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Abstract

Joint Deconvolution and Classification:
Classifiers for Dataset Shift Induced by Linear Systems

Hyrum S. Anderson

Chair of the Supervisory Committee:
Professor Maya R. Gupta

Department of Electrical Engineering

A basic assumption underlying traditional supervised learning algorithms is that labeled

examples used to train a classifier are indicative of (drawn i.i.d. from the same distribu-

tion as) the test sample. However, a common problem in signal processing violates this

assumption: given clean training examples, classify a signal that has propagated through a

noisy linear time-invariant system. This traditional signal processing problem is recast as

a dataset shift problem for machine learning, in which training and test distributions dif-

fer. Joint deconvolution and classification is proposed as a system-optimized framework for

classifying a channel-corrupted signal from clean training features. In particular, classifiers

are designed to account for the convolution relationship between test and training distri-

butions. The joint MAP classifier jointly estimates a clean signal and a class label from a

multipath-corrupted signal. The joint QDA classifier probabilistically accounts for the con-

volution relationship, and is extended for use with subband energy features. A set of kernels

are proposed that measure similarity between a clean training signal and a corrupted test

signal, and their use for channel-robust SVMs is proposed. With a focus on passive acoustic

classification for multipath-corrupted signals, classifiers are tested in experiments to classify

simulated narrowband acoustic signals, to identify Bowhead whales from their vocalizations

in shallow water, and to acoustically identify trumpeters in a reverberant environment.
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Chapter 1

DATASET SHIFT FROM LINEAR TIME-INVARIANT SYSTEMS

Like any other honest man, I am

obliged to accept only the truth.

Dr. Henry Eyring, chemist

Classification methods predict the class membership of a test feature vector x given

a set of labeled training feature vectors {(xi, yi)}Ni=1 (see Figure 1.1). For instance, in

handwritten digit classification the vector xi may be a vector of pixel intensities of the ith

example image, the label yi signifies the digit represented by the image, and a classifier

must determine which digit is represented by the pixel intensities of x. For most supervised

learning algorithms, the underlying assumption is that the training samples {xi}Ni=1 are

similar to any new test sample x that might be observed, so that an algorithm trained on

{(xi, yi)}Ni=1 can be used to make a reasonable prediction about the label of x.

However, there are many applications in which the training samples differ significantly

from the test sample. For example, automatic speech recognition systems may be trained in

a certain acoustic environment, but the environment at test time is not guaranteed to match

the training conditions [8, 54]. Or, consider an underwater acoustics scenario, in which train-

ing samples of target are acquired in the deep ocean water, but the classifier is deployed

in a shallow-water environment, where the test samples are corrupted by multipath and

interference [2, 44]. As another example, face recognition methods must sometimes account

for the fact that a test image was acquired from a low-quality camera, but the database of

training images is high-resolution [26]. Each of these examples violates the default assump-

tion in supervised learning, that a test sample x and its true label y∗ are drawn i.i.d. from

the same underlying joint distribution pXY as the training pairs {(xi, yi)}Ni=1. A mismatch

between the test and training distributions is known as dataset shift [53].

If the training distribution pXY differs from the test distribution arbitrarily, then one
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Figure 1.1: Typical supervised learning classification setup. The task is to classify a feature
vector x extracted from the signal x[n] given labeled (+ or −) training samples {(xi, yi)}Ni=1.
The test feature x and its true label are assumed to be independent and identically dis-
tributed with {(xi, yi)}Ni=1.

test features training featureschannel features

-

+ +
+++
+
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-
-
--

-
?

?

Figure 1.2: Depiction of problem setup for dataset shift induced by a linear time-invariant
system. The task is to classify feature vector z extracted from the signal z[n]. Features x
of the unknown test signal x[n] are not given, however x and its true label y∗ are drawn
i.i.d. from same distribution pXY as training pairs {(xi, yi)}Ni=1. Likewise, the unknown
feature vector h of the true impulse response h[n] is independent and identically distributed
with auxiliary channel samples {hi}Mi=1.
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cannot hope to learn a classifier from training data that generalizes well to the test data.

However, each of the examples above arises from a case where the training samples and test

samples are related by an unknown linear time-invariant system and additive noise.

This thesis addresses the dataset shift problem induced by a noisy time-invariant chan-

nel. Formally, training samples {xi}Ni=1 are extracted from critically sampled time signals

{xi[n]}Ni=1, and a test feature vector z is extracted from the signal

z[n] = h[n] ∗ x[n] + w[n], (1.1)

where ∗ denotes convolution, h[n] is the unknown impulse response of the unknown system,

x[n] is the unknown signal of interest, and w[n] is a noise realization. Features x of the

unknown test signal x[n] are not known, however, it is assumed that x and its true label y∗

are drawn i.i.d. from the same distribution as the training pairs {(xi, yi)}Ni=1. It is assumed

that the labels {yi}Ni=1 represent one of two classes, yi = −1 or yi = 1. In addition, it is

assumed that a finite set of unlabeled auxiliary samples {hi}Mi=1 are available, and that the

unknown features h of the h[n] in (1.1) are drawn i.i.d. from the same joint distribution

as {hi}Mi=1. (Throughout this thesis, bold-face x denotes a vector, regular-face x denotes

a scalar; random vectors and scalars are uppercase and written as X and X, respectively;

refer to Table 1.1 for a summary of the key notation used in this thesis.)

The feature vectors z, {xi}Ni=1 and {hi}Mi=1 may, for example, consist of samples of a

signal, pixel intensities, wavelet coefficients, cepstral coefficients, or the energy in selected

frequency bins. No matter the choice of features, it is clear that in general pZY 6= pXY :

the test distribution has shifted from the training distribution because of the noisy linear

time-invariant channel.

1.1 Scope of Research

The novel aspects of this thesis lie at the fruitful intersection of signal processing and

machine learning. This thesis presents a machine learning setup (see Figure 1.2) to a well-

known problem in signal processing, and therein formally defines a previously unpublished

flavor of dataset shift. Then, several classifiers are presented to address the dataset shift

induced by a noisy time-invariant system.



4

Table 1.1: Notation used in this thesis.

x[n] discrete-time signal

x generic feature vector (discrete-time signal vector where noted)

xf [k] DFT of x[n]

xf DFT signal vector

ux[k] subband energy |xf [k]|2

ux subband energy vector

X random vector

X̄ mean of X

N # of training samples

M # of auxiliary channel examples

d # of feature dimensions

N (x; m, A) Gaussian in x with mean m and covariance A

a ∗ b discrete convolution sum of the vectors a and b

A ∗ ∗B two-dimensional convolution of matrices A and B

A ·B Hadamard (elementwise) multiplication: C = A ·B ↔ Cij = AijBij
[A]
[B] Hadamard division: C = [A]

[B] ↔ Cij = Aij

Bij
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There are four general strategies for dealing with the problem outlined in Figure 1.2.

First, one may select features z and {xi}Ni=1 that are invariant to the LTI channel, so that

pZY = pXY . Features invariant to channel dispersion were considered for classification in

[50]. A second strategy is to estimate x̂ from z via feature or signal deconvolution, so x̂

and its label are jointly distributed as the training distribution pXY . Since classifiers are

trained on the original dataset, distributed as pXY , these methods are informally referred

to as x-space classifiers. A third approach is to transform the training data (explicitly or

implicitly) using {hi}Mi=1 to yield artificial training pairs {(zi, yi)}Pi=1 that are distributed

i.i.d. with the test distribution pZY . Methods that utilize pZY as the underlying distribution

are informally referred to as z-space classifiers. Yet a fourth method is to train a classifier

using pH as the underlying distribution: for each test point z, labeled channel estimates

{(ĥi, yi)}Ni=1 are estimated from {(xi, yi)}Ni=1, and the label y∗ is chosen by comparing test

points {ĥi}Ni=1 to {hi}Mi=1 using a one-class classifier. Gupta et al. presented a 1-NN classifier

for multipath impulse responses that chose y∗ = y` for ĥ` that maximized impulsiveness

[28].

In contrast to classical approaches in signal processing that seek to deconvolve then clas-

sify in distinct operations, the methods presented in this thesis represent a system-optimized

approach to the problem, and may be categorized broadly under joint deconvolution and

classification. It should come as no surprise that if we are given training samples {xi}Ni=1

and auxiliary samples {hi}Mi=1 as shown in Fig. 1.2, one might better estimate x̂[n] from

z[n] than by employing a blind deconvolution method that ignores the given training and

auxiliary data. From the perspective of building a classifier, one may expect that better

performance can be achieved if the convolution relationship between x[n] and z[n] is built

into a classifier. A central conclusion of this thesis confirms this intuition: in order to

estimate the class for z[n], one need not perform deconvolution explicitly; instead, better

results can be achieved when a classifier is designed to account for the linear time-invariant

channel.

The linear-system dataset shift problem depicted in Figure 1.2 describes many appli-

cations, but the experiments in this thesis will principally address passive acoustic classi-

fication, particularly when h[n] in equation (1.1) is the impulse response of a multipath
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channel, and w[n] is such that the SNR of the received signal is very low—between −10

and 10 dB SNR. Multipath channels exist whenever there is more than a single propagation

path between a transmitter and receiver. Since the transmitted signal travels multiple paths

of different propagation lengths, the resulting phase shifting and attenuation of individual

paths combines constructively or destructively at the receiver. The multipath impulse re-

sponse depends on the source location, receiver location and the location and acoustic

impedance of all scatterers in the propagation channel, so h[n] is not a smooth function of

position [39].

Since a dominant effect in multipath channels are “echoes” of various delays, h[n] is

often modeled as being k-sparse, that is, h[n] contains only k nonzero elements whose

location represents the phase delay and whose amplitude represents the attenuation of a

given echo path. However, the location and amplitude of nonzero elements cannot be

specified without accurate knowledge of the propagation environment. The difficulty of

modeling multipath effects is exacerbated for ocean acoustic channels [64], depicted in Figure

1.3. First, the speed of sound is a function of temperature, salinity and pressure, so that it

varies non-monotonically with depth, but as a rule of thumb is about 1560 m/s—more than

four times faster than in dry air. In addition, the multipath impulse response depends on

surface interactions that vary with wind speed (surface) and sediment composition (bottom).

Research related to classifying acoustic signals in shallow water is cited in Chapter 2.

1.2 Background

This section provides the reader with background related to joint deconvolution and classi-

fication. It is not intended to be exhaustive, rather, it places the research presented in this

thesis in proper context, and establishes basic tools and notation that subsequent chapters

will draw upon.

1.2.1 Blind Deconvolution

Much research in signal and image processing, applied math and seismology has been applied

to the problem of deconvolution, both blind and non-blind. Non-blind deconvolution is in

general an ill-posed problem, since the convolution with impulse response h[n] may have a
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?

Figure 1.3: Underwater passive acoustic classification is complicated in shallow-water envi-
ronments by multipath channels. Water may be considered shallow when the ocean depth is
shallowed compared to the observation distance. The multipath impulse response depends
on source and receiver location, surface interactions that vary with wind speed (surface)
and sediment composition (bottom), and the sound speed profile of the water column.

non-trivial null-space. The additive noise w[n] exacerbates the problem. Thus, even when

h[n] is specified exactly, a signal x̂[n] estimated from z[n] and h[n] is not a unique solution

to z[n] = h[n] ∗ x[n] + w[n].

Blind deconvolution methods attempt to recover x̂[n] (or ĥ[n]) from z[n] without speci-

fying h[n] (respectively, x[n]). Instead, they rely on prior information about the structure of

the signal that is being recovered. There are a host of blind deconvolution algorithms for ap-

plications ranging from communications to geophysics. For example, Petropulu and Nikias

presented a cepstral blind deconvolution technique that requires that there are no pole-zero

cancelations between the signal x[n] and the channel impulse responses from two measure-

ments [52]; however, the method requires multiple observations and relies on cepstral meth-

ods that are too sensitive for the low SNR regimes that we are interested in. Signal-based

deconvolution methods to remove multipath have been considered in [9, 7, 67, 65]. These

methods rely on the fact that h[n] may be modeled using only a few nonzero coefficients.
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As an example of an approach applied to deconvolving multipath-corrupted signals,

consider minimum entropy blind deconvolution introduced by Cabrelli in the geophysics

community [9]. Cabrelli introduces the so-called D-norm that operates on a discrete impulse

response (vector h):

D(h)
4
=
‖h‖∞
‖h‖2

, (1.2)

where ‖h‖∞ = maxn |h[n]| and ‖h‖2 is the `2 norm. Since ‖ · ‖∞ ≤ ‖ · ‖2, D(h) achieves

a maximum of 1, which can be shown to occur when h has exactly one nonzero element.

Thus, D(h) measures the “impulsiveness” of h. Let F` be the set of all nonzero vectors

of fixed length `—the set F` is the set of all `-length FIR filters. Let z ∈ Rn+`−1 be the

(noiseless) discrete convolution x ∈ Rn with h ∈ F`. Cabrelli’s method solves

g = arg max
f∈F`

D(f ∗ z). (1.3)

If the unknown h uniquely satisfies the minimum entropy property that D(h) > D(f),∀f ∈

{F` \ h}, then g = x−1 is the Fourier inverse of x. This can be verified by noting that

when D(h) is the unique maximum of D(·) and since x−1 ∗ z = x−1 ∗ x ∗ h = h, then

D(g ∗ z) = D(h) implies that g = x−1.

1.2.2 Classifiers and Kernels

Supervised learning classifiers infer the class label, assumed to be either +1 or −1, of a

test feature vector x from labeled training examples {(xi, yi)}Ni=1, as depicted in Figure 1.1.

Classifiers in this thesis are of two general varieties: generative and discriminative. For a

full review of classifiers, the reader is referred to [30].

Generative Classifiers and QDA

Generative classifiers estimate from training data {(xi, yi)}Ni=1 the joint distribution p(x, y),

factorized as the class generating distribution and prior p(x|y)p(y). Linear discriminant

analysis (LDA) and quadratic discriminant analysis (QDA) are two common generative

classifiers that classify a test sample x with each class-conditional distribution p(x|y) as-

sumed to be Gaussian N (x; myΣy) with the same covariance matrix Σy=−1 = Σy=1 (LDA)
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for each class y is, or allowing covariance matrices to differ (QDA). The learning task, then,

is to estimate my and Σy from {(xi, yi)}Ni=1, which may be ill-posed for d > N . The de-

cision boundaries resulting from LDA and QDA are, respectively, linear and quadratic (or

any conic section), hence their names. Generative classifiers’ probabilistic nature provides

straightforward extensions for handling priors and missing data, and can readily diagnose if

the test sample x is ill-fitted to either class. However, a criticism of generative classifiers is

that since one does not know the true distribution pXY , choosing a simple model for p(x|y)

introduces model bias, while choosing a too-flexible model for p(x|y) leads to overfitting

(exaggerating the importance of some data that may be noisy or irrelevant).

Discriminative Classifiers, the SVM, and Kernels

Discriminative approaches eschew modeling of pXY , instead directly optimizing the decision

boundary by minimizing misclassifications (empirical risk) over the training set {(xi, yi)}Ni=1.

Hence, they have the perceived advantage of directly optimizing the quantity of interest

(classification error via empirical risk), instead of the description of the classes through

p(x|y). In practice, they have been shown to be robust, even when few training samples are

available [35]. However, confidence measures are difficult to determine from discriminative

classifiers, and prior knowledge is difficult to incorporate—both of which come naturally to

generative classifiers.

The support vector machine (SVM) is currently the most popular member of the family

of discriminative classifiers. The SVM classifies a feature vector x based on the sign of

a discriminant function f(x) as y∗ = sgn(f(x)). The SVM can be motivated from the

viewpoint of a maximal margin linear classifier that solves for weights v and bias b of a

linear function f(x) = vTx + b as

min
v,ξi,b

1
2
vTv + C

N∑
i=1

ξi s.t. yi
(
vTxi + b

)
≥ 1− ξi, ξi ≥ 0, i = 1, . . . , N,

where C is a regularization parameter often expressed as C = 1
2λN . When the classes are

linearly separable (all slack variables ξi = 0), the SVM finds the function f(x) so that

among all linear classifiers that bisect the data via sgn(f(x)), the margin 2
‖v‖ is maximized.
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Often, a linear decision boundary is too inflexible. The SVM is easily extended to

nonlinear decision boundaries by introducing a nonlinear mapping φ : Rd 7→ Rp and solving

the SVM on the mapped data {(φ(xi), yi)}Ni=1. This can be accomplished implicitly by

embedding φ(·) into the optimization and reformulating as

min
c,ξi,b

1
2
cTKc + C

N∑
i=1

ξi s.t. yi

 N∑
j=1

cjK(xi,xj) + b

 ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , N,

where K(xi,xj) = φ(xi)Tφ(xj) is the kernel function, K is the kernel matrix whose i, jth

element is K(xi,xj), and each weight ci = αiyi is a multiple of the class label yi ∈ {−1,+1},

where 0 ≤ αi ≤ C. The fact that φ(·) appears only as an inner product K(xi,xj) =

φ(xi)Tφ(xj) is called the kernel trick : rather than specifying φ(·), one may instead specify

a kernel function K(·, ·) which implies an underlying φ(·).

The kernel-based discriminant function can then be expressed as

f(x) = b+
N∑
i=1

αiyiK(x,xi). (1.4)

Notably, the SVM often chooses many αi = 0, so that (1.4) depends only on a sparse subset

of the training data. Hence the name of the classifier—those xi’s for which 0 < αi < C

are the support vectors of the SVM. For any support vector1 xj , the function f(xj) exactly

predicts its label yj , so that the bias b = yj −
∑N

i=1 αiyiK(xi,xj).

The kernel function K(xi,xj) measures the similarity of its two arguments. Since it

implicitly represents the inner product φ(xi)Tφ(xj), it must be a symmetric positive definite

function. The family of kernels is a convex cone, so that one may construct new kernels

from existing kernels using a pleasant algebra [24]. We exploit this fact when deriving

channel-robust kernels in Chapter 5.

Radial basis function kernels can be written in terms of some distance between training

points K(xi,xj) = K(‖xi − xj‖), hence they are invariant to a global translation of the

dataset. In Chapter 5, we focus on the popular Gaussian radial basis function (RBF):

Krbf(xi,xj) = N
(
xi; xj , γ−1I

)
, (1.5)

1Those xj ’s for which αj = C are bounded support vectors, and do not satisfy b = yj−
∑N

i=1 αiyiK(xi,xj).
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where N (·) denotes the Gaussian function, and γ is the bandwidth parameter. Typically,

the RBF is implemented without the Gaussian scaling factor so that Krbf(x,x) = 1.

Every kernel is associated with a reproducing kernel Hilbert space (RKHS). This fact

allows us to express the SVM objective more elegantly as minimizing regularized loss:

f∗ = arg min
f∈H

1
N

N∑
i=1

L(f(xi), yi) + λ‖f‖2K , (1.6)

where the hinge loss L(f(x), y) = (1− yf(x))+ is a convex relaxation of 0/1 loss, and H is

the RKHS associated with kernel K.

1.2.3 Features

The classifiers presented in this thesis may be generalized for many choices of features,

but the development is restricted to two important types of features in signal processing.

In some applications (e.g., image classification), it is convenient to train a classifier using

the sampled signal (e.g., pixels) as features. Let x, h, w and z be vectors whose elements

contain the samples of the discrete-time signals x[n], h[n], w[n] and z[n], respectively. Then,

the convolution relationship in (1.1) can be expressed using the notation

z = h ∗ x + w,

where a ∗ b is the vector of values that results from discrete convolution of the entries in a

with the entries in b.

In other applications, features extracted from the discrete-time signals better discrim-

inate the different classes. Subband energy features are a useful and frequently utilized

feature choice in many signal processing applications. Let xf [k] denote the kth bin of the dis-

crete Fourier transform of x[n], and let wf [k] be a realization of a zero-mean proper complex

Gaussian white noise process with known variance. The subband energy of uz[k] =
∣∣zf [k]

∣∣2
is given by

uz[k] = uh[k]ux[k] + uw[k] + 2 Re
{
xf [k]hf [k]wf

∗
[k]
}
,

where wf
∗[k] is the complex conjugate of wf [k]. Consider a feature vector of subband

energies at d frequency bins k = k1, k2, . . . , kd. The relationship of the observed vector
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uz ∈ Rd and the (unknown) vector ux ∈ Rd can be written concisely as

uz = uh · ux + uw + 2 Re
{

xf · hf ·wf ∗
}
, (1.7)

where · denotes the Hadamard (element-wise) product.

1.2.4 Noisy Features

If instead of a convolution relationship, we have only an additive noise model x̃ = x + w,

then a test feature vector x̃ differs from the training samples {xi}Ni=1 only by additive noise.

This simple noise model can be handled by the noisy features rule, which accounts for some

or all of the elements of x̃ to be noisy or missing [17, p. 55]. When all of the elements are

noisy, the noisy features maximum a posteriori (noisy features MAP) rule is

p(y|x̃) ∝
∫
p(x|y)p(y)p(x̃|x) dx,

where the pdfs in the integrand are assumed to be known.

1.2.5 Dataset Shift

Dataset shift refers to the general problem in predictive modeling in which the joint dis-

tribution of inputs and outputs differs between training and test stages. As mentioned

previously, if training and test distributions differ arbitrarily, there is little hope for learn-

ing a generalizable classifier.

This thesis defines one particular type of dataset shift that is induced by an unknown

linear time-invariant channel. However, dataset shift of other varieties are present in many

other applications. For example, since spam filtering algorithms are trained under one set of

criteria, successful spammers often build spamming mechanisms that change behavior over

time to exploit this fact [53]. Or, consider the sample selection bias problem of training a

speech recognition system using predominantly native English speakers, but in real-world

test conditions, accents and drawls confuse the classifier. Despite the fact that dataset shift

is present to some degree in all practical applications, it has until recently received little

direct attention in machine learning.
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Recently, algorithms have been developed to deal with a particular type of dataset shift

called covariate shift. In covariate shift, only the distribution of the inputs (covariates)

x changes between training and test time, but the input-output relationship remains un-

changed [5]: for training, pXY = pY |X pX , but at test time, p̃XY = pY |X p̃X .

Prior probability shift is another common type of dataset shift occurs when only the

distributions of the outputs y changes between training and test time: for training, pXY =

pX|Y pY , but at test time, p̃XY = pX|Y p̃Y .

In the parlance of dataset shift, the problem addressed in this thesis occurs because of a

probabilistic domain shift. Specifically, the test distribution pZY is related to the training

distribution pXY via the conditional distribution pZ|X as pZY =
∫
X pZ|XpXY . We model

pZ|X using prior knowledge about the problem structure—that the underlying relationship

between training and test samples is rooted in the convolution relationship in (1.1)—and

by using auxiliary channel samples {hi}Mi=1.

For an overview of other forms of dataset shift and algorithms to cope with them, the

reader is referred to [53].

1.3 Outline of Thesis

The thesis proceeds as follows. Chapter 2 presents related research from signal processing

and machine learning that are applicable to classifying a signal corrupted by unknown

multipath.

Chapters 3 through 5 cover the theoretical development of classifiers. In Chapter 3,

two signal-based classifiers are presented. The joint MAP algorithm jointly estimates a

class label y∗ and deconvolution estimate x̂. The joint QDA algorithm estimates only the

class label; the convolution relationship is built into the classifier. In Chapter 4, a feature-

based joint QDA algorithm is derived which utilizes subband energy features to discriminate

between classes. The local joint QDA algorithm is also introduced as a means to reduce

model bias. In Chapter 5, channel-robust kernels are presented which account for the dataset

shift induced by linear systems, with closed form derivations given for RBF kernels with

Gaussian pZ|X for discrete-time signal, image, and subband energy features. The kernels

are used with SVMs in the experiments of Chapter 6.
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The experiments in Chapter 6 compare feature-based classifiers on three datasets: the

first uses simulated narrowband signals with simulated channel impulse responses, in the

second, Bowhead whale vocalizations are used to identify individual whales in a simulated

acoustic environment, and lastly, trumpeters are identified from recordings in an acoustically

reverberant chamber.

Some insights into related work in x-space classifiers that were developed in parallel with

the classifiers in this thesis are presented as part of the conclusions in Chapter 7.
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Chapter 2

RELATED WORK

[Great men are those] who can catch

hold of men’s minds and feelings and

inspire them to do things bigger than

themselves....those who stir feelings and

imagination and make men struggle

toward perfection.

Dr. Henry Eyring, chemist

The work in this thesis builds on previous contributions from two broad fields: signal

processing and machine learning. This chapter reviews relevant prior works from both

communities. In Section 2.1, research from acoustics and signal processing is cited which

relates to classifying signals corrupted by multipath. Then, research from the machine

learning community about building invariance into classifiers is presented in Section 2.2.

2.1 Classifying Signals Corrupted by Multipath

Signal processing researchers in underwater passive acoustics have considered the problem

of classifying signals corrupted by multipath for over thirty years [58]. Ehrenberg et al.

demonstrated in an ocean acoustic propagation experiment that multipath generally cannot

be ignored, and that simple time-gating of the received signal can discard too much of the

signal information for classification [18, 19]. Multipath induced by a shallow ocean channel

presents an additional challenge in that the multipath propagation is generally time-varying

so that the structure of h[n] is highly sensitive to spatial location [21, 63].

A review of the literature reveals four general approaches for classifying signals corrupted

with multipath. Each approach corresponds roughly to the four general strategies outlined

in Section 1.1 for mitigating the dataset shift problem.
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The first strategy is to extract features from training signals {xi[n]}Ni=1 and the received

signal z[n] that are invariant to multipath distortion, then classify based on the multipath-

invariant features. Casting this approach into the problem setup defined in Chapter 1,

classification methods of this sort seek to find features such that pXY = pZY . Shin et al.

consider a number of time-frequency features for clutter rejection [59]. Strausberger et al.

compare different distance measures for 1-nearest-neighbor classification of signals passed

through Rician channels for over-the-horizon radar [62]. Okopal and Loughlin developed

features invariant to channel dispersion and dissipation, and demonstrated superior clas-

sification performance compared to temporal and spectral moment features [49]. Other

research about features invariant to propagation effects include [50, 51, 45]. In general,

classification using channel invariant features can provide good results to the extent that

the classes are well-separated in the designated feature space.

Blind deconvolution is the basis for a second commonly-used approach for classifying

z[n]: a clean signal x̂[n] is estimated from z[n], then a classifier is used on features of

x̂[n]. By deconvolving, the dataset shift problem is ameliorated since both test and training

samples are distributed as pXY . There are many examples of trying to remove multipath by

blind deconvolution in order to classify [43, 11, 55, 38, 7, 67, 65]. Some researchers exploit

the impulsiveness of the unknown h[n] to estimate x̂[n] via blind deconvolution [7, 67, 65].

Broadhead and Pflug reported [7] excellent correlation between true signals and signals

blindly deconvolved by the minimum entropy method using the D-norm [9], but did not

consider classification. Gupta et al. have shown that these blind deconvolution estimates can

be highly correlated to out-of-class training signals, so that nearest neighbor classification

on correlation scores performs poorly, particularly at low signal-to-noise ratios [28, 27].

A third approach is to predict the representation of the training signals {xi[n]}Ni=1 using

a forward model for the multipath ĥ[n]. This has the advantage of avoiding deconvolution,

and is most related to the joint QDA classifier presented in Chapter 4. A classifier is built

using virtual training signals {zi[n] = xi[n] ∗ ĥ[n]}Ni=1 to classify z[n], so that both test

and training data are distributed as pZY . Researchers previously have based their forward

model ĥ[n] on geometry or physical assumptions [43, 15]. Liu et al. first proposed an in-

channel classifier based on free-field training data [43]. They built a classifier by assuming
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a finite number of multipath reflections for near-bottom target classification. Dasgupta and

Carin classify after accounting for multipath via time-reversal imaging, which requires the

geometry and sound speed profile of the channel [15].

In a conference paper, we (Gupta et al.) first proposed that to classify a signal cor-

rupted by unknown multipath, jointly considering deconvolution and classification can lead

to better performance than traditional approaches that deconvolve then classify in inde-

pendent steps [28]. Our method leveraged training data to produce a multipath channel

candidate ĥi[n] for each training signal xi[n] given z[n]. Then, a nearest-neighbor classifier

chose the class y∗ = yi for which the estimated filter ĥi[n] was most multipath-like, ac-

cording to Cabrelli’s D-norm in (1.2). The resulting joint deconvolution and classification

method yields the best signal estimate x̂[n] = xi[n] and filter estimate ĥ[n] = ĥi[n] that may

have produced z[n], as well as the optimal class label y∗ = yi. Classification performance

was markedly better than minimum entropy blind deconvolution followed by classification,

particularly at low signal-to-noise ratios. However, the performance of that joint decon-

volution/classifier relied on several conditions [28]. First, it required a good criterion for

evaluating how well a given ĥ[n] represented a multipath filter. Although the D-norm cri-

terion is a convenient choice, multipath impulse responses in underwater acoustics violate

the minimum entropy property [43]. Secondly, the proposed nearest-neighbor approach re-

quired that the training signals {xi[n]}Ni=1 be plentiful and that the true x[n] be close to a

training sample of the correct class in terms of ‖x[n] − xi[n]‖. Thirdly, the deconvolution

estimate x̂[n] was always restricted to be a member of the set {xi[n]}Ni=1. Lastly, it is not

straightforward to incorporate features in classification.

2.2 Invariant Classifiers

In the machine learning community, researchers have addressed the fact that the training

samples {xi}Ni=1 may not encapsulate all of the manifestations of a test sample. And, similar

to the dataset shift problem outlined in Chapter 1 in which we know a priori that test

and training data are related by convolution, machine learning researchers have proposed

methods to incorporate prior knowledge into classifiers, albeit for different applications.

The various methods boil down to two general strategies: creating virtual examples that
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model the conditions at test time, and designing classifiers that are invariant to the various

manifestations of a test sample.

2.2.1 Virtual Examples

The idea of augmenting a training set with “virtual examples” (VEs) dates back to at

least 1990 [1]. For example, to build a handwritten digit classifier that is robust to various

rotations, one can augment the original training set with artificial examples of rotated digits

[16]. The transformed VEs are included with the original training examples to form an

expanded training set. The choice of transformation applied to generate the VEs is based

on prior knowledge about the perturbations that may be expected in the test features.

Typically, the VEs are generated from a discrete and deterministic set of transformations,

for example, single pixel translations in the four principal directions of the image plane.

Lorens et al. have employed virtual examples to train SVMs to classify targets from

their acoustic signatures [44]. High quality recorded signatures are artificially corrupted

by simulating their propagation through an acoustic channel to produce virtual examples

that better represent the test distribution pZY . Since the original training features are not

representative of the test distribution, they are discarded. In Chapter 5, we implement the

VE method by propagating each of the N training signals through M example channels,

resulting in a training data set size of M × N . This approach has the disadvantage of

O
(
M3N3

)
complexity in training an SVM.

A variant of VEs is the method of virtual support vectors, which trains an SVM on

an uncorrupted training set, then generates virtual examples from only the support vectors

(and bounded support vectors) [56]. The VSV method has been shown to reduce the overall

cost of training an SVM. However, in preliminary results on the datasets used in this thesis,

the author found that at least for the RBF kernel—which is known to select many training

points as support vectors—the VSV method did not substantially decrease training time,

and often exhibited worse performance.
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2.2.2 Invariant Classifiers via Kernels

Classifiers can be designed to be invariant to conditions one would expect at test time.

Schölkopf et al. showed how to engineer kernel functions that allow SVMs to be invariant

under transformations forming a Lie group [57]. They showed that the modified kernel is

equivalent to preprocessing the data with a whitening matrix.

An approach that is a hybrid of creating virtual examples and engineering a kernel is

jittering kernels, in which a set of transformations T (e.g., single pixel translations of an

image an any direction) of a training sample xi is considered in the kernel definition [16].

Given a positive definite kernel K(·, ·) with K(x,x) = C is a constant for any x, the jittering

kernel solves

Kjitter(x,xi) = max
t,t̃∈T

K(t(x), t̃(xi)),

so that the jittering kernel measures the maximum similarity over all transformations (jit-

ters) that one might expect at test time. Jittering kernels for SVMs have the advantage

over VEs for SVMs in that the jittering kernel SVM scales linearly with the number of

transformations |T |, whereas the VE SVM is cubic in the number of transformations. De-

coste and Schölkopf employed jittering kernels in an SVM to build a classifier robust to

slight translations and rotations of handwritten digits and showed previously unmatched

error rates on the MNIST benchmark dataset of handwritten digits [16]. Invariant kernels

have been further studied by Haasdonk and Burkhardt [29].
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Chapter 3

SIGNAL-BASED JOINT DECONVOLUTION AND CLASSIFICATION

A good model is best, but a bad model

is better than nothing.

Dr. Henry Eyring, chemist

This chapter expands on the intuitive idea that by jointly considering the task of decon-

volution and classification, better performance may be achieved than if dealing with each

task serially. Two classifiers are introduced: the joint MAP classifier, and the joint QDA

classifier. Each classifier takes as features the samples of a discrete-time signal features:

training samples {xi}Ni=1 = {xi[n]}Ni=1, auxiliary channel features {hi}Mi=1 = {hi[n]}Mi=1 and

test feature vector z = z[n], where the notation x[n] is overloaded to denote the entire

discrete-time signal, not just the signal at the nth location. The contents of this chapter

have been published in a journal paper [2] and a conference paper [27].

The framework developed in this chapter will apply to any problem where test and train-

ing data are related by the convolution relationship in (1.1), but the applications emphasize

the case in which h[n] is the impulse response of an acoustic multipath channel, and where

the additive noise w[n] gives rise to low signal-to-noise ratios (SNRs). For passive sonar,

z[n] represents the in-channel received signal, h[n] represents the multipath and x[n] is the

free-field signal. Underwater multipath channels are generally time-varying and are highly

sensitive to spatial location, making them difficult to model effectively [21, 63]. To capture

the variability of the channel, the impulse response h[n] will be modeled as a draw of a

random process.

In Section 3.1, we unify deconvolution and classification in a joint maximum a posteriori

(MAP) framework. This method jointly estimates a clean signal x̂[n], a channel estimate

ĥ[n] and a class label y. In Section 3.2, we argue that if signal estimate x̂[n] is not needed,

better classification performance can be achieved by not committing to a particular signal
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or channel estimate. We show how a quadratic discriminant analysis (QDA) classifier can

be designed to incorporate the effects of uncertain h[n]. The algorithms are compared

to a deconvolve-then-classify strategy in experiments using simulated multipath channels

and signals. A feature-based and a more flexible joint QDA classifier will be presented in

Chapter 4. The chapter concludes with a discussion about the methods in Section 3.4.

3.1 Joint MAP Deconvolution and Classification

Let vectors z, x, h and w denote the discrete-time test signal, source signal, channel and

noise, respectively. In this section, we assume that x, h and w are realizations of random

vectors X, H and W, respectively. Let W ∼ N (w; 0, σ2
wI), where I is the identity matrix.

It is assumed that X conditioned on class label y is Gaussian distributed with mean mx|y

and covariance Σx|y. Real signals are generally non-Gaussian, but the Gaussian assumption

is critical to keeping an otherwise formidable deconvolution problem tractable. The distri-

butions of X, H and W are mutually independent. Model H using a multivariate Laplacian

distribution with independent dimensions, so that the ith element of the random multipath

has mean mh[i] and scale parameter b[i]. The Laplacian distribution is an appropriate

prior model for multipath since it yields sparse realizations. Let θ = {mx|y,Σx|y,mh,b, σ2
w}

be the set of parameters for these three distributions, where θ is assumed to have been

estimated a priori from the training and auxiliary data.

If the clean signal vector x were given, the MAP classification rule would select the class

label y∗ such that

y∗ = arg max
y
p(y|x, θ). (3.1)

However, x is unknown. One might estimate x and the channel signal vector h from z using

the MAP rule as

{x̂, ĥ} = arg max
x,h

p(x,h|z, θ). (3.2)

Instead, we jointly estimate the signal, filter, and class label by combining Equations

(3.1) and (3.2) into a single MAP criterion. The proposed joint MAP classifier estimates y∗
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as

y∗
a= arg max

y

(
max
x,h

p(x,h, y|z, θ)
)

(3.3)

b= arg max
y

(
max
x,h

p(z|x,h, y, θ)p(h|θ)p(x|y, θ)
)
p(y)

c= arg min
y

[
min
x,h

(
‖z− h ∗ x‖2 + σ2

w‖x−mx|y‖2Σ−1
x|y

+ 2σ2
w

∑
i

|h[i]−mh[i]|
b[i]

)]
+ σ2

w log |Σx|y| − 2σ2
w log p(y), (3.4)

where (b) follows from (a) using Bayes’ rule, the chain rule and independence assumptions;

and (c) follows from (b) by taking the negative logarithm of the pdfs, removing constants

that do not depend on x, h or y from the arg min, and scaling each term by 2σ2
w. Throughout

the thesis, the notation ‖x‖ denotes the `2 norm and ‖x‖2A denotes xTAx.

The ‖z − h ∗ x‖2 term in (3.4) drives the estimated filter h and test signal x to be

consistent with the received signal z in terms of squared error. The next two terms in (3.4)

drive x to match the a priori expected signal via the `2 norm, and drive h to match the

a priori expected filter via the `1 norm. Note that these latter two terms are regularized

by the noise variance—the greater the noise power, the more the estimate relies on the a

priori expectations and less on matching the received signal z. The fourth term penalizes

classes that exhibit high variance, and the fifth term is the class membership prior. Since

the noise determines the degree of regularization, a curious behavior of this approach is

that it performs poorly for high SNR: the first term will dominate as σ2
w goes to zero, and

solutions for x and h will no longer depend on mx|y and mh, respectively.

The objective function in (3.4) is not convex since it involves a product of variables in

the convolution sum h ∗ x. However, the problem is jointly convex in x and h in the limit

as σw → ∞, and is marginally convex in x or h for all σw. Therefore, we opt to solve the

(3.4) using an alternating minimization approach as a heuristic for finding the true solution.

Using

H = convmtx(h) =


h[1] · · · h[n] 0 · · · 0

0 h[1] · · · h[n] · · · 0
...

. . . . . .
...

0 · · · 0 h[1] · · · h[n]
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for the Toeplitz matrix representation of discrete convolution with fixed h [33], and for

fixed y, the objective as a function of x can be written in the form of generalized Tikhonov

regularization ‖Hx− z‖2 + σ2
w‖h−mh‖2Σ−1

h

. The solution [40] is

x̂ = (HTH + σ2
wΣ−1

x|y)
−1(HT z + σ2

wΣ−1
x|ymx|y).

Next, solve (3.4) for those terms depending on h by fixing x and rewriting as

ĥ = arg min
h
‖Xh− z‖22 + σ2

w‖D−1(h−mh)‖1, (3.5)

where X = convmtx(x) is the Toeplitz matrix representation of discrete convolution of x,

D is a diagonal matrix with entries b[i]
2 , and ‖ · ‖1 is the `1 norm. Equation (3.5) can

reformulated as

h̃∗ = arg min
h̃
‖X̃h̃− z̃‖22 + σ2

w‖h̃‖1, (3.6)

where h̃ = D−1(h−mh), X̃ = XD, and z̃ = z−Xmh. Equation (3.6) is solved naturally

as a quadratic program with linear constraints, for which efficient algorithms exist [6].

Since the optimization problem in (3.4) is non-convex, the alternating minimizations

strategy is not guaranteed to converge to the global minimum [66]. A common approach

is to optimize starting from several initial points, then choose the overall minimizer. The

initial guesses could be drawn i.i.d. from the class-conditional distribution N (mx|y,Σx|y).

We use a slightly different approach to take advantage of the fact that we have examples

from each class: convex combinations of the training signals as initial guesses. A depiction

of the alternating minimizations algorithm is shown in Algorithm 1.

Experiments and results for the joint MAP classifier are presented in Section 3.2.

3.1.1 A Related MAP Deconvolution Approach

MAP deconvolution has been explored previously by Lam and Goodman for blind image

deblurring (without classification) [42]. In that work, Lam and Goodman estimate the point

spread function h and the image covariance Σx by maximizing p(z|h,Σx)p(h)p(Σx). The

prior p(Σx) is replaced with a heuristic smoothness constraint on the covariance, and the

prior p(h) is replaced with the hard constraint h ∈ H for some convex set G. They proposed
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Input: z

Output: ĥ, x̂, y∗

foreach class y do initialize(hy);

while !converged do

foreach class y do

H = convmtx(hy);

xy =
(
HTH + σ2

wΣ−1
x|y

)−1 (
HT z + σ2

wΣ−1
x|ymx|y

)
;

X = convmtx(xy);

hy = arg minh ‖Xh− z‖22 + σ2
w

∥∥D−1 (h−mh)
∥∥

1
;

scorey = ‖z− h ∗ x‖2 + σ2
w‖h−mh‖2Σ−1

h

+ σ2
w‖x−mx|y‖2Σ−1

x|y
+ σ2

w log |Σx|y|;

end

end

y∗ = arg miny scorey;

ĥ = hy∗ ;

x̂ = xy∗ ;
Algorithm 1: Joint MAP deconvolution and classification implemented using alternating

minimizations. We use X = convmtx(x) to denote the Toeplitz convolution matrix .

an expectation-maximization (EM) algorithm implementation that alternates between es-

timating Σx (the E-step) and h (the M-step) in the Fourier domain. The image is finally

estimated by Wiener deconvolution using the estimated h and Σx. The algorithm results

in high-quality deblurred image estimates [42].

The Lam and Goodman MAP blind deconvolution may be extended to the multipath

problem by applying a Laplacian prior for p(h) as we have done in (3.4) instead of their

hard constraint h ∈ G. However, their approach cannot be extended to fit in the joint

deconvolution/classification paradigm by simply conditioning on the class label y and adding

the prior p(y) in the optimization. First, Lam and Goodman assume that the image x (and

therefore, z) is a realization of a zero-mean Gaussian distribution. In our framework, the

class-conditional mean is an important discriminating feature of the class. Secondly, their
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method must estimate Σx, but in our framework the class conditional covariance Σx|y is

estimated a priori from training pairs. Naively replacing Σx with Σx|y renders their E-

step useless so that iterating does not improve the initial guess. Thus, the training pairs

{xi, yi}Ni=1 offer little advantage to their MAP blind deconvolution technique.

3.2 Probabilistic Deconvolution and Classification Using QDA

Estimating the true signal is difficult and unnecessary if only a class label is required. In

this section, we explore classifying signals jointly with probabilistic deconvolution, in which

a statistical characterization of x[n] and h[n] are used without ever choosing a particular,

deterministic signal or channel estimate. Specifically, we consider the maximum likelihood

classifier that solves

y∗ = arg max
y
p(z|y) (3.7)

= arg max
y

∫∫
p(z|x,h, y)p(x|y)p(h)p(y) dx dh.

Assuming a uniform prior, the classifier in (3.7) differs from the joint MAP classifier in

(3.3) in that the max
x,h

operator in (3.3) is replaced by expectation over p(x|y) and p(h)

in (3.7). For the remainder of the chapter, we will assume uniform prior p(y) such that

arg min
y
p(y|z) = arg min

y
p(z|y).

Quadratic discriminant analysis (QDA) is a popular classification rule that models each

class-conditional distribution in (3.7) as Gaussian [30, 22, 60]. This model can be motivated

by the central limit theorem and the fact that the Gaussian is the maximum entropy (least

assumptive) distribution given first and second moments. Here, we build a QDA classifier

by assuming p(z|y) in (3.7) is Gaussian, and we show that one can calculate the sufficient

statistics mz|y and Σz|y of p(z|y) from the estimated mean and covariance of the auxiliary

channel features {hi}Mi=1 and the estimated means and covariances of the training signals

{(xi, yi)}Ni=1 from each class. Note that we do not make any assumptions on the distributions

of H or X given y other than that they have finite first and second moments; in fact the

result of the convolution H ∗ X would not be Gaussian if H and X were assumed to be

Gaussian random processes.
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3.2.1 QDA Classification of Signals Corrupted by LTI Filtering

Let X be a random vector with finite class-conditional mean mx|y and finite covariance

Σx|y; let the noise be a zero-mean random vector W with covariance σ2
wI; and let H be a

random vector with mean mh and covariance Σh. Let the observed signal model be given

by

Z = X ∗H + W. (3.8)

For Gaussian p(z|y), compute the class-conditional mean mz|y and covariance Σz|y of (3.8)

as follows:

mz|y = E [X ∗H + W|y] = E [X|y] ∗ E [H] + E [W] = mx|y ∗mh, (3.9)

and

Σz|y
a= E

[
(X ∗H + W) (X ∗H + W)T

]
−mz|ym

T
z|y

b= E
[
(X ∗H) (X ∗H)T

]
+ E

[
WWT

]
−mz|ym

T
z|y

c= E
[
XXT

]
∗ ∗E

[
HHT

]
+ E

[
WWT

]
−mz|ym

T
z|y

= (Σx|y + mx|ym
T
x|y) ∗ ∗(Σh + mhmT

h ) + σ2
wI −mz|ym

T
z|y, (3.10)

where ∗∗ denotes two-dimensional discrete convolution. Line (b) follows from (a) since

E
[
(X ∗H) WT

]
= 0; line (c) follows from (b) by property (A.1) and independence assump-

tions; and the expression reduces to (3.10).

The classification rule in (3.7) can be reduced to

y∗ = arg max
y

(
z−mz|y

)T Σ−1
z|y
(
z−mz|y

)
+ log

∣∣Σz|y
∣∣ ,

where the determinant and inverse can both be computed from a single LU factorization of

Σz|y. This classification approach requires the second-order statistics of X (conditioned on

y) and H which can be estimated from {(xi, yi)}Ni=1 and {hi}Mi=1, respectively. Most blind

deconvolution algorithms also require some information or assumptions about either x or h

or both [42, 7].
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3.3 Experiments: Signal-based Joint QDA and Joint MAP Classification

The proposed methods were tested in two experiments that differ in how simulated multipath

is generated. In the first, a Laplacian random process was used to generate realizations of

multipath channels. In the second, a random k-sparse model was used. In both experiments

the clean training signals were drawn from class-conditional Gaussian distributions; using

this model, the test signal z[n] is not Gaussian distributed.

3.3.1 Signal Classification Experiment: Laplacian Multipath

Each coefficient of a multipath filter was drawn independently from a Laplacian random

process with parameters mh[n], b[n]:

p(h[n] | mh[n], b[n]) =
1

2b[n]
exp

(
−|h−mh[n]|

b[n]

)
,

for n = 0, . . . , 99, where we set the mh to be mh[n] = δ[n] − 0.6δ[n − 49] + 0.1δ[n − 99],

and the scale parameter b[n] decays as n grows: b[n] = 0.2e−0.024n. The decay parameter

coefficients for this experiment were chosen to model oceanic multipath filtering of sonar

signals.

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

1.5

Figure 3.1: Example multipath realization from the k-sparse model (stem), and the de-
convolution estimate produced by the joint MAP deconvolution/classifier (solid) at 10 dB
SNR.

Test and training signals were drawn i.i.d. from a Gaussian distribution N (mx|y,Σx|y)

where the class y was drawn uniformly between two classes. Two classification scenarios
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were considered to test performance: (i) classes that were well-separated by their mean

vectors, and (ii) classes whose mean vectors were similar. The mean signals were composed

of square and sine waves, and the covariance matrices were Toeplitz with smooth covariance

structure. The specific values of mx|y and Σx|y for each experiment are shown in Table

3.1. Each test signal z was created by convolving a randomly drawn signal x with randomly

drawn multipath h, and adding a Gaussian white noise realization w to achieve SNR between

-10 and 10 dB, where the SNR is with respect to the multipath signal, 10 log10
‖x∗h‖2
σ2

w
.

Table 3.1: Simulation parameters for joint MAP / joint QDA experiments. Note that
square[n] = sgn(sin[n]).

parameter class 1 class 2

Well-separated means

mx|y[n] 1
4 square

[
6πn
100

]
1
4 square

[
12πn
100

]
Σx|y[m,n] 1

100

(
δ[m− n] + exp

(
− |m−n|20

))
1

100

(
δ[m− n] + exp

(
− (m−n)2

10

))
Close means

mx|y[n] 1
4 square

[
6πn
100

]
1
4 sin

[
6πn
100

]
Σx|y[m,n] 1

100

(
δ [m− n] + exp

(
− |m−n|20

))
1

100

(
δ[m− n] + exp

(
− (m−n)2

10

))

The joint QDA classifier was compared to a matched filter that ignores multipath. For

the matched filter, the received signal z is tested against mx|y for each class. The joint MAP

classifier in (3.4) is compared to a matched filter on a blind deconvolution signal estimate.

For blind deconvolution, the received signal z is first denoised by Wiener filtering, then ĥ

is estimated using Cabrelli’s blind deconvolution method for signals that have undergone

unknown multipath filtering [9]. The estimate x̂ is then computed via deconvolution in the

Fourier domain. The true signal length was used as a required input to Cabrelli’s method.

Each of the methods used the true signal and channel statistics, and the true SNR where

needed.
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3.3.2 Signal Classification Experiment: k-sparse Multipath

The k-sparse experiments are the same as described in the previous subsection, except the

multipath filters were generated using a sparse model

h[n] =
k∑
i=1

αiδ[n− di],

with k = 15 nonzero coefficients, delays di drawn uniformly on [0, 99], αi = ±e−βdi with

randomly chosen sign and decay parameter β = 0.0240 chosen to mimic real underwater

acoustic channels. An example realization of a filter h drawn from this model is shown in

Fig. 3.1. The diagonal covariance matrix Σh is estimated from 1000 samples of the impulse

response.

3.3.3 Signal-based Joint QDA and Joint MAP Results

Figure 3.1 shows a reconstructed multipath estimate produced by the joint MAP deconvo-

lution/classifier corresponding to the well-separated means experiment at 10 dB SNR. In

this case joint MAP correctly identified the class label. The recovered filter is a reasonable

reconstruction of the true filter, but generally underestimates the amplitude of the first co-

efficients, and does not reliably reconstruct the tail of h. The gross errors can be ascribed to

the fact that the optimization problem in (3.4) is not convex, and to the mismatch between

the Laplacian prior and k-sparse model.

Classification results in Fig. 3.2 show that the proposed joint QDA classifier dominates

the matched filter for both Laplacian multipath in (a) and (b), and for k-sparse multipath

in (c) and (d). The means for each class used for (a) and (c) are orthogonal, so the

matched filter performs well despite ignoring the multipath. With similar means in (b) and

(d), however, the matched filter performs poorly compared to joint QDA. The joint MAP

classifier performs well at low SNR, but as predicted, degrades at high SNR. For truly sparse

multipath in (c) and (d), the joint MAP approach is unaffected for well-separated means in

(c), and mildly affected at high SNR for close means in (d) when compared to results for

Laplacian multipath. The `1 norm is an appropriate heuristic for the k-sparse multipath

model, and has been employed elsewhere to recover sparse solutions [10].
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Figure 3.2: Classification accuracy for four experiments using multipath generated from
a Laplacian model in (a) and (b), and a k-sparse model in (c) and (d). The results are
averaged over 1000 i.i.d. test signals for each SNR point.

3.4 Conclusions

Classification methods were proposed that jointly consider the effects of multipath distortion

with classification. In particular, a joint MAP deconvolution/classifier was derived that

incorporates first and order statistics of the channel and yields a MAP solution for the

recovered signal x̂, the recovered filter ĥ and the class label y∗. Two drawbacks of the joint
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Figure 3.3: Classification accuracy for four experiments using multipath generated from a
sparse model. The results are averaged over 500 i.i.d. test signals for each SNR.

MAP algorithm is that it is not convex, and that it theoretically performs poorly at high

SNR. The first problem might be addressed by maximizing the marginal p(h, y|z) which

yields a convex expression, but requires more complicated optimization approaches (e.g.,

an EM algorithm similar to Goodman and Lam [42]). The second problem arises since

regularization scales with the noise power σ2
w, which may be replaced by a fixed penalty

that can be chosen via cross-validation.
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It was hypothesized that better classification performance could be gained by marginal-

izing over x and h. To that end, a joint QDA classifier was presented that accounts for

the LTI corruption probabilistically. Experiments showed that the joint QDA classifier

outperformed the joint MAP classifier and a classifier based on blind deconvolution.

The joint MAP and joint QDA classifiers presented in this chapter utilize discrete-time

signals as feature vectors. In practice, the length of the signals of interest may be very

large, so that estimating covariance matrices may be ill-posed and inverting the matrices

may be computationally intractable. Therefore, in the next chapter, a feature-based joint

QDA classifier is developed.
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Chapter 4

JOINT QDA FOR SUBBAND ENERGY FEATURES

It’s less of a sin to be simple and wrong

than to be complicated and wrong.

Dr. Henry Eyring, chemist

Signal-based deconvolution and classification methods—including blind deconvolution,

joint MAP deconvolution and classification and the joint QDA classifier—are computation-

ally prohibitive for signals captured at high sample rates. For L-length sampled signals,

Cabrelli’s blind deconvolution method requires the inversion of an L × L Toeplitz matrix,

which can be solved in O(L logL) operations. The joint MAP deconvolution and classifica-

tion requires more iterations to converge as L increases, and requires (as does joint QDA)

inversion of an L×L covariance matrix, which in general is complexity O(L3). To decrease

the computational burden and possibly increase classification performance, an alternative

is to classify based on features that represent important characteristics of the signals and

provide good class discrimination [17]. The hope is that classes can be well-discriminated

by features of significantly smaller dimensionality d� L.

Unless channel-invariant features are used, a classifier trained on features of {xi[n]}Ni=1

will not generally be applicable to classify the features of z(t) directly. However, if a

functional relationship can be found that relates the training samples {xi}Ni=1 to the test

sample z, then a suitable classifier may be constructed. In this chapter, the functional

relationship between subband energies of x[n] and z[n] is used to derive a feature-based

joint QDA classifier. Subband energy features are a useful and frequently utilized feature

choice in many signal processing applications. The joint QDA classifier is compared to other

classifiers in simulated underwater passive acoustic experiments. Portions of this chapter

are published in [2].
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4.1 Joint QDA Using Second Order Statistics of Subband Energy

It is assumed that to classify a subband energy feature vector uz, training pairs {(uxi , yi)}Ni=1,

auxiliary channel samples {uhi
}Mi=1, and the noise power are provided; however, the phase

of the training signals (e.g., provided by xfi ) and channel impulse responses is not assumed

to be provided. It will be shown that a robust classifier can be derived without the need to

model the phase of the signal, channel or noise.

Model Hf , Xf and Wf as mutually independent random vectors, and Ux = Xf ·Xf ∗

so that

Uz = Uh ·Ux + Uw + 2 Re
{

Xf ·Hf ·Wf ∗
}
. (4.1)

We assume that Wf ∈ Cd is a proper complex Gaussian random vector with E
[
Wf

]
= 0

and Cov
[
Wf

]
= σ2

wI.

To derive the joint QDA classifier for subband energy features we need only compute

Ūz|y = E [Uz| y] and Σuz|y = Cov [Uz| y]. The mean is given by

E [Uz|y] a= E
[
Uh ·Ux + Uw + 2 Re

{
Xf ·Hf ·Wf ∗

}
| y
]

b= E [Uh] · E [Ux| y] + E [Uw] + 2 Re
{

E
[
Xf | y

]
· E
[
Hf
]
· E
[
Wf

]∗}
c= Ūh · Ūx|y + σ2

wI, (4.2)

where the independence assumptions and the fact that Re {E [·]} = E [ Re {·}] have been

used to reduce (a) to (b); and (b) reduces to (c) since E
[
Wf

]
= 0.

The covariance Σuz|y is derived from Equation (B.23) in the appendix by conditioning

on the class y:

Σuz|y =
(
Σuh

+ ŪhŪT
h

)
· Σux|y + Σuh

· Ūx|yŪ
T
x|y + σ4

wI + 2σ2
w diag

(
Ūh · Ūx|y

)
. (4.3)

Using (4.2) and (4.3), the joint QDA classifier for subband energy features is given by

y∗ = arg max
y

(
uz − Ūz|y

)T Σ−1
uz|y

(
uz − Ūz|y

)
+ log

∣∣∣Σuz|y

∣∣∣ .
It is assumed that Ūx|y and Σux|y can be estimated from the training pairs {(uxi , yi)}Ni=1,

that Ūh and Σuh
can be estimated from the auxiliary channel data {uhi

}Mi=1, and that σ2
w

is known.
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4.1.1 Modeling Subband Energies Uz as Gaussian

The vector of subband energies uz is in fact non-negative, but modeling Uz as Gaussian

permits uz < 0 with nonzero probability. The Gaussian assumption is motivated by com-

putational convenience and by the fact that the Gaussian distribution is the maximum

entropy distribution over Rd given only E [Uz|y] and Cov [Uz|y]. It may be more suitable

to relax the Gaussian assumption, and instead consider the maximum entropy distribution

over the positive orthant Rd
+. However, the maximum entropy distribution over Rd

+ is the

multivariate truncated normal distribution which requires cumbersome multi-dimensional

lookup tables of the cumulative distribution function [37]. Similarly, using a multivariate

Rayleigh model is analytically cumbersome and computationally challenging.

In practice, the Gaussian model may not be in gross violation of the constraint uz > 0.

Commonly, and as in the experiments in this chapter, a frequency bin k is selected so that

the features uxi [k] � 0 and exhibit low variance for a given class. The resulting Gaussian

model is concentrated around the features in the positive orthant, and the area under the

distribution’s tail for uz < 0 is quite small. However, in general, the assumption that Uz is

Gaussian admits model bias into the joint QDA classifier.

4.2 Local Joint QDA

In this section, the model bias of joint QDA is reduced by relaxing the assumption that

p(uz|y) is globally Gaussian. A standard approach to model an arbitrary distribution is the

Gaussian mixture model (GMM). By properly choosing the appropriate number of Gaussian

components, GMMs can be very flexible [30], but can have high estimation variance due to

local minima of the expectation-maximization algorithm required to learn the parameters

of the GMM. Instead, another approach is used that has recently been shown to work well,

which is to apply the Gaussian model locally to the nearest-neighbors of the test sample,

an approach aptly termed local QDA [23].

A local joint QDA classifier is proposed in which, given an observation z, the Gaussian

distribution is fitted to only the training pairs that correspond to the expected nearest

neighbors for each class. Expected nearest neighbors are defined as follows.
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Definition 1. Expected Nearest Neighbor. Model random training vector Zi as Gaussian

with mean Z̄i and covariance Σzi . Given a test sample z, the expected nearest neighbor of

z is the random vector Z`, where

`
4
= arg min

i
E
[
‖z− Zi‖2

]
= arg min

i
zT z− 2zT E [Zi] + E

[
ZTi Zi

]
= arg min

i
zT z− 2zT Z̄i + tr Σzi + Z̄Ti Z̄i

= arg min
i
‖z− Z̄i‖2 + tr Σzi . (4.4)

Note that the nearest neighbor in Definition 1 depends on both Z̄i and Σzi of a random

training vector Zi. The second nearest neighbor is found in similar fashion, after Z` has

been excluded from the set of candidate neighbors, and so on for the subsequent nearest

neighbors.

Let Xy = {xi : yi = y} for each class y. Given observation z, let Ky be the set of training

samples in Xy that correspond to the ky expected nearest neighbors of z.

For discrete-time features Z` = H ∗ x` + W is the expected nearest neighbor to z by

Definition 1 with Z̄i = H̄ ∗ xi and Σzi = Σh ∗ ∗xixTi + σ2
w. Then, the mean and covariance

of Gaussian likelihood p(z|y) is calculated as the sample mean and covariance, respectively,

of Xy. The local class-conditional distribution p(z|y) = N (z; Z̄ky ,Σzky) where

Z̄ky = H̄ ∗ X̄ky , Σzky = Σh ∗ ∗Σxky + σ2
wI,

where X̄ky and Σxky are taken as the sample mean and covariance of the ky elements of Ky.

For subband energy features, Definition 1 is applied for a test signal uz and random

variable Uzi = Uh · uxi + Uw + 2 Re
{

Hf · xfi ·Wf ∗
}

which has mean and covariance

Ūzi = Ūh · uxi + σ2
w

Σuzi
= Σuh

· uxiu
T
xi

+ σ4
wI + 2σ2

w diag
(
Ūh · uxi

)
.

The covariance Σuzi
is derived from (B.23) in the appendix by substituting Ūx = uxi and



37

Σux = 0. Then, the distribution p(uz|y) = N (uz; Ūzky ,Σuzky) is specified by parameters

Ūzky = Ūh · Ūxky + σ2
w1,

Σuzky =
(
Σuh

+ ŪhŪT
h

)
· Σuxky + Σuh

· ŪxkyŪT
xky

+ σ4
wI + 2σ2

w diag
(
Ūh · Ūxky

)
,

where Ūxky and Σuxky are estimated from the ky elements of Ky, and Ūh and Σuh
are

estimated from auxiliary set {uhi
}Mi=1.

The neighborhood size ky for each class y is a parameter of local joint QDA that must be

chosen based on prior knowledge or via crossvalidation. Local joint QDA generalized joint

QDA since one may choose ky = |Xy|. Experiments to test local joint QDA are presented

in Chapter 6.

4.3 Experiments: Feature-based Classification of Simulated Signals

The proposed joint QDA using subband energy features is compared to two alternate clas-

sification approaches that use subband energy features. First, a “deconvolution” approach

removes the mean effect of the channel using E [Uh] and the noise energy σ2
w to form an

estimate ûx = [uz−σ2
w]

[Ūh] , where [a]
[b] denotes Hadamard (elementwise) division of vectors a

and b. The estimate ûx is then compared to training pairs {(uxi , yi)}Ni=1 using a standard

classifier (e.g., QDA, SVM, or k-NN). This approach utilizes the sample mean (but not the

sample covariance) of the auxiliary channel samples.

Second, a “normalization” classifier approach ignores the auxiliary samples {uhi
}Mi=1

altogether. Training signals {x[n]i}Ni=1 are first normalized by their total energy before

extracting training samples {ûxi}Ni=1. A test vector ûz is also formed by first normalizing

the signal z[n] by its total energy. This approach corrects for the gross attenuation of the

test signal caused by the channel, but not the spectral shaping.

Joint QDA is compared to both the normalization and deconvolution approaches for

QDA, 1-NN, and a support vector machine (SVM) [30].

The task of classifying narrow-band signals is considered, where the signals are corrupted

by unknown multipath due to propagation in a shallow ocean channel. To simulate narrow-



38

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Real Part

Im
ag

in
ar

y 
P

ar
t

10
1

10
2

10
3

10
1

10
2

10
3

power at θ1

po
w

er
 a

t θ
2

(a) (b)

Figure 4.1: (a) Pole-zero plot showing the mean location of the poles for class 1 (×) and
class 2 (∗) for the easy case, and (b) scatter-plot of the classes in log-feature space.

band signals, training and test signals are generated i.i.d. using the z-transform model

Xy[z] =
(z − 1)(z + 1)

(z − py,1)(z − p∗y,1)(z − py,2)(z − p∗y,2)
for class y = 1, 2,

where X[z] denotes the z-transform of the discrete-time signal x[n]. The location of each

class-conditional pole py,`, ` ∈ {1, 2} is drawn randomly from the model ay,` exp(jθ`), where

θ` is fixed, and ay = [ay,1, ay,2]T is multivariate Gaussian distributed with mean ma|y and

covariance matrix Σa|y. Although the vector ay for each class y is Gaussian distributed,

the signals in feature space are not. Three instances of the experiment are considered

for different choices of ma|y that result in different class separation: easy, medium and

hard. The parameters ma|y and Σa|y for each instance of the experiment are shown in

Table 4.1, and we set θ1 = 1
50 and θ2 = 1

5 . Figure 4.1 shows an example pole-zero plot and

corresponding log-feature space scatterplot for a well-separated (easy) case. Note that since

all poles and zeros lie within the unit circle, for each case the selected parameters correspond

to a realization of a minimum phase signal, which could be produced from natural sources.
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Table 4.1: Pole Magnitude Distribution for Feature-based Classification Experiments

Parameter Class 1 Class 2

Σa|y

1.00 0.99

0.99 9.00

× 10−6

 6.00 −0.80

−0.80 1.00

× 10−4

hard

ma|y

[
0.945 0.905

]T [
0.909 0.948

]T
medium

ma|y

[
0.945 0.875

]T [
0.879 0.948

]T
easy

ma|y

[
0.965 0.875

]T [
0.875 0.948

]T

Test and training signals were generated by taking i.i.d. draws of poles as described

above, and taking 5000 evenly-spaced samples around the unit circle in the z-transform

domain, so that the length of each signal corresponds to 1.25 seconds, sampled at 4 kHz.

The subband energy at frequencies θ1 and θ2 are extracted from each signal and used as

classification features. The parameters in Table 4.1 were chosen such that the generated

test and training signals were linearly separable in the subband energy feature space.

Channel impulse responses were drawn i.i.d. in the following manner. A receiver is

placed at a depth of 50m in a simulated shallow water channel, as shown in Fig. 4.2.

Source locations were drawn uniformly from the cube 2 km across north and east and

150 m deep; locations falling below the ocean floor are discarded and redrawn. Channel

impulse responses were generated by propagating an impulsive source from the random

source locations to the receiver using the CASS Eignenray routine provided in the Sonar

Simulation Toolset [25]. Impulse responses were sampled at 4 kHz. The ocean environment

is set up to be fairly extreme, but static. A nominal sound speed profile was imposed, and

modeled the ocean bottom to contain sandy gravel with mean grain size 2mm. Surface

roughness is governed by the wind speed, which is set to 15 km/hr. The channel geometry
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Figure 4.2: (a) Simulated ocean bathymetry with a single receiver (marked by �)
at (0, 0,−50) m, and (b) a sample channel impulse response for a source located at
(460, 250,−70) m, generated by the Sonar Simulation Toolset [25].

and a sample channel impulse response are shown in Fig. 4.2.

Maximum likelihood estimates of Ūx|y and Σux|y were computed from N=1000 training

feature vectors, and maximum likelihood estimates of Ūh and Σuh
were computed from

M=1000 auxiliary channel samples. The test signals were corrupted with randomly drawn

multipath, and then i.i.d. white noise was added so that the multipath-corrupted-signal to
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noise ratio was varied between −10 and 10 dB. Classification results were averaged over

10000 trials for each SNR.

The proposed joint QDA classifier was compared with ky = |Xy| (experiments with local

joint QDA will be given in Chapter 6) to traditional QDA, support vector machine (SVM)

with a linear kernel, and 1-NN classifiers using both the “deconvolution” and “normaliza-

tion” approaches described in Section 4.3. Although the 1-NN, QDA and SVM classifiers

produce a non-linear, quadratic, and linear decision boundary, respectively, in each of the

three simulations, the training and test data were linearly separable. Using this as prior

information, the regularization term C in the linear SVM was set to a large value, C = 107

[20]. With this setup, none of the classifiers require cross-validation.

4.3.1 Simulation Results

Results for each experiment are shown in Fig. 4.3. Joint QDA performs markedly better

than the other approaches when the classes are difficult to separate. The normalization

QDA performs poorly in all datasets, and deconvolution QDA only exhibits utility for high

SNR when classes are well separated. In general, the deconvolution methods outperformed

the normalization methods, which comes at no surprise, since the deconvolution methods ac-

tually utilize the auxiliary features {uhi
}Mi=1. As class separation increases, the performance

of deconvolution SVM and deconvolution 1-NN is similar to joint QDA.

4.4 Conclusions

A joint QDA classifier was derived for subband energie features. In underwater acoustic

simulations involving narrowband data, the joint QDA classifier compared favorably to

QDA, SVM and 1-NN classifiers that employ deconvolution and normalization.

The SVM and 1-NN classification methods presented in this chapter represent a naive

approach to utilizing the auxiliary training samples. In the case of deconvolution SVM and

deconvolution 1-NN, only the sample mean of {uhi
}Mi=1 is used. In the case of normalization

SVM and normalization 1-NN, the auxiliary training samples are discarded in favor of simple

energy normalization. The following chapter presents kernels for SVM classifiers that better

incorporate the auxiliary training samples {uhi
}Mi=1.
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Figure 4.3: Results for feature-based classification on simulated data.
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Chapter 5

CHANNEL-ROBUST KERNELS FOR SUPPORT VECTOR
MACHINES

To develop a suitable model, I ask

myself, “How would I act if I were an

atom or molecule and found myself in

this situation?”

Dr. Henry Eyring, chemist

Built into the joint QDA classifier is the convolution relationship between the unknown

signal x[n] and the true signal z[n] via the class-conditional distribution p(z|y). In this

chapter, the convolution relationship is also built into a support vector machine (SVM) by

constructing appropriate kernel functions. Although the focus is on SVMs, the resulting

kernels are applicable to any kernel method.

As reviewed in Chapter 2, methods have been proposed for learning invariant classifiers.

One flexible approach—the method of virtual examples (VEs)—can be used to train any

classifier by creating a large artificial training set from {(xi, yi)}Ni=1 and {hi}Mi=1. However,

training an SVM using the VE method has a complexity of O(M3 × N3). Rather than

increase the dataset by a factor of M , two alternative approaches are introduced—the

expected kernel and the projected RBF kernel—that incorporate the stochastic channel into

the kernel definition. For both approaches, the ith training sample xi is mapped to a

probability distribution pZi|xi
over the domain of noisy channel-corrupted signals. Then

a kernel is defined that acts on two probability distributions in the noisy domain. The

two approaches differ in how the samples are mapped to probability distributions, and

(relatedly) how the kernels are defined. Closed-form solutions are derived for the proposed

kernels for discrete-time features, images, and for subband energy features, summarized in

Tables 5.1, 5.2 and 5.3, respectively.
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Table 5.1: Expected and Projected RBF Kernels for Randomly Filtered Discrete-time Sig-
nals

Training Kernel Test Kernel

Expected RBF N
(
Z̄i; Z̄j ,Σzi + Σzj + γ−1I

)
N
(
z; Z̄i,Σzi + γ−1I

)
Clean-train Expected RBF N

(
x̄i; x̄j , γ

−1I
)

N
(
z; Z̄i,Σzi

+ γ−1I
)

Projected RBF N
(
Z̄i; Z̄j , Rzi

+Rzj

)
N
(
z; Z̄i, Rzi

+ R̃z

)
Clean-train Projected RBF N

(
x̄i; x̄j , γ

−1I
)

N
(
z; Z̄i, Rzi

+ R̃z

)

where,

Z̄i = xi ∗ H̄ and Σzi
= Σh ∗ ∗xixT

i + σ2
wI

Rzi
=
γ−1

2
I ∗ ∗

(
Σh + H̄H̄T

)
+ Σzi

R̃z =
γ−1

2
I ∗ ∗

(
Σh + H̄H̄T

)
+ Σh ∗ ∗ x̂x̂T + σ2

wI

z = H̄ ∗ x̂
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Table 5.2: Expected and Projected RBF Kernels for Randomly Filtered Images

Training Kernel Test Kernel

Expected RBF N
(
Z̄i; Z̄j ,Σzi

+ Σzj
+ γ−1I

)
N
(
z; Z̄i,Σzi

+ γ−1I
)

Clean-train Expected RBF N
(
x̄i; x̄j , γ

−1I
)

N
(
z; Z̄i,Σzi

+ γ−1I
)

Projected RBF N
(
Z̄i; Z̄j , Rzi +Rzj

)
N
(
z; Z̄i, Rzi + R̃z

)
Clean-train Projected RBF N

(
x̄i; x̄j , γ

−1I
)

N
(
z; Z̄i, Rzi

+ R̃z

)

where,

fold(Z̄i) = fold (xi) ∗ ∗ fold
(
H̄
)

fold(Σzi
) = fold (Σh) ∗ ∗ ∗ ∗ (fold (xi) ◦ fold (xi)) + σ2

wI

Rzi
= Ch + Σzi

fold(R̃z) = fold(Ch) + fold (Σh) ∗ ∗ ∗ ∗ (fold (x̂) ◦ fold (x̂)) + σ2
wI

fold(Ch) = fold
(
γ−1

2
I

)
∗ ∗ ∗ ∗

(
fold (Σh) + fold

(
H̄
)
◦ fold

(
H̄
))

fold(z) = fold
(
H̄
)
∗ ∗ fold (x̂)
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Table 5.3: Expected and Projected RBF Kernels for Subband Energies of Randomly Filtered
Signals

Training Kernel Test Kernel

Expected RBF N
(
Ūzi ; Ūzj ,Σuzi

+ Σuzj
+ γ−1I

)
N
(
uz; Ūzi ,Σuzi

+ γ−1I
)

Clean-train Expected RBF N
(
ūxi

; ūxj
, γ−1I

)
N
(
uz; Ūzi

,Σuzi
+ γ−1I

)
Projected RBF N

(
Ūzi

; Ūzj
, Ruzi

+Ruzj

)
N
(
uz; Ūzi

, Ruzi
+ R̃uz

)
Clean-train Projected RBF N

(
ūxi ; ūxj , γ

−1I
)

N
(
uz; Ūzi , Ruzi

+ R̃uz

)

where,

Ūzi = uxi · Ūh + σ2
w1 and Σuzi

= Σuh
· uxiu

T
xi

+ σ4
wI + 2σ2

w diag
(
Ūh · uxi

)
Ruzi

=
γ−1

2
diag

(
Σuh

+ ŪhŪT
h

)
+ Σuzi

R̃uz
=
γ−1

2
diag

(
Σuh

+ ŪhŪT
h

)
+ Σuh

· ûxûT
x + σ4

wI + 2σ2
w diag

(
uz − σ2

w1
)

ûx =

[
uz − σ2

w1
][

Ūh

]
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5.1 Expected Kernels

A preliminary version of the expected kernel was presented at a recent conference [34].

Consider the random signal resulting from propagating the features xi of the ith training

signal through a random noisy channel, and let the feature vector computed from that

random signal be the random feature vector Zi ∼ pZi|xi
. Then the channel can be taken into

account by training an SVM with a kernel that acts on the random feature vectors {Zi}Ni=1

corresponding to the training signals. To that end, given any kernel K : Rd × Rd → R,

define the expected kernel Kexp to be the following function of two distributions:

Kexp(pZi , pZj )
4
= EZi,Zj |xi,xj

[K (Zi,Zj)] , (5.1)

=
∫∫

pZi|xi
(zi)pZj |xj

(zj)K(zi, zj)dzidzj .

The expected training kernel can be interpreted as averaging the similarity of all possible

channel corruptions of xi and xj weighted by their probability density. To compute the

kernel between a training sample and a test sample, let the probability distribution of the

test sample be a Dirac delta distribution with all of its support on the feature vector z

computed from the test signal z[n], that is, pZ(z′) = δ(z′−z). The expected kernel given in

(5.1) is a legitimate kernel because it is an inner product between its two inputs, where the

inner product is weighted by the positive definite function K(·, ·), analogous to a discrete

inner product of the form < a, b >K= aTKb for some positive definite matrix K.

Since the distribution pZi|xi
is a function of the training point xi, for notational simplicity,

we write Kexp(xi,xj) for (5.1), and Kexp(z,xi) for the corresponding kernel between δ(z′−z)

and pZi|xi
.

5.1.1 Expected Kernel SVM Compared to Virtual Examples SVM

The expected kernel used with an SVM results in a different objective than the VE method

used with an SVM. Let {(zij , yij)}N,Mi,j=1 be virtual examples training pairs generated from

the powerset of {(xi, yi)}Ni=1 and {hj}Mj=1. Let L(f(x), y) = (1− yf(x))+ be the hinge loss,

and λ be a regularization parameter. In the noiseless case (so that EH [·] = EZ|x [·]), and

ignoring the bias b, take the limit of the SVM objective function in Equation (1.6) as the
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number of auxiliary channel features M increases:

lim
M→∞

arg min
{αij}

1
MN

N∑
i=1

M∑
m=1

L

 N∑
j=1

M∑
m′=1

αjm′yjm′K(zim, zjm′), yi

+

λ
N∑
i=1

M∑
m=1

N∑
j=1

M∑
m′=1

αimyimαjm′yjm′K(zim, zjm′),

which converges in probability (by the law of large numbers) to

p→ lim
M→∞

arg min
{αij}

1
N

N∑
i=1

EZi|xi

L
 N∑
j=1

M∑
m′=1

αjm′yjm′K(Zi, zjm′), yi

+

λ

N∑
i=1

M∑
m=1

N∑
j=1

M∑
m′=1

αimyimαjm′yjm′K(zim, zjm′).

However, the expected kernel SVM solves the objective function

arg min
{αi}

1
N

N∑
i=1

L

 N∑
j=1

αjyj EZi,Zj |xi,xj
[K(Zi,Zj)] , yi

+

λ
N∑
i=1

N∑
j=1

αiyiαjyj EZi,Zj |xi,xj
[K(Zi,Zj)] .

Thus, the VE SVM (asymptotically) minimizes expected loss, while the expected kernel

SVM minimizes the loss with respect to the expected similarities.

5.1.2 Expected RBF Kernel for Discrete-time Signals

Model the impulse response of the stochastic channel as the random vector H with mean H̄

and covariance Σh, and model random vector W as zero mean with covariance σ2
wI. Then,

a deterministic vector x propagated through the stochastic channel results in a random

observation

Z = H ∗ x + W.

Model Z ∼ pZ|x(z|x) as Gaussian distributed with mean Z̄ and covariance Σz:

Z̄ = H̄ ∗ x, (5.2)

Σz = Σh ∗∗
(
xxT

)
+ σ2

wI. (5.3)
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To derive the expected RBF training kernel, map xi and xj to Zi and Zj , which are

modeled as independent Gaussians with means and covariances as prescribed in (5.2) and

(5.3). Then, evaluate the integral in (5.1) for the RBF kernel in (1.5) using the product-of-

Gaussians rule given in (A.9) twice to produce

Kexp(xi,xj) = N
(
Z̄i; Z̄j ,Σzi + Σzj + γ−1I

)
.

Similarly, the expected RBF test kernel is also derived using the product-of-Gaussians

rule in (A.9):

Kexp(z,xi) =
∫
p(zi|xi)K(z, zi) dzi

= N
(
z; Z̄i,Σzi + γ−1I

)
.

5.1.3 Expected RBF Kernel for Randomly Filtered Images

Let H = vec (H) be a random column-stacked vector of a random 2-d point spread function

(filter) H, and let x be a column-stacked image. Then a randomly filtered image can be

represented by the random vector Z where

fold(Z) = fold(H) ∗ ∗ fold(x) + fold(W),

where fold unstacks an MN × 1 column vector into an M × N matrix (image), and ∗ ∗

represents two-dimensional convolution. Using (A.4), the mean Z̄ and covariance Σz of Z

may be expressed as

fold(Z̄) = fold(H̄) ∗ ∗ fold(x), and

fold(Σz) = fold(Σh) ∗ ∗ ∗ ∗ (fold(x) ◦ fold(x)) + σ2
wI, (5.4)

where the tensor outer product A ◦B of matrices A and B yields a 4th order tensor [41, 4],

fold(Σh) folds the MN ×MN covariance of column-scanned point spread function into a

4-tensor with dimensions M ×N ×M ×N , and ∗ ∗ ∗ ∗ is 4-dimensional discrete convolution.

Modeling pZi|xi
as a Gaussian with mean and covariance in (5.4) conditioned on x = xi,

and substituting pZi|xi
into (5.1) yields the expected RBF kernel, given in Table 5.2.
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5.1.4 Expected RBF Kernel with Subband Energy Features

Model the subband energy feature vector ux after propagation through a stochastic channel

as a Gaussian random vector Uz, where, from (1.7)

Uz = Uh · ux + Uw + 2 Re
{

xf ·Hf ·Wf ∗
}
.

Model Wf as a proper Gaussian complex random vector with p(wf ) = N
(
0, σ2

wI
)
, and

random subband energy vector Uh as having mean Ūh and covariance Σuh
(no additional

assumptions are needed about the distribution of Hf ).

The expected RBF kernel for subband energy features (with test kernel as a special case)

is given by:

Kexp(uxi ,uxj ) = N
(
Ūzi ; Ūzj ,Σuzi

+ Σuzj
+ γ−1I

)
,

Kexp(uz,uxi) = N
(
uz; Ūzi ,Σuzi

+ γ−1I
)

where

Ūzi = uxi · Ūh + σ2
w1,

Σuzi
= Σuh

· uxiu
T
xi

+ σ4
wI + 2σ2

w diag
(
Ūh · uxi

)
.

The covariance Σuzi
is derived from (B.23) in the appendix by substituting Ūx = uxi and

Σux = 0, since we condition on Ux = uxi .

5.1.5 Unscaled Expected RBF Kernel

Commonly, the standard RBF kernel is implemented without the Gaussian normalization

factor, as Krbf(xi,xj) = exp
(
−1

2γ‖xi − xj‖2
)

so that Krbf(x,x) = 1. The inclusion of the

Gaussian normalization factor
( γ

2π

)d/2 is arbitrary, since it represents a global scaling of the

similarity measure. Expected RBF kernels, however, have a bandwidth and scaling that

are data-dependent, so that it is necessary to include the scaling factor. In preliminary

experiments, the author found that the normalization factor was especially sensitive to

choices of γ and estimated statistics of pZ|X . In fact, the resulting kernel matrices were

often poorly conditioned, and in some cases the SVM solver did not converge.
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To mitigate these problems the unscaled expected RBF kernel Kuexp is defined to be

the expected RBF kernel without its Gaussian normalization. Then Kuexp(x,x) = 1, and

the resulting kernel matrices are better conditioned and did not lead to computational

problems. In addition, there are significant computational savings since it is no longer

required to compute the matrix determinant.

The unscaled expected RBF kernel can be expressedKuexp(xi,xj) = 1
S(xi,xj)Kexp(xi,xj),

where S(xi,xj) is the Gaussian scale factor. We prove that this is still a legitimate kernel.

First, note that the Gaussian scale factor S(·, ·) is positive definite, since it can be written

as the inner product in (5.1) with pZi|xi
(zi)

4
= N (zi; 0,Σzi) and pZj |xj

(zj)
4
= N (zj ; 0,Σzj ),

resulting in

S(xi,xj) =
1

(2π)
d
2 |Σzi + Σzj + γ−1I|

1
2

,

where Σzi depends on xi and Σzj depends on xj . For a set of any N samples, let S be

the N × N positive definite matrix produced by evaluating the kernel S(·, ·) for all pairs

of the N samples. Since S is positive definite, the Hadamard inverse S◦−1 =
[

1
Sij

]
is also

positive definite [31, p. 397]. The positive definite matrix S◦−1 is the kernel matrix formed

by 1
S(xi,xj) . Then, we conclude that since the Hadamard product A · B of two positive

definite matrices is also positive definite [31], the unscaled expected RBF kernel matrix

Kuexp = S◦−1 ·Kexp is positive definite.

5.1.6 Modeling Channel Dependency

The definition (5.1) assumes that the random feature vectors Zi and Zj are independent,

which implies that xi and xj were corrupted by different random draws of the channel

and noise. A better model is to treat them as being corrupted by the same draw of the

random channel and noise, which produces a joint distribution pZi,Zj |xi,xj
(zi, zj), and then

the expectation in (5.1) becomes∫∫
pZi,Zj |xi,xj

(zi, zj)K(zi, zj) dzi dzj . (5.5)

Unfortunately, it is not clear under what conditions (5.5) will be a legitimate kernel. A

closed-form solution to (5.5) for subband energy features is derived in Section B.2. We
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compared the resulting classifier with the expected kernel classifier for the experiments

detailed in Chapter 6 and found no statistically significant differences between the two in

any of the experiments.

5.2 Projected RBF Kernels

We propose another channel-robust kernel that is motivated by a recent interpretation of

the RBF kernel. Jebara et al. introduced the probability product kernel, which essentially

replaces training samples with random variables, xi 7→ X′ ∼ p(x′|xi), and defines a positive

definite kernel as the inner product of these distributions [36]:

Kprob(xi,xj)
4
=
∫
p(x′|xi)p(x′|xj) dx′. (5.6)

Jebara et al. noted that the standard RBF kernel with bandwidth parameter γ in (1.5) can

be derived as a special case of (5.6) by letting p(x′|xi) = N
(
x′; xi, γ

−1

2 I
)

and p(x′|xj) =

N
(
x′; xj , γ

−1

2 I
)

, and applying the product of Gaussians identity in (A.9). In order for the

RBF kernel to have have same bandwidth parameter γ at test time, the test feature vector

x must also be replaced with a random variable with density p(x′|x) = N
(
x′; x, γ

−1

2 I
)

.

To extend (5.6) to our dataset shift problem, we also consider xi to be mapped to a

Gaussian random feature vector X′, and then propagate X′ through the stochastic channel,

resulting in the random vector Z′. The resulting distribution p(z′|xi) of Z′ is not necessarily

Gaussian; however, for mathematical tractability we project p(z′|xi) to the nearest Gaussian

using Lemma 1.

Lemma 1. Let random vector Z ∈ Rd be drawn from a distribution that has a prob-

ability density function pZ , finite mean Z̄ ∈ Rd and covariance Σ ∈ Sd++. Then, the

Gaussian distribution that uniquely minimizes KL-divergence with respect to pZ is given

by N (z; Z̄,Σ).

Proof. Let f(m, R) = KL (pZ ||N (m, R)) for m ∈ Rd and R ∈ Sd++. By definition,

KL (p||q) = EZ [log p(Z)]− EZ [log q(Z)], and thus the mean m∗ and covariance R∗ we seek
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solve

arg min
R�0,m

f(m, R) = arg min
R�0,m

−EZ [logN (Z; m, R)]

= arg min
R�0,m

log |R|+ EZ

[
(Z−m)T R−1 (Z−m)

]
= arg min

R�0,m
log |R|+ tr EZ

[
(Z−m) (Z−m)T R−1

]
.

Since f(m, R) is convex in R, the minimizer m∗ is found by solving

∇mf(m∗, R) = −2R−1 EZ [(Z−m∗)] = 0,

and therefore m∗ = Z̄ is the unique global minimizer since m∗ does not depend on R.

However, f(m, R) is not convex in m, but for fixed m = Z̄

arg min
R�0

log |R|+ tr EZ

[
(Z−m) (Z−m)T R−1

]
= arg min

R�0
− log |R−1|+ tr ΣR−1

= arg min
Y�0
− log |Y |+ tr ΣY,

since the change of variables Y = R−1 is a bijection from Sd++ onto Sd++. The function

g(Y ) = − log |Y |+ tr ΣY is strictly convex [6], so that the unique global minimizer is found

by solving

∇Y g(Y ∗) = −Y ∗−1 + Σ = 0,

so that Y ∗ = Σ−1. We conclude that m∗ = Z̄ and R∗ = Σ uniquely minimize f(m, R). �

Let N (z|xi) be the projection of p(z|xi) to the nearest Gaussian distribution using

Lemma 1. Then, analogous to (5.6), we define the projected RBF kernel as

Kproj (·,xj)
4
=
∫
N (z′|·)N (z′|xj) dz′. (5.7)

When evaluating the kernel between a test sample and training sample Kproj (z,xj), we

define the distribution N (z′|z) needed for (5.7) to be the projection of a random variable

Z′ to the nearest Gaussian, where Z′ results from propagating X′ ∼ N (X̄′, σ
−1

2 I) through

the stochastic channel, and X̄′ is chosen such that the mean E [Z′] = z is the observed test

sample (see Sections 5.2.1 and 5.2.3 for examples). The kernel Kproj is a legitimate kernel

because it is always an inner product of two distributions in z′.
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We next present the analytic forms of the projected RBF test and training kernels for

the same two cases as the expected RBF kernel: discrete-time signal features, image pixel

features, and subband energy features.

5.2.1 Projected RBF Kernel for Discrete-Time Signals

Model the random vector X′ ∼ N (x, γ
−1

2 I), then Z′ = H∗X′+W has mean and covariance

given by

Z̄′ = H̄ ∗ x, and

Σz′ =
γ−1

2
I ∗∗

(
Σh + H̄H̄T

)
+ Σh ∗∗xxT + σ2

wI. (5.8)

Then by Lemma 1, the projection p(z′|xi) to the nearest Gaussian distribution N (z′|xi)

yields

N (z′; H̄ ∗ xi,
γ−1

2
I ∗∗

(
Σh + H̄H̄T

)
+ Σh ∗∗xixTi + σ2

wI).

Substituting into (5.7), and simplifying with the product of Gaussians rule given in (A.9)

yields

Kproj (xi,xj) = N
(
H̄ ∗ xi; H̄ ∗ xj , γ−1I ∗∗

(
Σh + H̄H̄T

)
+ Σh ∗∗

(
xixTi + xjxTj

)
+ 2σ2

wI
)
.

To construct N (z′|z), we assume that a test sample is the mean of the distribution,

z = E [Z′], where the random variable Z′ is the projection through the stochastic channel

of a random variable X′ with covariance γ−1

2 I. Therefore, N (z′|z) has covariance given by

(5.8) with x substituted with Fourier deconvolution x−1 = H̄−1 ∗ z. Then, the projected

RBF test kernel given by (5.7) simplifies to the form in Table 5.1.

5.2.2 Projected RBF Kernel for Image Pixel Features

Let H be a random column-stacked vector of a random 2-d point spread function, and let

X be a random column-stacked image with mean x and covariance γ−1

2 I. Model random

vector Z′ ∼ N (z′|x) as

fold(Z′) = fold(H) ∗ ∗ fold(X) + fold(W).
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The mean Z̄′ and covariance R of Z′ may be expressed as

fold(Z̄′) = fold(H̄) ∗ ∗ fold(x), and

fold(Rz) = fold
(
γ−1

2
I

)
∗ ∗ ∗ ∗

(
fold (Σh) + fold

(
H̄
)
◦ fold

(
H̄
))

+ fold(Σh) ∗ ∗ ∗ ∗ (fold(x) ◦ fold(x)) + σ2
wI,

Conditioning on x = xi, and substituting into (5.7) yields the projected RBF kernel for

column-stacked images xi and xj :

Kproj (xi,xj) = N
(
Z̄′i; Z̄

′
j , Rzi +Rzj

)
,

also shown in Table 5.2. The covariance term for a test image is taken to be R̃z = Rz
∣∣
x=x̂

,

where x̂ solves fold(z) = fold(H̄) ∗ ∗ fold(x̂).

5.2.3 Projected RBF Kernel for Subband Energy Features

For subband energy features, let U′x ∼ N (uxi ,
γ−1

2 I). Then project the distribution of the

random variable U′zi
= Uh · U′x + Uw + 2 Re

{
Xf ′ ·Hf ·Wf ∗

}
to the nearest Gaussian

N (u′z|uxi) = N (u′z; Ū
′
zi
, Ruzi

), where

Ū′zi
= Ūh · uxi + σ2

w1, (5.9)

Ruzi
=
γ−1

2
diag

(
Σuh

+ ŪhŪT
h

)
+ Σuh

· uxiu
T
xi

+ σ4
wI + 2σ2

w diag
(
Ūh · uxi

)
, (5.10)

which follows from (B.23) in the appendix with Σux = γ−1

2 I and Ūx = uxi .

Then, solving the integral in (5.7), the projected RBF training kernel takes the form

Kproj

(
uxi ,uxj

)
= N

(
Ūzi ; Ūzj , Ruzi

+Ruzj

)
.

At test time, given an observation uz, the distribution p(u′z|uz) = N
(
uz, R̃uz

)
, where

R̃uz is Ruzi
in (5.10) with ûx substituted for uxi ; ûx satisfies uz = ûx · Ūh + σ2

w1:

ûx =

[
uz − σ2

w1
][

Ūh

] ,

where [a]
[b] denotes Hadamard (element-wise) division of a and b. Then, solving the integral

in (5.7), the projected RBF test kernel for subband energy features is

Kproj (uz,uxi) = N
(
uz; Ūzi , Ruzi

+ R̃uz

)
.
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5.2.4 Unscaled Projected RBF Kernel

Similar to the discussion of the unscaled expected RBF kernel in 5.1.5, we found that the

unscaled version of the projected RBF kernel was computationally more efficient and more

robust to parameter choices and estimated statistics. Thus, we used the unscaled projected

RBF kernel in our experiments in Chapter 6 and unless specifically stated, when referring

to the “projected RBF kernel” we mean specifically the unscaled version. Using the same

arguments given in 5.1.5, one can show that the unscaled projected RBF kernel is positive

definite.

5.2.5 Projected RBF vs. Expected RBF Kernels

The projected RBF and expected RBF kernels differ in the way that the statistics of the

channel samples are incorporated, and in the way that the bandwidth parameter γ is used.

Comparing the covariance terms in Tables 5.1, 5.2 and 5.3, we observe that the covariance

of the expected RBF kernel has the form

Σzi + Σzj + γ−1I,

whereas the covariance of the projected RBF kernel is given by

Rzi +Rzj = Σzi + Σzj + γ−1I ∗ ∗
(
Σh + H̄H̄T

)
, or

Ruzi
+Ruzj

= Σuzi
+ Σuzj

+ γ−1 diag
(
Σuh

+ ŪjŪT
h

)
.

Therefore, the training kernels differ only by the matrix weighted by γ−1; they are identical

as γ → ∞. Since for the projected RBF SVM, γ−1 acts as a weight on the statistics of

the random impulse response, we expect that the projected SVM may be more sensitive to

errors in estimating the probabilistic transformation pZ|X when γ−1 is large.

Another key difference between the two kernels is that the projected RBF kernel treats

the test vector z as a realization of a random vector with nonzero covariance. Conversely,

the definition of the expected RBF kernel treats the test point as deterministic.
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5.2.6 Adapting SVMs Trained on Clean Data to Corrupted Test Features

The presented expected and projected RBF kernels require that statistics (e.g., sample

mean and covariance) of the auxiliary channel samples {hi}Mi=1 are available to train the

SVM. For each new environment, the SVM must be re-trained using the statistics of the

stochastic channel. While we believe that it is optimal to train the SVM for the particular

environment, as a practical question we considered whether we could train an SVM without

knowing the environment, and only adapt the SVM for the environment at test time.

When training an SVM, one solves for coefficients {αi}Ni=1 which determine the contri-

bution of each training sample as shown in (1.4). Notably, some αi’s are set to zero in the

training process, removing certain training samples from influencing the classifier.

Suppose that a kernel function K(·, ·) is selected for SVM classification. For cases in

which re-training the SVM for each new environment is undesirable, we propose the following

approach:

1. Train an SVM on the dataset {(xi, yi)}Ni=1 with kernel K to obtain the weights {αi}Ni=1

and bias b in Eq. (1.4);

2. For a new propagation environment, collect auxiliary channel samples {hi}Mi=1 and

compute relevant statistics;

3. Calculate a bias term for the new environment using the KKT conditions of the SVM

[30, p. 374]:

b′ =
1
N

N∑
i=1

1− ξi
yi
−

N∑
j=1

αjyjKte(xi,xj),

where ξi are the SVM slack variables, and Kte(·, ·) is the channel-robust test kernel

function. The new bias b′ minimizes the average label prediction error over all support

vectors.

4. Classify the test sample as the sign of

f(z) = b′ +
N∑
i=1

αiyiKte(z,xi).
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This approach is theoretically sub-optimal, since the weights {αi}Ni=1 that minimized

empirical risk using the kernel K are not optimally suited to the test kernel Kte. Note that

the role of the {αi}Ni=1 is to weight how important each training sample is in determining

a decision boundary, and these relative importance may not change much for the test con-

ditions. Further, re-calculation of the bias term b′ grossly adjusts the decision boundary so

that at least the label of the support vectors are, on average, predicted accurately.

5.3 Conclusions

In this chapter, the expected and projected RBF kernels were presented as an alternative to

the VE methods. The expected RBF and projected RBF kernels were derived for discrete-

time signal, images, and subband energy features. The kernels account for the channel or

blur that separate training data {(xi, yi)}Ni=1 from the test sample z by using a stochastic

channel model, where statistics are inferred from the auxiliary channel features {hi}Mi=1.

The expected RBF and projected RBF kernels include a Gaussian normalization term

that, in the case of subband energy features, depends on the samples being evaluated.

In preliminary experiments, it was found that the Gaussian scaling term was sensitive to

channel estimation and lead to poorly conditioned kernel matrices. Therefore, the unscaled

expected RBF and projected RBF kernels were proposed and shown to be positive definite

functions.

Lastly, an engineering shortcut was proposed in which an SVM is trained on clean

training data using a standard RBF kernel, but at test time, the expected RBF or projected

RBF kernel is used in an SVM with an updated bias term. Although suboptimal, the

shortcut allows one to train an SVM once, and only update the bias term of the discriminant

function for each new propagation environment.

Experiments comparing the (unscaled) expected RBF SVM, projected RBF SVM, and

the clean-training engineering shortcut for both classifiers are presented in the next chapter.
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Chapter 6

CLASSIFYING SOUNDS IN REVERBERANT ENVIRONMENTS

As [Henry Eyring and Albert Einstein,

colleagues at Princeton] walked

together they noted an unusual plant

growing along a garden walk. Dr.

Eyring asked Dr. Einstein if he knew

what the plant was. Einstein did not,

and together they consulted a gardener.

The gardener indicated the plant was

green beans and forever afterwards

Eyring said Einstein didn’t know beans.

S. K. Franz about Dr. Henry Eyring

This chapter presents three experiments to test the accuracy of the subband energy

feature-based classifiers developed in this thesis. First, a controlled experiment is pre-

sented, in which simulated narrowband signals are injected into an artificial shallow-water

bathymetry using audio-realistic propagation software. The second experiment demon-

strates that the algorithms can identify individual Bowhead whales by their vocalizations

in a noisy, shallow water environment; data were acquired from whale recordings, but by

necessity, they are injected into a shallow-water bathymetry using audio-realistic acoustic

propagation software. The third experiment involves real recordings in an outdoor rever-

berant environment. The aim is to identify trumpeters by the sound of their trumpets; this

is a particularly challenging problem, since the trumpeters are playing precisely the same

note for precisely the same duration.
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6.1 Experimental Details

We compare the expected RBF SVM, the expected RBF SVM (clean) trained on un-

corrupted training pairs {(uxi , yi}Ni=1, projected RBF SVM, projected RBF SVM (clean)

trained on {(uxi , yi}Ni=1 and local joint QDA to VE RBF SVM, VE k-NN and to a channel

agnostic RBF SVM. All RBF kernels are unscaled.

Given N subband energy feature vectors {uxi}Ni=1 and M auxiliary samples {uhi
}Mi=1,

we generate VEs for VE RBF SVM and VE k-NN as follows. For each uxi , we generate M

VEs by taking uxi with every element of {uhj
}Mj=1 to form

uzij = uhj
· uxi + σ2

w1, j = 1 . . . P. (6.1)

For VE RBF SVM, an SVM is then trained from the M ×N VEs; for VE k-NN, k nearest

neighbors are chosen among the VEs. We chose to use the noise power σ2
w in (6.1) instead

of generating Gaussian noise draws, since to incorporate a noise draw wf , the VE method

would also require the Fourier coefficients xfi and hfj as in (1.7), which are not assumed to

be provided for any of the classifiers we compare.

The agnostic RBF SVM is trained on {uxi}Ni=1; auxiliary channel feature vectors {uhi
}Mi=1

are ignored.

For the standard machine learning problem, the training and test data are normalized

using the sample means and standard deviations of the training samples. However, in

this research the training and test features are related by the expression in (1.7), so that

normalizing would not properly center and scale the test data. If m and s are the mean and

scale, respectively, of the training data, and Ũx = [Ux−m]
[s] is the random variable describing

the normalized training data, then scaling the test data and taking the expectation over

Wf and Uh yields

Ũz =

[
Uz − Ūh ·m

]
[s]

expectation→
[
Ux · Ūh + σ2

w1− Ūh ·m
]

[s]

= Ũx · Ūh +

[
σ2
w1
]

[s]

6= Ũx · Ūh + σ2
w1,
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so that data normalization distorts the relationship between the test and training data when

the noise power is non-negligible.

Though we cannot normalize the data, we can achieve a similar effect by adjusting the

RBF kernel bandwidth parameter. For each dataset, the RBF bandwidth parameter γ is

cross-validated over a range of length-scales that are related to the inter-sample distances

between points. As a heuristic to choosing reasonable values for γ, we introduce a parameter

β that chooses γ−1 as a multiple of the minimum inter-neighbor distance according to a

logarithmic scale:

γ−1 =
(
dmax

dmin

)β
dmin,

where dmin and dmax are respectively the minimum and maximum inter-sample distances of

the training set. Thus, for β = 0, γ−1 = dmin, for β = 1, γ−1 = dmax, and so on. For cross-

validation, we cross-validate β over the set β ∈ {−1.5,−1.25, . . . , 2.25, 2.5}. We allow γ−1 to

be greater than the maximum inter-neighbor distance (for β > 1) or less than the minimum

inter-neighbor distance (for β < 0) since γ−1 plays the role of a regularization parameter in

(5.10), and these larger and smaller values are sometimes chosen. The SVM margin penalty

C is cross-validated over the set {1, 101, 102, 103, 104}. The k-NN classifier cross-validates

over a single parameter k ∈ {1, 3, 5, 9, 17, 33, N} (goes like 2n + 1). Since local joint QDA

estimates a class-conditional mean and covariance from ky training samples per class, the

role of ky differs from that of k. For local joint QDA, we cross-validated over the number of

class-specific neighbors ky ∈ {5, 9, 17, 33, |Xy|} and whether to use the maximum-likelihood

estimate of the full covariance or assume a diagonal covariance.

For each of the classifiers, a tie for the parameter pairs (or single parameter for k-

NN) that achieved the best cross-validation score was settled by choosing among the best

performing parameter pairs randomly with equal probability.

6.2 Classifying Narrowband Acoustic Signals in Simulated Bathymetry

The methodology for creating these data is described in Section 4.3. The dataset consists of

subband energies of narrowband signals propagating in a shallow water sonar environment.

The training data {(uxi , yi)}Ni=1 for each are linearly separable, but were created so that the
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classes class separation can be altered, resulting in three datasets of varying class separation:

easy, medium and hard. Realistic sonar channel impulse responses were generated from the

bathymetry in Figure 4.2 by using audio-realistic acoustic propagation software provided in

the Sonar Simulation Toolset (SST) [25].

The experiment is set up as follows. There are N = 200 narrowband training signals

from two classes. In addition, M = 20 channel impulse responses are provided as part of the

training data, from which we compute channel subband energy feature vectors {uhi
}Mi=1. The

1800 test signals were formed by convolving an i.i.d. source signal with a randomly drawn

channel impulse responses, generated i.i.d. with the training channel impulse responses.

Each of the channel impulse responses was generated by first randomly picking a source

location in a simulated bathymetry, then simulating with the Sonar Simulation Toolset

(SST, see [25]) the propagation of an impulse from that random source location to a fixed

receiver location. White Gaussian noise is added to the propagated signal so that the SNR

ranges from -10 to 10 dB. Results for easy, medium and hard are shown in Fig. 6.2.

The experimental setup differs slightly from Section 4.3 and other publications ([2, 34]).

Jamieson et al. [34] compared performance of classifiers for a fixed training time, which

necessitated utilizing a smaller number M of auxiliary samples for VE than for expected

RBF SVM. In this paper, the experiment is set up to compare performance of algorithms

when the same data is available to each, regardless of training time. In addition, in [34],

leave-one-out-crossvalidation was performed for each combination of M auxiliary features

and N training features. We employ ten-fold cross-validation to determine the values of

both γ and C (for SVM) over a classifier-agnostic set of values.

6.2.1 Training Time

The expected and projected RBF SVM classifiers incur a training cost of O
(
N3
)
. However,

there is a hidden cost in populating the N × N kernel matrix, since each entry requires

computing the inverse of a d×d non-diagonal matrix (see Table 5.3), so that populating the

matrix incurs a cost of O(Ndd3). As noted previously, the VE RBF SVM incurs a training

cost of O
(
M3N3

)
since the dataset has been increased to a factor of M . Populating



63

0 200 400 600 800 1000
0

20

40

60

80

100

120

Number of Training Samples

S
ec

on
ds

 to
 T

ra
in

 

 

VE RBF SVM
RBF SVM (trained clean)

expected / projected RBF SVM

Figure 6.1: SVM training time vs. training set size N for fixed M = 20 used in the
simulation experiment. Timing results include the time required to populate the kernel
matrix.

the MN × MN RBF kernel is computationally trivial, but if the kernel matrix is pre-

computed, the expanded dataset places memory restrictions on the usable number M of

channel features when the size N of the dataset is large. A plot comparing the training

times of expected / projected RBF SVM, VE RBF SVM, and RBF SVM (trained clean)

versus the number of training samples is shown in Fig. 6.1—the SVMs were trained using

libsvm [12] on a 3.2 GHz Intel Core i7 CPU.

6.2.2 Results

Classification results for simulated data in the synthetic bathymetry are shown in Fig.

6.2. For hard, clean-train expected SVM is the best overall performer with 95% confidence,

followed closely by expected SVM and projected SVM, which are statistically tied. VE SVM

gives slightly better performance than local joint QDA. A similar trend holds for medium:

clean-train expected SVM clean is the best overall performer, followed by projected SVM

and VE k-NN (statistically tied overall). For easy, VE SVM is the best overall performer,

followed closely by expected SVM clean, then VE k-NN and local joint QDA. In all of these
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Figure 6.2: Classification accuracy of simulated signals in simulated bathymetry using sub-
band energy features. The datasets hard, medium and easy differ in how well the classes are
separated in feature space. Note that the accuracy axis for each plot is on a different scale
in order to highlight the relative performance of algorithms. RBF SVM (agnostic) achieves
an accuracy of 50% for all SNR in each experiment, and is not shown.
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experiments, the agnostic SVM, which treats the corrupted test data as though it were not

corrupted, produces almost exactly a 50% classification rate, which is as poor as randomly

guessing the class label.

6.3 Classifying Bowhead Whale Songs in Shallow Water

Several end notes of Bowhead whale vocalizations for two individuals were extracted from

the MobySound archive [46]. Fifteen vocalizations are available for whale 1, and nine vo-

calizations are available for whale 2. According to the metadata, the end notes of Bowhead

whale songs are relatively stable from year to year. Therefore, we hope to be able to acousti-

cally discriminate between two individuals based on previously recorded vocalizations. Our

experimental setup simulates a shallow ocean channel (in comparison to the observation

distance) at low SNR. Each of the signals has non-negligible interfering noise from bearded

seals, sea ice and banging hydrophone cables [46]. The training signals were recorded in

April 1988 near the coast of Point Barrow, Alaska. In our experiments, we inject a holdout

set of test signals into randomly drawn locations in the simulated bathymetry shown in Fig.

4.2(a). Example vocalizations for each whale are shown in Fig. 6.3. Four frequencies are

selected for subband energy features: the two largest amplitude peaks averaged over signals

in class 1 (163 and 258 Hz) and the two largest amplitude peaks for class 2 (588 and 207

Hz). The features do not correspond to strong interfering noise.

The 24 whale calls are randomly partition into N = 10 training signals (5 from each

class), and 14 signals from which to generate multipath-corrupted test signals. For the

test signals, Gaussian white noise is added so that the SNR of the multipath signal ranges

between −10 and 10 dB. Results in Fig. 6.4 were averaged over 1000 i.i.d. training/test

partitions.

6.3.1 Results

Classification results for the whale endnotes experiment are shown in Fig. 6.4. Local joint

QDA is clearly the best performer over all SNR with statistical significance. It is noteworthy

the local joint QDA is less sensitive to the additive noise, than the other classifiers: at -10 dB

SNR, it beats the second best performer by 10%. Though close, VE SVM is a slightly better
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Figure 6.3: Spectrograms of whale song-endnotes for (a) the first Bowhead whale and (b)
the second Bowhead whale. The vocalizations of the second whale tend to be more variable,
cover a greater dynamic range, and contain stronger harmonic components than the first
whale. Notice that the vocalization in (a) contains interfering calls from a bearded seal from
about 800 to 1200 Hz.
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Figure 6.4: Classification accuracy for identifying Bowhead whales in simulated bathymetry
by using subband energy features of the end-notes of their songs. RBF SVM (agnostic)
achieves an accuracy of 48%± 1% for all SNR, and is not shown.

overall performer for this case than clean-train expected SVM with statistical significance

greater than 95%.

We note that the experimental setup for simulated and Bowhead data is different than in

[34] and [2]. In [34], the objective was to compare performance for fixed algorithm training

time, which necessitated utilizing a smaller number M of auxiliary features for VE than for

expected SVM. Here the experiment is set up to compare performance of algorithms when

the same data is available to each, regardless of training time. In addition, in [34], leave-

one-out-crossvalidation was performed for each combination of M auxiliary features and

N training features. In our experiments, we perform ten-fold cross-validation over the N

training features, and auxiliary features are drawn randomly from the available M samples

as needed. In [2], we note a mislabeling of SNR in the results, so that in comparing results

in this paper to results in [2], it erroneously appears that joint QDA outperforms local joint

QDA.

6.4 Classifying Trumpeters in Reverberant Environment

The final experiment uses real signals with real multipath corruption. The classifier must

discriminate between professional musicians playing the same note on either a trumpet
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(a) (b)

Figure 6.5: (a) Matthew Swihart on trumpet and (b) Edward Castro on cornet in an
anechoic chamber.

or cornet in a reverberant environment. The training dataset consists of subband energy

features extracted from recordings of two different professional trumpet players. Recordings

of Matthew Swihart (Matt) and Edward Castro (Ed) playing concert F in an anechoic

chamber (Fig. 6.5) on their own trumpet and cornet yield four classes: Matt Trumpet,

Matt Cornet, Ed Trumpet, Ed Cornet. Each of the recordings was clipped to be precisely

1 second in duration. Using the four classes we constructed six different classification

problems: Ed Cornet vs Ed Trumpet, Matt Cornet vs Matt Trumpet, Matt Trumpet vs Ed

Trumpet, Matt Cornet vs Ed Cornet, Matt Trumpet vs Ed Cornet, and Matt Cornet vs

Ed Trumpet.

Test signals were recorded in an outdoor semi-enclosed breezeway with a reverberation

length of about 1 second. For a controlled experiment, each anechoic signal was played back

in the breezeway through high-quality speakers in a fixed location, as well as quadratic chirps

to estimate the channel’s impulse response. These signals were recorded at four locations

with the same recorder, in stereo at a 48kHz sample rate and 16 bits per sample for exactly

2 seconds. When classifying z[n] that corresponds to an anechoic signal x[n], features of

x[n] and its stereo pair were excluded from the training set. An example training signal,

test signal and an estimated impulse response are shown in Figure 6.6. Figure 6.7 shows a

scatterplot of the training and test data on logarithmic axes; the dataset shift is obvious.
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Figure 6.6: (a) The energy spectrum of concert F played by Ed on the cornet in the anechoic
chamber; (b) the energy spectrum of a test signal generated by playing back the recorded
note in an echo chamber; and (c) an impulse response estimated by probing the outdoor
breezeway with a quadratic chirp.
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Figure 6.7: Training (upper right) and test features (lower left)—corresponding to subband
energies at fundamental and first harmonic—plotted together on a log-log plot, where Ed
Cornet is denoted by - and Matt Trumpet is denoted by +.

Features were taken to be the subband energies at the frequencies

f =
[
349 698 1048 1397 1746 347 351

]T
(Hz),

corresponding to the fundamental frequency f0 = 349 Hz, the first four harmonics, and

f0−2 and f0 +2 to capture the width of the fundamental. Noise energy σ2
w was taken to be

the median energy level across all frequency bins. Results in Table 6.1 were averaged over

the four different locations.

6.4.1 Results

Table 6.1 shows that in all datasets except Matt Trumpet v. Ed Cornet, expected SVM is

the best performer or statistically tied with the best performer, and in Matt Trumpet v. Ed

Cornet, it is the second best performer. Likewise, local joint QDA is the best (or tied for

best) performer in all tests—including Matt Trumpet vs. Ed Cornet, which apparently was

the most challenging comparison—except Matt Cornet v. Matt Trumpet, for which it is

the second best classifier. VE SVM is tied with expected SVM as the best performer in Matt

Cornet v. Ed Cornet. Projected SVM and clean-train projected SVM—which yield similar

results in most experiments—perform better than VE SVM in 3 experiments. The clean-

train expected SVM classifier does not perform well on the trumpet/cornet experiments.
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6.5 Summary of Experimental Results

First, we note that the agnostic RBF SVM, which ignores the channel, fails miserably for

almost all of these experiments, and thus some form of channel-adaptation should be used.

However, given how poor the channel estimates were for these experiments (especially for

the trumpet classification), the classification gains produced by the adapted methods were

pleasantly surprising.

The clean-train expected/projected SVM classifiers have the least channel adaptation.

They use the SVM coefficients {αi} trained on the clean training data, and only adapt

the kernel at test time to attempt to better model similarity between the test sample and

training sample. Both clean-train SVMs do significantly better than the agnostic over the

datasets, suggesting that adapting only the kernel is worthwhile. The clean-train projected

SVM generally performs worse than the clean-train expected SVM. We hypothesized that

the expected SVM would always do better than its clean-train counterpart because its coef-

ficients were trained for the test-environment. Surprisingly, for both experiments using the

bathymetry to generate sonar impulse responses, the expected RBF SVM clean consistently

does better than the expected RBF SVM. However, the expected RBF SVM clean does not

do well at the trumpet identification. We suspect that this is because the channels impulse

response estimates were not of sufficient quality, to which the clean-train algorithms are

sensitive.

Overall, the expected and projected kernels performed similarly, with very comparable

performance on the simulation results, a win for projected on the real whale data, and a win

for expected on the real trumpet data. Based on comparing the mathematical formulas of

the expected and projected RBF, we hypothesize that the projected RBF kernel will be more

sensitive to the quality of the channel estimation errors. This hypothesis is supported by

the experimental results showing that projected RBF SVM performs comparatively worse

than other algorithms with the poor-quality estimates of the reverberation channels in the

breezeway, whereas it was competitive in experiments with simulated multipath.

The VE methods performed poorly on the trumpet data relative to the expected SVM,

but comparably when given the simulated bathymetry channels. This may be because
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the regularization inherent in expected SVM by aggregating the example channels into a

channel mean and covariance is more helpful when the channel examples are poor, as in

the case of the trumpet data. Further, the VE methods do better relative to the proposed

expected/projected kernels on problems where the classes are easier to separate: such as

the easy simulation and the whale problem. But the VE methods do worse relative to the

proposed expected/projected kernels on problems where the classes are harder to separate:

such as the hard simulation and the trumpet problem. The clean-train expected SVM

performs comparably to the VE SVM for all the simulated channel problems despite taking

orders of magnitude less training time, but performs slightly worse on the trumpet datasets.

We found local joint QDA to be the most robust classifier. Its performance on the

trumpet data is tied for best, it is the clear winner in distinguishing the whales, and it

performs fairly well with the narrowband signal experiment. Also, compared to the SVM

classifiers, we found the local joint QDA method to be much more robust to the choice of

its cross-validation parameters.

6.6 Conclusion

This chapter has compared several classifiers to address the dataset shift problem that occurs

in signal classification problems when the differences between training and test conditions

can be modeled by a linear time-invariant channel and additive Gaussian white noise.

Experiments with simulated and real data revealed the following trends. On easier prob-

lems, where the classes were well-separated and the channels were realistic but simulated,

the VE methods performed well. On harder problems, where the classes are less well-

separated and the channel estimation was poorer, the expected and projected kernel SVMs

performed better. In particular, the expected kernel seemed most robust to non-idealistic

conditions, but less able to take advantage of good conditions. In addition, not only are the

expected/projected kernels theoretically much faster to train due to the O(N3) complexity

of the SVM training procedure, that in practice with even relatively small sample sizes they

were significantly faster to train.

Under cleaner conditions, it was surprising to see that the clean-train expected SVM

outperformed the expected SVM, and was often the best performer of all the considered



74

methods. Notably, clean-train SVMs are the fastest SVMs to train. Throughout, the

local joint QDA method performed consistently well, was robust to parameter choices and

estimates, and is trivial to train. Modifying local joint QDA for the problem of estimating

Gaussian parameters in high dimensions with few training samples is straightforward by

applying results the in [60].

While further experimental studies with a wider variety of channels and data are needed,

our advice to practitioners based on the experimental evidence we have is to use the clean-

train expected SVM is not considered too severe, and—since they seem to be more forgiving

classifiers—to use the expected SVM or local joint QDA if the channels are thought to be

highly corrupting or poorly estimated.
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Chapter 7

EXTENSIONS AND CONCLUSIONS

A scientist’s accomplishments are equal

to the integral of his ability integrated

over the hours of his effort.

Dr. Henry Eyring, chemist

A summary of the contributions of this thesis are presented in Section 7.1. Section

7.2 includes a discussion of the limitations of the framework and algorithms presented in

previous chapters. Finally, the thesis concludes in Section 7.3 with suggested directions for

future work.

7.1 Contributions

This thesis focused on deriving classifiers for test samples that are corrupted by a noisy lin-

ear time-invariant system given clean training examples. This traditionally signal-processing

problem was recast in a machine learning framework in Chapter 1, and by doing so, a previ-

ously unpublished flavor of dataset shift was formally proposed. The classifiers introduced

to solve this dataset shift problem are broadly categorized by their design to perform joint

deconvolution and classification, and differentiated by the modeling assumptions and re-

quirements.

Signal-based classifiers were presented in Chapter 3. The joint MAP classifier jointly

estimates the signal, channel estimate and class label via the MAP rule. Although the

objective function is not convex, reasonable deconvolution estimates and class labels are

produced in practice. If the goal is only to produce an estimate of the class label, then

better performance is achieved by probabilistically accounting for the convolution model

using the joint QDA classifier. The joint QDA classifier models the class-conditional test

signal as Gaussian so that an explicit model for the impulse response is not needed.
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The joint MAP and joint QDA signal-based classifiers may be difficult to apply in prac-

tice, since both algorithm require the inversion of an L×L covariance matrix (for discrete-

time signals of length L). Nevertheless, both algorithms outperformed the Cabrelli blind

deconvolution method followed by matched-filter classification, and motivate the value in

considering deconvolution jointly with classification.

The joint QDA classifier was derived in Chapter 4 for subband energy features, which are

useful discrimining features for the passive acoustic experiments in Chapter 6. The Gaussian

assumption underlying joint QDA was relaxed to reduce model bias; instead the assumption

is that p(z|y) is locally Gaussian. Joint QDA is a good utility classifier: it exhibited good

performance across the datasets considered in this thesis, was robust to specific assignment

of the class neighborhood parameter ky, and exhibited robustness to noisy channel estimates.

As a generative classifier, it can be naturally extended to report confidence, incorporate

prior information, and operate as a one-class classifier. Since the class-conditional mean

and covariance must be estimated from samples, methods for robustly estimating Gaussian

distributions from few samples, as in [60], make it generally applicable.

The joint QDA derivation for second order statistics of subband energy features in the

appendix (Section B.1) was also a basis for deriving channel-robust kernels in Chapter 5.

The expected kernel measures the average similarity between training samples, averaged over

the stochastic channel model p(z|x). The projected RBF kernel was derived by “projecting”

a Gaussian RBF through the stochastic channel model. It was found that the Gaussian

scaling factors of the kernel functions were sensitive to channel estimation errors. So unscaled

versions of each kernel were presented, and were shown to be positive definite functions.

The expected RBF and projected RBF kernels were proposed as an alternative to the RBF

SVM trained on VEs, since training time is dramatically reduced for a large number M

of auxiliary channel features. Experiments showed that not only did the proposed kernels

require less time to train, but more often than not exhibited superior performance. The

robust kernels presented in Chapter 5 represent a richer development of an earlier version

of the expected kernel presented in [34].

For additional savings in training time, an engineering shortcut was proposed for train-

ing an SVM once on clean data, then adjusting the bias term and kernel in the discriminant
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function for each new environment encountered; though suboptimal, no retraining is re-

quired. Experiments showed that the clean-trained classifiers performed well on simulated

data, but did not perform as well on real data.

In all, five subband feature-based classifiers were presented and tested in experiments:

expected RBF SVM, expected RBF SVM clean, projected RBF SVM, projected RBF SVM

clean, and the sole generative classifier, local joint QDA. Across all datasets, the local joint

QDA classifier gave the best performance, and is the simplest to train. The expected RBF

SVM also gave very good performance, and seemed to be especially forgiving of low-quality

channel impulse response estimates in the real-data experiment. The projected RBF SVM

was shown to be susceptible to choices of γ and channel statistics.

7.2 Limitations

The problem setup assumes two criteria that may not be met in practice. First, clean

training samples {xi}Ni=1 are assumed. In practice, it may be more likely that training

samples of the form {z̃i}Ni=1 are available, where z̃i = h̃i ∗ xi + wi; that is, the training

samples themselves are corrupted with a channel and noise that may be unique to that

particular training sample. The challenge then is to collect auxiliary compound-channel

features {gi}Mi=1 distributed i.i.d. from the same distribution as g = h̃−1 ∗ h, so that z =

g∗ z̃+w̃ accounts for the effects of the training and test corrupting channels. Secondly, it is

assumed that auxiliary channel features {hi}Mi=1 are drawn i.i.d. from the same distribution

as the true corrupting impulse response h, but often, the auxiliary channel features and

the test channel may suffer from their own form of dataset shift. Robustness to these

conditions has not been rigorously explored, but in real data experiments where both of

these conditions have been violated to some degree, reasonable performance was achieved

by the classifiers.

Each classifier presented in this thesis has been derived for two kinds of features: discrete

time signal features and subband energy features. Extending the classifiers to feature maps

that are a linear function of the signal, φ(x) = Ax, is straightforward. However, the

features that a particular researcher finds compelling for class discrimination are many.

For example, this thesis has not derived classifiers that use cepstral coefficients as features,



78

but their use as discriminating features for, e.g., speech recognition is well documented [8].

(In the noiseless case, the relationship would be trivial, since for cepstral coefficient vector

zc = hc + xc is a simple additive model. But noise complicates the relationship.) Alas,

for every kind of feature that one may wish to employ, a new derivation of the classifier

or kernel is required. This may be intractable for choices of features that are not simple

functions of the underlying signal.

On a related note, this thesis has not explored using several feature types. For traditional

machine learning methods, the “features” may consist of a mixed bag of descriptions about

the object of interest. But, in this thesis, only a homogeneous feature choice for the elements

of x are considered. Since each of the classifiers in this thesis requires second-order statistics

of the test features, a first step towards a “mixed bag” is to derive the cross-correlation

between, for example, discrete-time features and subband energy features.

Although the expected kernel in Chapter 5 was defined for any kernel K, derivations are

presented only for the RBF kernel, which is the most popularly used kernel. Derivations

for the linear kernel were presented with an early version of the expected kernel in [34].

7.3 Future Work

Local Joint QDA, the expected kernel SVM and the projected RBF kernel SVM proposed in

this thesis solve the dataset shift problem by implicitly transforming the training distribution

pXY to pZY using a forward convolution model: they are z-space classifiers. Certainly, one

might derive other z-space classifiers the leverage the tools developed in this thesis.

One of the chief limitations listed above is that the conditional distribution pZ|X must

be modeled from the function relationship of X and Z for each new choice of features. An

ambitious remedy is to estimate pZ|X directly from the data. This might be accomplished

in a semi-supervised learning paradigm, in which a batch of unlabeled test points {zi}Qi=1

is provided in conjunction with the labeled training points {(xi, yi)}Ni=1 [68]. For covariate

shift, kernel mean matching is used to estimate the ratio pte(x,y)
ptr(x,y) from the data, without

explicitly modeling the distributions [53, Ch. 8].

A key motivation for using a forward convolution model is to avoid ill-posed deconvolu-

tion. As noted in Section 1.2.1, the convolution operator has a null space that corresponds
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to zeros of the system’s frequency response; multipath channels contain zeros due to de-

structive interference. A similar motivation comes from the data processing theorem [13,

Theorem 2.8.1] which states (in the notation of this thesis) that if random variable X̂ is

estimated from Z, where Z has been generated from an underlying source X, as a Markov

chain X→ Z→ X̂, then

I(X; Z) ≥ I(X; X̂),

where I(X; Z) is the mutual information between X and Z. In other words, processing the

data (for example, finding a deconvolution estimate x̂) can only destroy information.

Nevertheless, there are practical reasons why one may wish to classify an estimate x̂

rather than the observation z. For example, z may be of very high dimension when compared

to x̂. Or x may represent the output of another system, such as a Kalman tracker [14]. The

following section presents an overview of robust x-space classifiers—developed in parallel

with the z-space classifiers in this thesis—as an alternative approach to solving the dataset

shift problem, elements of which were published in [3].

7.3.1 Robust Classifiers for Probabilistic Deconvolution

In this section, let us posit the existence of p(x|z) that represents the density over all possible

deconvolution estimates of z. A draw x̂ from the distribution p(x|z) would represent a

feasible deconvolution estimate of z. It is assumed that a density p(x|z) can be inferred

from the test sample z, training samples {(xi, yi)}Ni=1, and auxiliary training pairs {hi}Mi=1.

Then, the objective of robust x-space classifiers is to assign a class label to p(x|z) given

training pairs {(xi, yi)}Ni=1. A depiction of this problem is shown in Figure 7.1.

While theoretically convenient, it is quite challenging to model p(x|z) in practice. In

this section, a very simple case is considered, in which it is assumed that the test sample

and unknown (true) sample are related by

z = Hx + w,

where the matrix H = convmtx(h) is a known. This is a degenerate case of the dataset

shift problem depicted in Figure 1.2, in which the set of auxiliary channel features has a
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Figure 7.1: Depiction of the problem setup for robust x-space classifiers, in which the
labeled training examples (+ and –) are used to infer the class label of a distribution over
deconvolution estimates, p(x|z), represented by its mean (marked ?) and standard deviation
contours.

single element h. For additional simplicity, it is assumed that x and z are draws from a

jointly Gaussian distribution,

N

x

z

 ;

0

0

 ,
 Σ ΣHT

HΣT HΣHT + σ2
wI

 ,

so that

p(x|z) = N (x; mx|z,Σx|z)

= N

(
x; ΣHT

(
HΣHT + σ2

wI
)−1

z,
(

Σ−1 +
HTH

σ2
w

)−1
)
, (7.1)

which follows from conditional independence of jointly Gaussian random variables [61].

Note that the mean of the distribution p(x|z) is mx|z = ΣHT
(
HΣHT + σ2

wI
)−1 z, which is

precisely the linear minimum mean-squared error (LMMSE or Wiener) deconvolution of z

[47].

With this theoretically convenient setup, in the following subsections, closed form so-

lutions are derived for local QDA and SVM classifiers that operate on the deconvolution

density p(x|z).

Robust Local QDA

First, consider the following definitions.
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Definition 2. Expected Maximum Likelihood (Expected ML) Rule. Given the distribu-

tion p(x|z), define the expected ML rule as

y∗ = arg max
y

E [X|z] p(X|y)

= arg max
y

∫
p(x|y)p(x|z) dx. (7.2)

Equation (7.2) generalizes the traditional ML rule in the case of no uncertainty for which

p(x|z) = δ(x− z).

Definition 3. Expected Nearest Neighbor to a Random Test Sample. Given a random

variable X with finite mean m and covariance Σ, and given training samples {xi}N1=1, define

the nearest neighbor of X to be x` where ` solves

`
4
= arg min

i=1,...,N
EX

[
‖X− xi‖2

]
= arg min

i=1,...,N
EX

[
(X− xi)

T (X− xi)
]

= arg min
i=1,...,N

xTi xi − 2xTi m + tr Σ + mTm

= arg min
i=1,...,N

‖xi −m‖2,

since Σ does not depend on i.

Note that Definition 3 differs from Definition 1 in Section 4.2, since in Definition 3, only

the test point is a random variable; in Definition 1, only the training points are random

variables.

Local robust QDA for classifying a deconvolution density is derived using Definition 2,

where p(x|y) is assumed to be locally Gaussian with (local) class-conditional mean mx|y and

covariance Σx|y estimated from the ky expected nearest neighbors of class y using Definition

3. Then, since p(x|z) is Gaussian,

y∗ = arg max
y

∫
p(x|y)p(x|z) dx

= arg max
y

∫
N (x; mx|y,Σx|y)N (x; mx|z,Σx|z) dx

= arg max
y
N (mx|z; mx|y,Σx|y + Σx|z)



82

using the product of Gaussians rule in (A.9), and where mx|z and Σx|z are given in (7.1).

Thus, the robust local QDA classifier is precisely the same form as a local QDA classifier op-

erating on a deconvolution estimate mx|z, but with class-conditional covariance regularized

by Σx|z.

A Bayesian approach to estimate class-conditional Gaussians from few samples was

presented in [60], which applied to the robust local QDA classifier results in the robust local

BDA classifier presented in [3].

Expected Discriminant for Robust SVM

Consider a discriminant classifier, such as an SVM, that classifies a test sample x as

sgn(f(x)), and define the expected discriminant as follows.

Definition 4. Expected discriminant. Let random vector X be distributed as the

deconvolution density p(x|z). Then, define the expected discriminant as

EX|z [f(X)] .

For the SVM with RBF kernel, f(x) = b+
∑N

i=1 αiyiK(x,xi) so that for p(x|z) given in

(7.1), the expected discriminant becomes

EX|z [f(X)] = b+
∫
p(x|z)

N∑
i=1

αiyiK (x,xi) dx

= b+
N∑
i=1

αiyi

∫
p (x|z)K (x,xi) dx

= b+
N∑
i=1

αiyi

∫
N
(
x; mx|z,Σx|z

)
N
(
x; xi, γ−1I

)
dx

= b+
N∑
i=1

αiyiN
(
mx|z; xi,Σx|z + γ−1I

)
,

using the product of Gaussians rule in (A.9). Thus, if the SVM is trained using an RBF ker-

nel with bandwidth (inverse covariance) parameter γ, it may be applied to the deconvolution

density p(x|z) by using a new kernel with covariance Σx|z + γ−1I.
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7.3.2 Forward Model or Inverse Model?

To conclude, there are merits and disadvantages of both x-space and z-space classifiers. In

both cases, a key challenge is modeling the relationship of pXY to pZY , although modeling

is arguably more difficult for x-space classifiers. For z-space classifiers, pZY is factored as

pZ|X pXY so that pZ|X is the distribution to estimate. For example, the class-conditional

distribution in joint QDA can be expressed as p(z|y) =
∫
p(z|x)p(x|y) dx; likewise, the

expected kernel and projected RBF kernel employ pZ|X . In this thesis, the functional

relationship between X and Z was used to estimate first- and second-order moments of

pZ|X .

For x-space classifiers, the distribution of interest is pX|Z , which due to ill-posed de-

convolution is generally difficult to model. As an example, for subband-energy features,

estimating pX|Z as a Gaussian requires estimating the conditional mean and variance of

[rewriting (1.7) in terms of ux]:

ux =

[
uz − uw − 2 Re

{
xf · hf ·wf ∗

}]
[uh]

,

which exhibits circular dependence, since ux = xf · xf ∗.

However, if pX|Z can be modeled, then x-space classifiers are arguably more convenient

than z-space classifiers. For example, the z-space RBF SVMs in Chapter 5 require that

the SVM be retrained for each new environment, unless an engineering shortcut is em-

ployed. In contrast, an x-space SVM need only be trained once, as in Section 7.3.1; different

manifestations of the environment are captured by p(x|z), which is needed only at test time.

As is so often the case in signal processing and statistical learning, the central issue in

either approach is modeling.
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Appendix A

USEFUL IDENTITIES

The following identities are used frequently in this thesis.

A.1 Convolution and Hadamard Product of Vectors

For any vectors a,b ∈ Cd, scalar β ∈ C,

(a ∗ b) (a ∗ b)T =
(
aaT

)
∗ ∗
(
bbT

)
(A.1)

(a · b) (a · b)T =
(
aaT

)
·
(
bbT

)
(A.2)

abT · (βI) = β diag (a · b) , (A.3)

which can be verified by writing the relationships in summation form.

For A ∈ Cn×n, h ∈ Cp and H = convmtx(h) ∈ Cm×n, where m = n+ p− 1 and

convmtx(h) =


h1 · · · hp 0 · · · 0

0 h1 · · · hp · · · 0
...

. . . . . .
...

0 · · · 0 h1 · · · hp

 ,

it can also be shown that

HAHT = A ∗ ∗hhT .

A.2 Convolution and Hadamard Product of Tensors

The properties for vectors in (A.1) and (A.2) can be generalized for tensors. Let A and

B be d-order tensors with A ∈ Rm1×···×md and B ∈ Rn1×···×nd , and let ∗d denote the

d-dimensional discrete convolution sum. Then, it is simple to verify (for example, using

Einstein summation convention), that(
A ∗d B

)
◦
(
A ∗d B

)
= (A ◦A) ∗2d (B ◦B) (A.4)

(A ·B) ◦ (A ·B) = (A ◦A) · (B ◦B) ,
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where the tensor outer product A ◦B is a 2d-order tensor with dimensions m1 × n1 × · · · ×

md × nd.

A.3 Proper White Gaussian RVs

Let V ∈ Cd be a complex Gaussian random vector that is zero mean, white, and proper.

By definition of proper complex vectors [48],

E
[
VVH

]
= E

[
V∗VT

]
= σ2

vI (A.5)

E
[
VVT

]
= 0. (A.6)

Since V is zero-mean and Gaussian, the third moment is zero, which implies

E
[
(V ·V∗) VT

]
= E

[
(V ·V∗) VH

]
= E

[
V (V ·V∗)T

]
= E

[
V∗ (V ·V∗)T

]
= 0. (A.7)

Then, using Isslerlis’ Gaussian moment theorem [32], it is straightforward to show that

E
[
(V ·V∗) (V ·V∗)T

]
= σ4

vI + σ4
v11T , (A.8)

where 11T is a matrix of all ones.

A.4 Product of Gaussians Identity

Lastly, for x,a ∈ Rn, A ∈ Sn++, P ∈ Rm×n, b ∈ Rm and B ∈ Sm++,

N (x; a, A)N (Px; b, B) = N
(
b;Pa, B + PAP T

)
N (x; c, C) , (A.9)

where c = C
(
A−1a + PB−1b

)
and C =

(
A−1 + P TB−1P

)−1.
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Appendix B

DERIVATIONS

B.1 Derivation of Covariance of Uz

Let Xf , Hf and Wf be mutually independent random vectors in the subband energy

relationship in (4.1), and let Wf be a complex Gaussian vector that is zxero mean, white,

and proper. Then,

Cov [Uz] = Cov
[
Uh ·Ux + Uw + 2 Re

{
Xf ·Hf ·Wf ∗

}]
= E

[
(Uh ·Ux) (Uh ·Ux)T

]
+ E

[
UwUT

w

]
+ 4 E

[
Re
{

Xf ·Hf ·Wf ∗
}

Re
{

Xf ·Hf ·Wf ∗
}T]

(B.1)

+ E
[
(Uh ·Ux) UT

w

]
+ E

[
Uw (Uh ·Ux)T

]
(B.2)

+ 2 E
[
(Uh ·Ux) Re

{
Xf ·Hf ·Wf ∗

}T]
(B.3)

+ 2 E
[

Re
{

Xf ·Hf ·Wf ∗
}

(Uh ·Ux)T
]

(B.4)

+ 2 E
[
Uw Re

{
Xf ·Hf ·Wf ∗

}T]
(B.5)

+ 2 E
[

Re
{

Xf ·Hf ·Wf ∗
}

UT
w

]
(B.6)

−
(
Ūh · Ūx

) (
Ūh · Ūx

)T − ŪwŪT
w

− Ūw

(
Ūh · Ūx

)T − (Ūh · Ūx

)
ŪT
w, (B.7)

where additional terms involving E
[

Re
{

Xf ·Hf ·Wf ∗
}]

are zero because Wf is zero

mean and independent of Xf and Hf . Line (B.2) cancels with (B.7). Lines (B.3) and (B.4)

are zero since Wf is zero mean and uncorrelated with Xf and Hf . Since Wf is proper

and Uw = Wf ·Wf ∗, lines (B.5) and (B.6) are zero by property (A.7). By expanding
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Re {a} = 1
2 (a + a∗) and multiplying, line (B.1) can be rewritten as

E
[(

Xf ·Hf ·Wf ∗
)(

Xf ·Hf ·Wf ∗
)T]

(B.8)

+ E
[(

Xf ·Hf ·Wf ∗
)(

Xf ·Hf ·Wf ∗
)H]

(B.9)

+ E
[(

Xf ·Hf ·Wf ∗
)∗ (

Xf ·Hf ·Wf ∗
)T]

(B.10)

+ E
[(

Xf ·Hf ·Wf ∗
)∗ (

Xf ·Hf ·Wf ∗
)H]

(B.11)

= E
[(

XfXfH
)
·
(
HfHfH

)
·
(
Wf ∗Wf T

)]
(B.12)

+ E
[(

Xf ∗Xf T
)
·
(
Hf ∗Hf T

)
·
(
WfWfH

)]
. (B.13)

where properties (A.2) and (A.6) can be used to verify that lines (B.8) and (B.11) are zero.

Using (A.2), lines (B.9) and (B.10) become (B.12) and (B.13), respectively. This yields

Cov [ Uz] = E
[
(Uh ·Ux) (Uh ·Ux)T

]
(B.14)

−
(
Ūh · Ūx

) (
Ūh · Ūx

)T (B.15)

+ E
[
UwUT

w

]
− ŪwŪT

w (B.16)

+ E
[(

XfXfH
)
·
(
HfHfH

)
·
(
Wf ∗Wf T

)]
(B.17)

+ E
[(

Xf ∗Xf T
)
·
(
Hf ∗Hf T

)
·
(
WfWfH

)]
(B.18)

= E
[
UhUT

h ·UxUT
x

]
− ŪhŪT

h · ŪxŪT
x (B.19)

+ E
[
UwUT

w

]
− ŪwŪT

w (B.20)

+ E
[(

XfXfH
)
·
(
HfHfH

)]
· σ2

wI (B.21)

+ E
[(

Xf ∗Xf T
)
·
(
Hf ∗Hf T

)]
· σ2

wI, (B.22)

where property (A.2) was used to rewrite (B.14) and (B.15) as (B.19). Then, use (A.5)

to simplify (B.17) and (B.18) as, respectively, (B.21) and (B.22). In (B.21) and (B.22),

E
[(

XfXfH
)]
· σ2

wI = σ2
w diag

(
E
[
Xf ·Xf ∗

])
= diag

(
Ūx

)
by (A.3) and by defini-

tion of Ux (similarly for terms involving Hf ). Thus, (B.21) and (B.22) simplify to

2σ2
w diag

(
Ūh · Ūx

)
. Applying (A.8) to E

[
UwUT

w

]
, and recalling that Ūw = σ2

w1, (B.20)

reduces to σ4
wI. Finally, E

[
UhUT

h ·UxUT
x

]
− ŪhŪT

h · ŪxŪT
x =

(
Σuh

+ ŪhŪT
h

)
·Σux +Σuh

·
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ŪxŪT
x , so that be collecting terms, we have

Cov [Uz] =
(
Σuh

+ ŪhŪT
h

)
· Σux + Σuh

· ŪxŪT
x + σ4

wI + 2σ2
w diag

(
Ūh · Ūx

)
. (B.23)

B.2 Derivation of Expected RBF for Dependent Uzi and Uzj

In the following, we assume that conditioning on uxi ,uxj is implicit, that is p(uzi ,uzj ) =

p(uzi ,uzj |uxi ,uxj ).

Model p(uzi ,uzj ) = N

 Ūzi

Ūzj

 ,
 Σuzi

ΓT

Γ Σuzj

, where Σuzi
is given in (B.23) by

substituting Ūx = uxi and Σux = 0, since we condition on Ux = uxi :

Σuzi
= Σuh

· uxiu
T
xi

+ σ4
wI + 2σ2

w diag
(
Ūh · uxi

)
.

The cross-covariance term Γ is solved for in the following manner:

Γ = E
[
UziU

T
zj

]
− ŪziŪ

T
zj

= E
[(

Uh · uxi + Uw + 2 Re
{

xfi ·H
f ·Wf ∗

})
(
Uh · uxj + Uw + 2 Re

{
xfj ·H

f ·Wf ∗
})T]

− ŪziŪ
T
zj

= E
[
(Uh · uxi)

(
Uh · uxj

)T ]+ E
[
UwUT

w

]
(B.24)

+ 4 E
[

Re
{

xfi ·H
f ·Wf ∗

}
Re
{

xfj ·H
f ·Wf ∗

}T]
(B.25)

+ E
[
(Uh · uxi) UT

w

]
+ E

[
Uw

(
Uh · uxj

)T ] (B.26)

+ 2 E
[
(Uh · uxi) Re

{
xfj ·H

f ·Wf ∗
}T]

(B.27)

+ 2 E
[

Re
{

xfi ·H
f ·Wf ∗

}(
Uh · uxj

)T ] (B.28)

+ 2 E
[
Uw Re

{
xfj ·H

f ·Wf ∗
}T]

(B.29)

+ 2 E
[

Re
{

xfi ·H
f ·Wf ∗

}
UT
w

]
(B.30)

−
(
Ūh · uxi

) (
Ūh · uxj

)T − ŪwŪT
w (B.31)

− Ūw

(
Ūh · uxj

)T − (Ūh · uxi

)
ŪT
w, (B.32)
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where additional terms involving E
[

Re
{

xfi ·Hf ·Wf ∗
}]

are zero because Wf is zero

mean and independent of Hf . Lines (B.29) and (B.30) are zero by (A.7), and lines (B.27)

and (B.28) are zero since Wf is zero mean. Further, line (B.26) cancels with (B.32). Line

(B.25) can be expanded using Re {a} = 1
2 (a + a∗) to be

E
[(

xfi ·H
f ·Wf ∗

)(
xfj ·H

f ·Wf ∗
)T]

(B.33)

+ E
[(

xfi ·H
f ·Wf ∗

)(
xfj ·H

f ·Wf ∗
)H]

(B.34)

+ E
[(

xfi ·H
f ·Wf ∗

)∗ (
xfj ·H

f ·Wf ∗
)T]

(B.35)

+ E
[(

xfi ·H
f ·Wf ∗

)∗ (
xfj ·H

f ·Wf ∗
)H]

(B.36)

= E
[(

xfi x
f
j

H
)
·
(
HfHfH

)
·
(
Wf ∗Wf T

)]
(B.37)

+ E
[(

xfi
∗
xfj

T
)
·
(
Hf ∗Hf T

)
·
(
WfWfH

)]
. (B.38)

Combining (B.24), (B.25) and (B.31), and using the same logic as used to derive (B.23), we

have

Γ = E
[
(Uh · uxi)

(
Uh · uxj

)T ]− (Ūh · uxi

) (
Ūh · uxj

)T
+ Cov

[
UwUT

w

]
+ 2 E

[
Re
{(

xfi x
f
j

H
)
·
(
HfHfH

)
·
(
Wf ∗Wf T

)}]
= Σh · uxiu

T
xj

+ σ4
wI + 2σ2

w diag
(
Ūh · Re

{
xfi · x

f
j

∗})
.

Since p(uzi ,uzj ) is jointly Gaussian in uzi and uzj , we can rewrite

p(uzi ,uzj ) = p(uzi |uzj )p(uzj ), where p(uzj ) = N
(
uzj ; Ūzj ,Σzj

)
and p(uzi |uzj ) =

N
(
uzi ; Ūzi + Ω

(
uzj − Ūzj

)
,Ψ
)
, where Ω = ΓTΣ−1

zj
and Ψ = Σzi − ΓTΣ−1

zj
Γ. Since the

Gaussian RBF kernel is given by K(Uzi ,Uzj ) = N
(
Uzi ; Uzj , γ

−1I
)
, then by successive
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use of the product of Gaussians identity in (A.9),

EUzi ,Uzj

[
K(Uzi ,Uzj )

]
=
∫∫
N
(
uzi ; uzj , γ

−1I
)
p(uzi ,uzj ) duzi duzj

=
∫∫
N
(
uzi ; uzj , γ

−1I
)
p(uzj )p(uzi |uzj ) duzi duzj

=
∫∫
N
(
uzi ; uzj , γ

−1I
)
N
(
uzj ; Ūzj ,Σzj

)
N
(
uzi ; Ūzi + Ω

(
uzj − Ūzj

)
,Ψ
)
duzi duzj

=
∫
N
(
uzj ; Ūzi + Ω

(
uzj − Ūzj

)
, γ−1I + Ψ

)
N
(
uzj ; Ūzj ,Σzj

)
duzj

=
∫
N
(
(I − Ω) uzj ; Ūzi − ΩŪzj , γ

−1I + Ψ
)

N
(
uzj ; Ūzj ,Σzj

)
duzj

= N
(
(I − Ω) Ūzj ; Ūzi − ΩŪzj ,

(I − Ω) Σzj (I − Ω)T + γ−1I + Ψ
)

= N
(
Ūzi ; Ūzj , (I − Ω) Σzj (I − Ω)T + γ−1I + Ψ

)
Substituting in Ω = ΓTΣ−1

zj
and Ψ = Σzi − ΓTΣ−1

zj
Γ, and cancelling terms yields

N
(
Ūzi ; Ūzj ,Σzi + Σzj −

(
Γ + ΓT

)
+ γ−1I

)
.
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