visible range can be visualized as a colorimetrically
correct image by applying the CIE color matching envelopes to
the visible range hyperspectral image.

To use the color matching functions as a set of visualization
envelopes, we took the CIE 1964 tristimulus color matching en-
velopes, transformed the envelopes to the sRGB colorspace [8]
(sRGB is a standardized RGB space that can be used with most
monitors), and multiplied by the D65 white point needed to
illuminate the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) reflectance data for display in the sRGB color space.
The wavelength scale for the envelopes was then stretched

Fig. 2. Some example spectra from the USGS spectral library are shown. Line
color is the rendered color for each spectra using the stretched CMF envelopes.

to cover the AVIRIS hyperspectral range. The stretch was
performed by equating nm to the first valid AVIRIS
band (band 4), equating nm to the last valid AVIRIS
band (band 221), and linearly interpolating values between
them. These envelopes reproduce what the eye might see if the
entire AVIRIS range was compressed to the visible range. This
process could be easily modified for a different instrument or
spectral range.

It should be noted that the resulting color matching func-
tion envelopes (CMF envelopes) have some negative values.
These are a consequence of the limited color gamut of tristim-
ulus displays. Spectra that are strongly reflective in a negative
envelope region will be rendered with a negative sRGB value
(corresponding to a “real” but undisplayable color), which must
be brought into the correct (positive) range in order to be dis-
played. For example, when using the Stretched CMF envelopes,
spectra with high reflectance between 750–1250 nm (such as
lawn grass; see Fig. 2) render to an sRGB pixel with negative
red. We explain in the next section how negative output values,
when they occur, are dealt with. Figs. 4(b) and 5(b) show exam-
ples of scenes rendered using this set of envelopes.

A second designed set of envelopes is piecewise linear, which
provides more uniform hue variation over the spectrum, and
does not produce out-of-gamut pixels. The design is shown in
Fig. 1. Figs. 4(c) and 5(c) show examples of scenes rendered
using this set of envelopes. We designed a number of other fixed
envelopes, with similar but generally less optimal results.

For comparison, Fig. 1 also shows the image-adaptive basis
functions corresponding to the first three principal components
from PCA performed on the Moffett Field test image shown in
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Fig. 3. Scatterplots of spectral angle versus chroma �E of the visualization
(Euclidean distance in the (a, b) plane of the CIELab color space) are shown for
two AVIRIS datasets (one in each column). Each row is a different visualization
method. The gray points are different pairs of pixels, and each black line is the
least-squares fit to each dataset. Note that the horizontal scale is different for
the two scenes, so slopes can only be compared between different methods for
visualizing the same scene.

Fig. 4(a). Code to render AVIRIS images with the fixed spectral
envelopes is available.1

IV. GAMUT FITTING WITH HUE PRESERVATION

After the fixed integration envelopes are applied, some im-
ages may have pixel values that are outside the sRGB gamut
(colors that are nondisplayable). In other cases, the entire image
may lie in a small subset of the sRGB gamut, for example,
the entire image may be very dark. In this section we discuss
how the images are better fit to the sRGB gamut so that hue
is preserved and/or contrast enhanced. All methods used in-
volve linear transformations of luminance values, and represent
a loosening of the consistent rendering goal. No other goals are
compromised.

First, in the case that some pixel values are out-of-gamut, we
transform the colors in the image to the CIELab color space (a
device-independent, approximately perceptually uniform color
representation [8]), then shift all the pixels’ luminance values
(the L channel) so that no more than 2% of pixels have nega-
tive values or values too large to be rendered. This method was
chosen to best satisfy the goal of consistent rendering, as it pre-
serves the hue and saturation of each pixel, and maintains the
original level of luminance contrast in the image. The value of
2% was selected as an acceptable compromise between bringing
pixels into the gamut and preventing the image from becoming

1http://ee.washington.edu/research/guptalab/projects/project4/index.html

TABLE I
SLOPE m

TABLE II
CORRELATION p

too bright. Any remaining out-of-gamut (nondisplayable) color
values are clipped to the gamut in sRGB.

For the images shown in this paper, the sRGB values of pixels
that remain out of gamut have simply been set to 0 or 255. The
optimal solution would be a hue-preserving gamut clipping al-
gorithm. This is nontrivial because the hue-preserving clipping
would need to be performed in the CIELab color space, but the
gamut limits are defined in the sRGB color space. We hypoth-
esize that the difference gained by using a hue-preserving clip-
ping algorithm, which would affect less than 2% of the pixels
of any image, would be relatively small.

For images that did not exceed the displayable gamut, we
applied the following luminance enhancement: a linear scaling
factor and offset for the L channel in the CIELab space were
determined iteratively such that at least one pixel had an sRGB
value of 0 and at least one pixel had an sRGB value of 255,
without any gamut clipping. This enhancement increases the
luminance contrast of the image while retaining consistent ren-
dering of hue and saturation. This should cause luminance edges
to appear stronger, and texture to be more distinct.
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V. OTHER VISUALIZATION METHODS

The most common way to display a hyperspectral image is to
select three of the original bands and map them to RGB, as
done in the image browser for AVIRIS.2 The three bands can be
picked by an adaptive method based on the image content [13],
to highlight expected features, or to approximate a conventional
color image. If the band-selection is image adaptive, then the
meaning of display colors can be drastically different for dif-
ferent images.

A standard method for reducing the dimensionality of a
dataset is principal components analysis (PCA), first proposed
for this application by Ready and Wintz in 1973 [14]. For an

-band hyperspectral image, the first three principal compo-
nents are the three -dimensional, orthonormal basis vectors
that capture the most data variance; note that spatial informa-
tion is not taken into account. The -band image pixels are
linearly projected onto these three -dimensional basis vectors
to create three image bands. The three bands can be mapped
to RGB, HSV [15], etc. for display. Figs. 4(a) and 5(a) show
examples of PCA visualizations.

PCA has a number of disadvantages for hyperspectral
visualization.

1) The meaning of display colors changes for every image,
and thus the visualizations can be difficult for users to in-
terpret. Consistent displays allow humans to ascribe con-
sistent meaning to colors, speeding tasks like spotting
target objects and understanding scenes.

2) The standard implementation of PCA visualization, as
used (by default) in ENVI, is to linearly stretch each of
the three display bands so that 2% of pixels are at the min-
imum and 2% are at the maximum display value. This
leads to visualizations with very saturated regions. Al-
though this creates vivid contrasts between pixels in dif-
ferent regions, the contrast between pixels in the same re-
gion often suffers as they are crammed into a corner of
the perceptual colorspace. This is especially noticeable for
pixels near the blue and red primaries.

3) The PCA bands correspond to the maximum data vari-
ance, but mapping those three bands to R, G, and B does
not transfer to maximum human visual discriminability.
There has been some promising recent work [15] on map-
ping PCA image bands to an opponent color space which
may reduce this disadvantage. The amount of variance in
each of the principal components will differ between im-
ages, so mapping the principal components in a fixed way
to the R, G, B channels still will not optimally transfer the
information.

4) The highly saturated colors produced by PCA can be preat-
tentive, that is, they “pop-out” at the viewer and draw at-
tention. Since PCA maps colors without a fixed semantic
meaning, bright saturated color regions can preattentively
attract the viewer’s attention without a good reason, and be
distracting from the viewer’s task [3].

5) PCA has high computational complexity, since it requires
finding the eigenvectors of the covariance matrix (size

) of the data matrix (size ), where ,

2aviris.jpl.nasa.gov/html/aviris.quicklooks.html Fig. 4. Visualizations of Moffett field.



JACOBSON AND GUPTA: DESIGN GOALS AND SOLUTIONS FOR DISPLAY OF HYPERSPECTRAL IMAGES 2689

are the image width and height, and is the number of
spectral bands.

Many techniques have been developed for the general
problem of image fusion [16]–[18], but few of them are appli-
cable to the display of hyperspectral images. Grayscale image
fusion techniques are well-developed for fusing images with
different focal lengths and lighting conditions. When applied
across spectra, such grayscale fusions remove all spectral
information and put an unnecessary limit on the information
that can be delivered by a color display.

The fusion of images with high spectral resolution and im-
ages with high spatial resolution [19] is a developed field with
well-defined quality metrics. However, this class of image fu-
sion techniques do not reduce dimensionality, so they are not
directly applicable to hyperspectral visualization.

Our method of reducing the dimensionality of hyperspectral
images by spectral weighting envelopes is algorithmically sim-
ilar to “artificial color” as proposed by Caulfield [20]. In that
framework, artificial colors are spectral discriminants that are
produced by applying overlapping spectral sensitivity curves to
hyperspectral data. Caulfield’s artificial colors are proposed as
preprocessing for pattern recognition.

VI. QUANTITATIVE METRICS OF VISUALIZATION FIDELITY

Creating a useful metric for comparing visualization methods
for hyperspectral imaging is difficult. Image fusion methods for
some tasks, such as merging images at different focal depths,
can compare the fused result with known correct results. How-
ever, when dimensionality reduction is involved, there is no
“correct” image to compare results with.

We first considered a class of metrics which quantify dis-
criminability in the fused color image. For example, a discrim-
inability metric might count the number of unique discriminable
colors in a visualization. Or, a metric might measure the total
edge energy in a visualization at multiple resolutions by sum-
ming energy in wavelet bands. The disadvantage of this class of
metrics is that it does not enforce the reliable presentation of the
original hyperspectral data. Arbitrary image transformations,
such as adding noise, or extreme (up to 20% saturation) con-
trast scaling, can improve the performance according to these
metrics despite obviously degrading image utility.

A more useful class of metrics require some comparison with
the original hyperspectral data. The metric should reflect how
well a human can discriminate information in the visualization
that was present in the original hyperspectral data.

To this end, a good metric will measure how well the percep-
tual distance between two data points in a visualization corre-
sponds to a relevant distance between those two points in the
original data space. A metric that does this well will be directly
useful in gauging how well a visualization will help humans
evaluate automated classification, identification, and detection
algorithms, and aid humans in making decisions based on such
automated algorithms.

We propose that the visual segmentation and classification
tasks as performed by a human user are analogous to the Spec-
tral Angle Mapper Algorithm [21], which is an established clas- Fig. 5. Visualizations of Lunar Lake.
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sifier for hyperspectral imagery. The spectral angle measures the
distance between two hyperspectral vectors and

(3)

Since spectral angle is normalized, it is insensitive to
changes in radiant intensity, which is subject to ground texture
and shadows. In a visualization rendered using a spectral
weighting envelope as proposed in this work, the spectral angle
between hyperspectral pixels should correspond to a distance
in hue and saturation between displayed pixels.

The perceptual difference between colors is often measured
by Euclidean distance in the CIELab color space. Overall
radiant intensity should be proportional to luminance. To ob-
tain a property of the visualization that is analogous to spectral
angle, we ignore luminance, measuring Euclidean distance in
the chroma (a, b) plane . In the (a, b) plane of CIELab,
saturation and hue correspond to polar coordinates .

We have formulated two metrics based on the relationship
between spectral angle and CIELab (a, b) distance for pairs of
pixels, and tested these metrics with a set of AVIRIS images.
Although luminance is very effective for discriminating shapes
and edges, it is not well suited to pixel-level spectral classifica-
tion due to its dependence on radiant intensity factors.

Our first metric is the correlation of the spectral angle be-
tween two data points and their nonluminance color difference
in the visualization (the difference between the hue and satura-
tion of the rendered colors).

Computationally, we sample the set of pixels pairs con-
sisting of all pairs with purely horizontal or purely vertical
displacement of pixels. For a
image, . For each of these pairs of pixels, calcu-
late the spectral angle in the original hyperspectral space, and
form a vector of all of the spectral angles. Then, for each
pair of pixels, transform the rendered sRGB coordinates to
CIELab, and calculate the Euclidean distance in the chroma (a,
b) plane between the two pixels, forming a vector with all of
these perceptual nonluminance color differences. Then is the
correlation between vectors and

(4)

where and are vectors that contain all the pairs of pixels
that fall along the same horizontal or vertical line, is the mean
of , and is the standard deviation of .

The correlation measures the effectiveness of using per-
ceived hue and saturation distances to predict differences in
spectral angle. In the absence of perceptual errors, a perfect cor-
relation of would give a human user the same classifica-
tion-relevant information that is used by a computer running the
SAM algorithm on the original hyperspectral data.

A good correlation between chroma distance and spectral
angle is only useful if the chroma distance is large enough that it
can be accurately perceived and compared with the chroma dis-
tance between another pair of pixels. Thus, our second metric is
the average ratio , between chroma (a, b) distance and spec-
tral angle, which is the slope of the line that is anchored at
the origin and is the least-squares fit to the data pairs .

Spectral angle and chroma distance could be highly correlated
but if the linear regression slope is too small, then

different chroma differences would not actually be perceptually
distinguishable.

According to these metrics, the Stretched CMF envelopes
generally performed best of all the fixed spectral envelopes
designed. Results comparing the Stretched CMF envelopes
to Three Bands and PCA are shown in Fig. 3 and given in
Tables I and II. In general, it is seen that the slopes are higher
for PCA images, corresponding to larger color contrasts with
change in spectral angle, but the correlation is as high or higher
for the proposed Stretched CMF envelopes, corresponding to
a stronger correlation between changes in spectral angle and
perceived change in hue and saturation in the visualization.
PCA is not designed to capture information about spectral
angles directly, and thus the spread of chroma distance for a
particular spectral angle difference is not surprising.

VII. RESULTING IMAGES

To illustrate our proposed visualization technique, we used
hyperspectral images from the National Aeronautics and Space
Administration Jet Propulsion Laboratory AVIRIS system,
which captures 224 spectral bands, ranging from 400–2500 nm,
with nominal bandwidth of 10 nm [22]. We used the AVIRIS
reflectance data which is corrected to compensate for atmo-
spheric absorption and the spectrum of the sun. The reflectance
data can be used to match the spectrum of an image pixel to the
spectrum of a known material. We compare results for several
images from the 1997 flight lines of Moffett Field CA, Jasper
Ridge CA, Cuprite NV, and Lunar Lake NV.

The image bands 107–114 (1353–1423 nm), 153–168
(1811–1948 nm), and 222–224 (2486–2506 nm) were not used,
as they were determined (by inspection) to contain significant
noise. This observation is supported by the signal-to-noise
curve from the 1997 AVIRIS calibration given in [23, Fig. 9].
In addition, bands 33, 34, 97, and 98, which occupy regions of
overlapping spectral sensitivity, were not used.

Figs. 4 and 5 show visualizations using PCA, the Stretched
CMF envelope, and Piecewise Linear envelopes (both plotted in
Fig. 1). Colorbars show the rendered color of monochromatic
light at each wavelength. As is done in RSI’s ENVI software,
each PCA image band has been linearly stretched so that 2% of
pixels are saturated.

For both proposed integration envelopes, the spectrally
weighted colors not only carry consistent meaning, but also
have specific and intuitive semantic interpretations for materials
in an image. As shown in Fig. 2, vegetation spectra reflects
strongest in the range of 650–1400 nm [24], and the Stretched
CMF envelope maps vegetation to green (this is also true
for the Piecewise Linear envelopes). Water has the strongest
reflectance for wavelengths between 400–600 nm [24] and
appears blue when visualized with both envelope sets. Because
of the consistent rendering property, these colors provide
classification cues that are independent of region shape.

In the Moffett field scene shown in Fig. 4, the main features
of water, live vegetation, dry vegetation and buildings can be
identified in each visualization.
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In the PCA visualization [Fig. 4(a)] the areas rendered red
“pop out” strongly. In order to classify the red regions a viewer
must rely on the shape of the red regions. Since the red re-
gions appear in shapes that one recognizes as fields, baseball
diamonds, and golf courses, one hypothesizes that red regions
are vegetation in this image. However, shape cues can be mis-
leading, since the upper right of the image has a few red river-
like features that might lead one to believe that red corresponds
to water in this image, although the “green” material has more
water-like shapes. Shape can also be used to identify buildings
and other man-made features in the image. In short, since the
color associations in PCA visualizations are not consistent be-
tween scenes, we have to rely on shape cues alone to mentally
classify materials.

In the stretched CMF visualization [Fig. 4(b)], the colors are
more natural looking, and no colors “pop out” strongly. Men-
tally classifying regions is aided by region color. The green re-
gions have strong reflectance around 1100 nm, which is con-
sistent with healthy vegetation such as lawn grass (see Fig. 2).
The blue regions are fairly dark, and their hue suggests a dom-
inant reflectance around 700 nm. This is consistent with the
reflectance spectrum of water. The blue regions in the lower
middle of the image show a brighter gray material that occurs
along with the water, a feature that is nearly invisible in the PCA
visualization. Our best classification cue here is shape and gen-
eral knowledge, which would label it as mud. The green-yellow
regions appear similar to the reflectance spectrum of dry grass.
A guess that the small rectangular shapes are buildings is sup-
ported by their gray to white colors, consistent with concrete or
shiny metal roofing.

In the Lunar Lake scene shown in Fig. 5, there is no open
water and little vegetation, so the identifiable features are rock
and soil types. As shown by the range of the spectral angle be-
tween hyperspectral pixels in the two scenes (see Fig. 3) the
materials in this scene are less varied.

Generally, features are better segmented using the PCA
images than the fixed envelope visualizations. Conversely,
there are features such the texture of the evaporation ponds
in the Moffett Field image that are clear in the fixed envelope
visualization but not in the PCA image. Due to the consistent
rendering property, the fixed envelope visualizations have the
added advantage of using hue and saturation as classification
cues, in addition to shape cues. Also, due to the wavelength
shift invariance property, average reflectivity can be gauged
from the brightness of the fixed envelope visualizations, which
is not possible with the PCA visualizations.

As discussed in item 3) of Section V, PCA finds a subspace
that maximize the variation of the data, where the image data is
treated as a vector and spatial relationships between data points
are not taken into account beyond the notion that all the data
points are from one image. Hence, PCA should not be expected
to preserve edges in the visualization.

VIII. DISCUSSION

In this paper, we presented design goals and solutions for
the display of fused hyperspectral imagery on tristimulus de-
vices, without reference to a specific task or application. Our

approach uses a set of fixed linear basis functions to create a
consistent visualization. We have demonstrated two sets of such
basis functions with arguably beneficial properties. Their suc-
cess at meeting the design goals is given below.

Both spectral weighting envelope sets give consistent ren-
dering of hue and saturation, with minor luminance scaling used
to take full advantage of the dynamic range of the display. As
seen in the Lunar Lake figure (Fig. 5), the consistent render-
ings cover a much smaller volume of the colorspace than the
PCA rendering. One could argue that this is a suboptimal utiliza-
tion of the full colorspace. However, as advocated by Robertson
and O’Callaghan [10, pg. 56], scene understanding is often best
enhanced by the “ability to associate perceptually meaningful
color attributes.” That is, one knows instantly what is and what
is not in the scene by the colors rendered. Additionally, the spar-
sity of bright saturated colors in the proposed renderings allows
bright saturated colors to be used for marking important items in
the image. A disadvantage to requiring a visualization method to
use a maximum number of colors is that in cases where there is
not a large amount of differentiable information in the image the
visualization will be very sensitive to noise. Lastly, targets that
should stand out as substantially different from a mildly varying
background can be “lost” in a visualization that maximizes the
number of colors used.

The stretched CMF envelopes have better edge preservation,
as measured by the relationship between chroma distance and
spectral angle shown in Fig. 3 and Table I. It should be noted
that PCA creates the strongest edges, although the edges are
not as highly correlated with spectral angle. Spectral weighting
envelope visualizations are computed quickly, requiring only
one multiplication and addition per channel per pixel. Both
spectral weighting envelope sets have an equal-energy white
point, so that color saturation in a rendered pixel indicates how
nonuniform its reflectance spectrum is. Both spectral weighting
envelopes are designed to use smallest effective differences and
appropriate preattentive features by using minimal contrast
stretching, which is restricted to linear transformations of lumi-
nance. A natural palette is created by using spectral envelopes
with few inflection points. An equal-energy white point also
helps, since it promotes a balance of colors. Wavelength shift
invariance is not quite achieved by the current designs; it
remains an option for future work.

IX. CONCLUSION

The proposed visualization goals are useful for designing,
evaluating, and using scientific visualizations. We have shown
that fixed spectral envelopes can satisfy many goals, including
consistency, while still displaying edge information which cor-
relates with spectral angles.

The proposed visualizations can be used separately as a tool
to interpret and contrast scenes, or can be used in conjunction
with task-specific visualizations. For example, these visualiza-
tions could be used as a base image upon which to mark where
particular endmembers are found. The desaturated nature of the
proposed visualizations leaves room in the color gamut to use
bright saturated colors for such markings, or to point out loca-
tions of interest.
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