
A Multiresolutional Estimated Gradient Architecture
for Global Optimization

Megan Hazen, Student Member, IEEE and Maya R. Gupta, Member, IEEE

Abstract— In this paper we present a novel optimization
algorithm that estimates gradients over regions to search for
optima of a non-convex function on both a local and global scale.
The proposed architecture is based on three concepts: using
the memory of previously evaluated points, multiresolutional
search, and the estimation of gradients at these different
resolutions to direct the search. This multiresolution estimated
gradient architecture (MEGA) shows promise to perform
competitively when compared to standard global searches.
Comparisons on the Rosenbrock, Griewank, and sinusoidal test
functions show that MEGA can converge faster than particle
swarm optimization, particularly as dimensionality of a problem
increases.

I. INTRODUCTION

We propose an architecture for global optimization of
black-box objective functions. The focus is on optimizing
functions which are relatively costly or time-consuming to
evaluate. We discuss how our proposed algorithm relates
to existing successful algorithms, focusing on the use of
memory, gradient estimation, and multiresolutional search.
The proposed algorithm combines these three properties and
the goal of minimizing the number of parameters that must
be tuned for each application.

The proposed architecture is described in pseudocode in
Section III. The architecture description leaves many details
open. A specific implementation of the details follows the
pseudocode. The given implementation performed well over
a number of test functions without the need for parameters to
be tuned. Test results are summarized in Section IV. This im-
plementation is compared to two particle swarm optimizers,
and the performance is competitive in both convergence rate
and number of function evaluations per run. The algorithms
were compared on a number of objective functions with
variable input dimensionality, and the MEGA performance
is more consistent than the particle swarm optimizers as the
dimensionality of the problem increases. This feature makes
MEGA a promising choice for solving complex problems. A
more complete discussion of the performance may be found
in Section V.

II. BACKGROUND

The search space we consider is some compact set S ⊂
RD. The optimization problem is to find a global minimum
x∗ of an objective function f(x) such that

x∗ = argmin
x∈S

f(x). (1)

Megan Hazen is with the Applied Physics Laboratory, University of
Washington, Seattle, WA 98195, USA (email: megan@apl.washington.edu).

Maya R. Gupta is with the Dept. of Electrical Engineering, University of
Washington, Seattle, WA 98195, USA (email: gupta@ee.washington.edu).

Functions may also have local, or relative, minima, where
the local minimum x∗p of some region Sp ⊂ S solves

x∗p = argmin
x∈Sp

f(x).

In many engineering problems the objective function is
modeled as a black box; f(x) can only be obtained for
a specific x by running a program, taking measurements,
or modeling a system. Functional information, such as an
analytical gradient, is unobtainable, and the cost of each
function evaluation may be high relative to the computation
proposed to determine a candidate optimal point x̂.

In the next subsections, we discuss three properties of
successful algorithms: multiresolutional search, gradient es-
timation, and efficient use of memory. MEGA was designed
to have these properties.

A. Multiresolutional Search

Successful global optimization methods hone in on local
optima without becoming trapped in them. MEGA handles
this by searching at multiple resolutions in parallel: local
searches and a global search. The local and global searches
attempt to follow the path of steepest descent, where the
direction of steepest descent is defined over the local or
global resolution. A different approach to multiresolutional
search is enacted by simulated annealing with a cooling
schedule. The cooling schedule creates a multiresolutional
search over time; initially there is a random search on a
global scale, but over time the searching becomes more local
[1]. Another approach to multiresolutional search is the use
of hybrid algorithms that combine some form of stochastic
search for the global portion, and a more structured gradient
descent type algorithm for the last, more local step [2], [3].
In generalized pattern search [4] a local search is added
to the grid based pattern search to help refine the pattern
search estimate. Particle swarm optimization changes each
agent’s search velocity as a random function of the distance
between the current point and a local best, and the distance
between the point and the global best [5]. This effects a
random balance between searching locally and searching at
a coarser resolution.

B. Gradient Descent

Traditionally, optimization algorithms calculate or estimate
a gradient and follow the path of steepest descent, or ad-
just for curvature, as done in Newton-Raphson. For high-
dimensional black-box objective functions it is not trivial to
estimate the gradient, and many gradient-free methods have



been developed [6], [7], [4]. Strictly gradient-free methods
are able to converge to global optima, but it is our contention
that moving downhill can direct the search more quickly
towards the optimal area.

Many global optimizaton algorithms explicitly or implic-
itly estimate which direction is downhill at a given operating
point. For example, finite difference methods require 2D
extra function evaluations to estimate a gradient. Simulta-
neous Perturbation Stochastic Approximation (SPSA) uses a
modified finite difference method that requires only two extra
function evaluations per estimate, regardless of the dimension
of the problem [1].

When the functional space has local minima or noise,
the exact gradient, which is the instantaneous slope at some
point, may not be that useful. To avoid local minima or ignore
noise, one may be interested in estimating what direction
constitutes “downhill” over a region. Thus, we will refer to
the gradient over a region Sp as the vector β∗ that best fits
a hyperplane to the function over the region Sp, that is:

[β∗, β∗0 ] = argmin
β,β0

∫
x∈Sp

(f(x)− βT x− β0)2dx. (2)

MEGA estimates gradients over regions of different sizes
(that is, at different resolutions) based only on previous
function evaluations.

C. Memory

Every time the objective function is evaluated more infor-
mation about the function is obtained. Some search strategies
collect this information and use it to guide future search
paths. Tabu Search [8], in particular, does this explicitly
by keeping a memory log to record promising and tabu
(poorly performing) search locations. Other algorithms do
this implicitly by basing new search steps on one or more
of the previous iterations results. MEGA keeps a database
of previously evaluated points, and bases each new gradient
estimation on N +1 previously evaluated points. New points
replace poorly performing previous points at the rate of one
point per function evaluation. In essence this means that the
MEGA algorithm remembers its search path for a number
of iterations, using that information to direct the search.
However, because good points are kept, the memory can
extend back arbitrarily long to remember relatively good
locations.

III. ALGORITHM DESCRIPTION

The MEGA algorithm is an iterative scheme where
multiple new operating points are determined and evaluated
in each iteration. Within the algorithm there are a few
sub-processes that can be implemented in a variety of
ways. The general structure for solving a D dimensional
search problem is presented below in pseudo-code, then
subsections discuss the details of the different sub-processes.

Sample initial points {xi} for i = 1 to (D + 1)2

Evaluate initial points {f(xi)}
x∗ ← argmin{xi, i=1 to (D+1)2} f(xi)

Build database with {xi, f(xi)}
while convergence criteria not met do

Cluster the set of points {xi} into (D + 1) local
neighborhoods
for all n=1 to (D + 1) do

Estimate gradient β∗n based on {xi, f(xi)} in neigh-
borhood n
Calculate new operating point xn in direction β∗n
Evaluate new point f(xn)
Update database with (xn, f(xn))
if f(xn) ≤ f(x∗) then

(x∗, f(x∗))← (xn, f(xn))
end if

end for
Estimate global gradient β∗g based on pairs {xn, f(xn)}
Calculate new operating point xg in direction β∗g
Evaluate new point f(xg)
Update database with (xg, f(xg))
if f(xg) ≤ f(x∗) then

(x∗, f(x∗))← (xg, f(xg))
end if

end while

A. Initialization

To initialize the MEGA algorithm a set of starting points
{xi}, i = 1, . . . , (D + 1)2 are chosen randomly from a
uniform distribution over the search space S. The objective
function is evaluated at each of the starting points to form
the initial sample pairs {xi, f(xi)}.

The number of points needed for the MEGA algorithm
is dictated by the number of points needed to estimate
the gradients. Linear regression is used for each gradient
estimate, thus for a D dimensional objective function, a
minimum of D + 1 sample points are needed to create a
numerically stable estimate. (Actually, the β0 offset value is
discarded, so the computation could be performed with only
D points. This work, however, used the full regression fit
with D + 1 points.) Then, the new points generated by each
local step are used to estimate a global gradient; a minimum
of D+1 local estimates are required for a full rank estimate
for the linear regression coefficients. This results in a total
of (D + 1)2 initial points. Thus, the number of initial points
scales with the square of the dimensionality of the problem,
while the number of parallel searches scales linearly with the
dimensionality.

B. Clustering

At each iteration of the algorithm the database is re-
clustered into D + 1 neighborhoods. An agglomerative
(bottom-up) average-linkage clustering of all the database
samples separates the samples into D+1 mutually exclusive
clusters. The clustering begins by considering each sample
its own cluster. Then there are (D +1)2− (D +1) iterations
of the clustering algorithm, and at each iteration the two
clusters that are closest are joined. We used an average-
linkage implementation such that the distance between two



clusters is defined as the average distance between elements
in each cluster.

A number of global optimization techniques use an initial
clustering of points to begin local searches or to define sub-
domains for search [9]. In MEGA, the clustering happens
every iteration and is a way to incorporate local memory into
the gradient estimation for the local gradient descent steps.
The MEGA clustering is a computationally-intensive step,
particularly as the dimensionality increases. In preliminary
experiments, only re-clustering every q iterations for varying
values of q was tried. The results significantly deteriorated.
That suggests that the clusters are intermixing between
iterations, and that this intermixing is significant for good
performance.

C. Gradient Estimation

The gradients over the regions defined by each neighbor-
hood of previously evaluated points is estimated using stan-
dard linear regression to fit a hyperplane f(x) = βT x+β0 to
the sample pairs {xi, f(xi)} by minimizing the squared error.
For example, let the nth neighborhood contain the sample
pairs {xi, f(xi)} if i ∈ Jn. Then the estimated gradient is
β∗, where

[β∗, β∗0 ] = argmin
β,β0

∑
i∈Jn

(f(xi)− (βT xi + β0))2,

where β∗0 is an offset that does not form part of the gradient
estimate.

The nth local gradient estimate is formed by fitting a
hyperplane to only the sample pairs {xi, f(xi)} in the nth
neighborhood. The global gradient estimate is formed by
fitting a hyperplane to the D+1 newly estimated local sample
points {xn, f(xn)}.

Unlike some gradient-based optimization methods, such
as finite-differences or SPSA, no new points are evaluated
in order to estimate the gradient. Using previously evaluated
points to do a least-squares hyperplane fit is an approach also
used in first-order response surface methods [10].

The estimated gradient is used to direct the search. Tra-
ditionally xnew is calculated using the equation xnew =
xold−σβ∗, where σ is a step size parameter. In MEGA, the
point from which to move, xold, is not pre-defined. Instead,
the step is taken from the centroid of all the points used to
estimate the gradient. That is,

xnew =

∑
i∈Jn

xi

‖Jn‖
− σβ∗n,

where ‖Jn‖ denotes the cardinality of the set Jn.
The least-squares regression coefficient vector β∗ has a

closed form solution:

[β∗β∗0 ]T = (XT X)−1XT y, (3)

where X is a matrix with the sample point xi in the ith row,
and Y is a vector with f(xi) in the ith row, and the i+1th row
of X and Y is all ones. The (D+1)× (D+1) matrix XT X
must be invertible in order to form the gradient estimate.

Thus, D+1 linearly independent samples points are needed.
Before calculating each gradient estimate, a check is made
to determine if there are enough linearly independent sample
points. If not, another point from the database is randomly
chosen and added to the estimation. Randomly chosen points
from the database are added one-by-one until enough linearly
independent samples are available for a numerically robust
matrix inversion.

D. Database Management

MEGA maintains a database of previously-evaluated
points which serves as the memory for the algorithm. Not
all previously-evaluated points are kept in memory. At any
given time there are (D+1)2 points are in the database, one
of which is noted to be the current best operating point: x∗.
The current best operating point is replaced by some other
point x̃ if f(x̃) is evaluated and f(x̃) < f(x∗).

The database is initialized at the start of the optimization
with (D + 1)2 randomly drawn pairs {xi, f(xi)}. Each
time a new operating point (xnew, f(xnew)) is evaluated the
database is updated to include that point. When a new point
is added to the database, some point is removed. In this way
the size of the database is maintained. Every time the nth
neighborhood adds a point, the worst point (before the new
addition) in the nth neighborhood cluster is removed. Every
time the new global point is added, the worst point in the
entire database (before the new addition) is removed.

The replacement of the worst point in the database, the
requirement that gradient estimates be based on D + 1
linearly independent samples, and the frequent re-clustering
are the three aspects that in combination limit the possibility
of spending infinite iterations on a local search around a
relatively poor local optimum.

At all times, the database contains (D +1)2 active points,
D+2 of which are replaced each iteration, allowing memory
to persist over many iterations. Each new point xnew is added
regardless of f(xnew). If xnew is a relatively poor performer,
then this information will inform the next estimated gradient
to direct the search away from xnew.

E. Parameter Settings

Most optimization algorithms have some parameters that
can be tuned to improve the algorithm’s performance on a
specific problem. In the MEGA design an effort was made
to minimize any free parameters, and to provide defensible
reasons for any parameter choices. Ideally, an algorithm
would automatically and optimally adjust its own parameters
to a new objective function.

The first MEGA parameter is the number of random
sample points for the initialization. We choose the minimum
number of points required for the full linear regression fit,
(D + 1)2, as detailed above in the initialization subsection.
Thus this parameter is coupled to the decision to use D + 1
local searches. The number of local searches was chosen to
provide the minimum number of local new points to create a
full rank regression estimate for the global search. It should
be noted that this results in a number of active points that is



directly related to the dimensionality of the problem, which
the authors hypothesize is necessary to efficiently search the
space.

Another set of parameters is the starting value and decay
schedule for the step size σ. If the step size is too large
new points will be located seemingly at random, if σ is too
small the new points will not be significantly different from
existing points. The starting σ is set to be half the length
of the longest edge of the hyperrectangular space. This start
value ensures that early iterations of the algorithm form a
coarse painting of the space: any given step can move entirely
from one quadrant of the search area to another one. The
decay schedule is a monotonic geometric decay schedule,

σj+1 = σj × 0.99,

where j indexes the iteration of the MEGA algorithm.

F. Boundary Conditions

The MEGA algorithm has been designed to work with
black-box type objective functions. The search space for
these functions is usually constrained, as the input values
have practical ranges. In this work it has been assumed
that all constraints are pre-determined limits on individual
dimensions, so that the search space S is a hyper-rectangle.
Hyper-rectangles have deep pockets in high-dimensional
spaces, or equivalently, much of the volume of the space
is in the corners. This can be understood by considering a
hypersphere of radius 1 centered inside a hypercube of edge
length 2. The volume of the hypersphere decays to zero
as the dimension increases. The volume of the hypercube
grows without limit. The hypersphere touches the edges of
the hypercube for any given dimension. Thus, the volume
of the search space is predominantly in the corners of the
hypercube as the dimension grows. Related to this property,
uniformly random sample points are likely to be near the
edge of the search space. A consequence is that optimization
algorithms searching the space by steepest descent are likely
to have many steps that land outside the search space. (For
more details on the curse of dimensionality see [11].)

In early incarnations of this work the constraints were
enforced by limiting the values the input vector could take
on, and vector values violating the constraints were mapped
to the closest boundary point along the estimated gradient.
However, this method could cause sample points to cluster at
the edge of a boundary. A cluster of such points would not
be linearly independent, leading to difficulties in estimating
gradients. This results in redundant searching in the best of
cases.

For this reason, the boundaries are instead handled using
slack variables [12], such that there is a penalty applied for
new points that fall beyond the boundaries of the search
space. Let bl and bu be D dimensional vectors specifying the
hyper-rectangular boundary limits in each dimension. Then,
if a new operating point x falls outside the limits of the

search space S, MEGA gives x the value

f̂(x) = f(x) +
D∑

d=1

e‖δd‖, (4)

where δd is the distance x is outside the boundary in the dth
dimension.

IV. TEST SUITE AND RESULTS

Three standard test functions [13] were chosen to stress
different aspects of an optimizer. The standard Rosenbrock
function is strictly convex, but considered challenging for
algorithms using steepest descent. The sinusoidal function is
non-convex, and has no global trend towards a minimum.
The Griewank function is bowl-shaped but with many local
minima within the search space.

A popular and powerful global optimization algorithm
is particle swarm optimization [14]. The particle swarm
optimization algorithm has similarities to MEGA in that they
are both population based algorithms, and both use some
estimate of a down hill direction to calculate the next step.
Therefore, a reasonable goal for the MEGA algorithm is
to match the performance of a particle swarm optimization
algorithm. Recently, Schutte and Groenwold compared a
number of particle swarm optimization variants [5]. MEGA
is compared to one of the two variants they recommend
based on their study, namely particle swarm optimization
with constriction (CPSO), in which the velocity is multiplied
by a constriction factor. To ensure a tuned performance,
the algorithm was implemented using the parameters rec-
ommended by Schutte et al. Test results are also shown for
a traditional particle swarm optimization implementation in
which the velocity has no constriction multiplier. We refer to
this second particle swarm optimization simply as PSO. Our
PSO has equivalent velocity weight parameters as CPSO, but
a different number of agents: the CPSO implementation uses
25 agents for each test run, while the PSO implementation
uses (D + 1)2 agents. This number of agents was chosen to
be equal to the number of active sample points in any given
iteration of the MEGA algorithm.

Here, as in Schutte’s tests [5], a method is said to have
converged for a function f(x) if the search has discovered
some x̄ such that f(x̄)− f(x∗) ≤ ε, where x∗ is defined as
in (1), and ε = .001. Similarly, each algorithm was allowed
to run for a maximum of 1000D function evaluations. The
results are presented in terms of percent convergence and
average number of function evaluations (averaged only over
the converged instances). These values are plotted as a
function of dimension for each of the test functions.

The Rosenbrock function is one of the best known test
functions. Its long valley makes it particularly hard for
algorithms to find the precise minimal location. The results
of running all three test algorithms on this function are shown
in Figure 1. The results for the sinusoidal test function are
shown in Figure 2, and for the Griewank function in Figure
3. Of the test functions the Griewank function posed the most



Fig. 1. Statistics for minimizing the Rosenbrock function. Top: percentage
of the 100 test runs that converged. Bottom: average number of function
evaluations for the converged runs. (Runs which did not converge are not
included in this average.)

difficulty, possibly due to the high number of local minima
within the search space.

Examining the plots we see that all three algorithms per-
form similarly in low-dimensional spaces. For the sinusoidal
and Rosenbrock functions all algorithms converge frequently
with relatively few function evaluations. The Griewank
function poses a bigger challenge and all the algorithms
struggle with it. An interesting aspect of the MEGA design
is that it specifically scales with dimension, and converges
consistently even when the dimensionality increases. The
performance of the other two algorithms, however, drops off
as the number of dimensions is increased.

It is also interesting to look at the number of function
evaluations needed for convergence. MEGA requires fewer
function evaluations for the Rosenbrock function, presum-
ably because the convex space is well suited to gradient
direction search. MEGA also required fewer function eval-
uations as the number of dimensions is increased. In some
cases the PSO variants required fewer function evaluations
at low dimensions.

While this testing showed that MEGA offers consistent
performance at relatively low dimensionality, further testing

was performed to determine if MEGA could maintain its con-
sistent convergence rates at even higher dimensions. Figure
4 compares the performance for optimizing the sinusoidal
function over 30, 40, and 50 dimensions, where the maxi-
mum allowed function evaluations was again 1000D. MEGA
converged 100% of the time for 100 runs in each dimension.
The results are a function of the maximum number of
function evaluations allowed and the convergence criteria
threshold ε. A more complete picture is had by considering
Figures 5 and 6, which show histograms of the final values
of the 100 runs for 40 dimensions and 50 dimensions. These
figures show that the results would not vary with moderate
changes in ε. The number of PSO and CPSO runs that ended
at quite high function values suggests that it would take
significantly more function evaluations to converge to the
precise optimum.

V. DISCUSSION

This paper has presented a novel optimization algorithm
that has shown promise to compete with other successful
modern optimizers. The testing shows that MEGA performs
consistently as the dimensionality of the search space in-
creases, and frequently converges with fewer function evalu-

Fig. 2. Statistics for minimizing the sinusoidal function. Top: percentage
of the 100 test runs that converged. Bottom: average number of function
evaluations for the converged runs. (Runs which did not converge are not
included in this average.)



ations than its competitors. However, there are some notable
open issues that will be addressed in future efforts.

A. Step Size Parameter

During the development of the MEGA algorithm the au-
thors tried to minimize the number of parameters that needed
to be adjusted by the user for each new objective function.
The parameters that are necessary should, when possible, be
automatically set based on functional information.

Controlling the step size is an essential part of the op-
timization algorithm. Many algorithms, MEGA included,
allow the step size to vary over the course of the run so
that early steps may find a promising region of attraction
while later steps find a more precise location. Currently the
initial step size is based on the maximum size of the search
space so it scales automatically to the current, but the decay
schedule is somewhat arbitrary. Ideally the decay schedule
would be based on the performance of the search to date.

In the MEGA algorithm it should be useful to scale the
step size to the resolution of the current search. Currently
there is one step size value for movement along either a
neighborhood or global estimated gradient. An improvement
might be to base the step size on the range of the points

Fig. 3. Statistics for minimizing the Griewank function. Top: percentage
of the 100 test runs that converged. Bottom: average number of function
evaluations for the converged runs. (Runs which did not converge are not
included in this average.)

Fig. 4. Percentage of the 100 test runs that converged for finding the
optimum of the sinusoidal function over higher dimensions.

going into the current step calculation. This will result in
shorter steps for the local searches, while the global search
will still be allowed to extend across the entire search
space. Additionally, basing the step size on the current range

Fig. 5. Histogram of the final values of the 100 runs for 40 dimensions.



of searching points would remove the need for an extra
decay schedule, as the step size would diminish as the
searching points converged to a more local neighborhood. We
hypothesize that improving the automatic adaptation of the
step-size parameter will result in a more efficient algorithm.

B. Maintaining Rank

A difficult challenge faced by the MEGA algorithm is
ensuring that each gradient estimation is done over D linearly
independent points. When there are not enough points in
the neighborhood, additional effort must be expended to add
points from the database to the pool. Additionally, if the
criteria is minimally met the regression estimate may be
poor due to ill-conditioned matrix inversion. This can occur
when there is a very tight cluster of points. In this case the
points are redundant because they are basically co-located.
All of these issues cause inefficiency in the search, and fixing
them is expected to further reduce the number of function
evaluations needed for convergence.

In future work methods for ensuring a relevant supply of
linearly independent points will be sought. Currently points
from the database are added to the regression set until the
input matrix is of rank D + 1. These points are chosen
randomly, and it is likely that a more careful method of
choosing points would result in the need to add fewer points
overall. One criteria for adding additional points is to add
points based on their distance from the neighborhood; this
may result in more accurate gradient estimations for the
neighborhood.

Fig. 6. Histogram of the final values of the 100 runs for 50 dimensions.

C. Computational Complexity

It should be noted that, while MEGA performs compet-
itively when the metric is the number of function evalua-
tions, it is relatively slow when the metric is overall time.
For problems in which the function to be optimized takes
significant time to calculate, it may be worthwhile to spend
more time choosing the next point to evaluate. At the one
extreme is pure random search: when function evaluations
are free there is no need for intelligent global optimization.
MEGA is at the other extreme, function evaluations must
be fairly expensive to justify the computational complexity.
However, the specific implementation of the general MEGA
architecture can be modified to run faster. In particular,
the time could be cut by employing faster methods for
finding local neighborhoods (through a different clustering
mechanism, or some other means), and faster methods for
estimation of the gradients over regions.

D. Particle Swarm Optimization Discussion

This paper is not designed to recommend the best ways
to use the particle swarm optimization algorithm and its
variants. The implementations tested here are specifically
matched to recommendations from previous work. However,
a few interesting points can be made. CPSO was originally
proposed in [15], based on an algebraic analysis of the
way individual particles converge to stable positions. The
parameters used were recommended initially in that work
and further subjected to experiments in [5].

We note that CPSO is equivalent to the basic particle
swarm optimization implementation, with parameters that are
weighted. The second particle swarm optimizer tested here,
PSO, uses parameter settings equivalent to those in the CPSO
implementation. However, for the second implementation the
authors also modified the number of particles to match the
cardinality of the number of active points in the MEGA al-
gorithm, specifically (D+1)2. PSO’s particles, and MEGA’s
active points, act as the memory of the optimization.

The plots show that CPSO and PSO converge at similar
rates for low dimensions, but the PSO performs more reliably
as the number of dimensions increases. This implies that
increasing the number of agents with increasing dimension
does improve the convergence of a basic PSO algorithm. At
around forty dimensions we note that PSO begins to fail to
converge, while CPSO maintains its low rate of convergence.

These results should come as no surprise. One common
failure mode of particle swarm optimization algorithms is
early convergence to local optima. If there are not enough
particles searching the space the area of attraction for the real
optimum may never be encountered. Increasing the number
of particles is a useful way to ensure that the best area of
attraction is found. However, many recommendations are
to keep the number of particles at a low value (20-30)
because using more particles results in a higher number of
function evaluations needed for convergence. In the highest
dimension cases tested here (40-50 dimensions) the PSO
implementation is not given enough function evaluations to



converge, while the CPSO implementation can still converge
occasionally in the allotted time. The histograms for 40
and 50 dimensions (shown in Figures 5 and 6) support this
hypothesis because the final non-converged values for the
PSO implementation are on average smaller than the final
non-converged values for the CPSO implementation. This
suggests that given infinite time the 100 PSO runs would
have converged on average faster than the 100 CPSO runs.
A recommendation based on this hypothesis is to increase the
number of particles in high dimensional problems to ensure
convergence, but to keep the number of particles low if a
(possibly suboptimal) answer is needed in fewer function
evaluations.

VI. CONCLUSION

In this paper the ideas of memory usage, multiresolutional
searching, and gradient estimation were combined into a new
global optimization architecture. Early testing of a specific
implementation shows competitive performance when com-
pared to particle swarm optimization. MEGA appears to be
particularly good at adjusting to an increasing dimensionality
of the search space. The implementation presented has a
number of detailed processes (clustering, regression fitting,
and step-size scaling) that will be improved in future work.

This future work includes the step size and rank issues
discussed above. It should also be possible to improve
many of the aspects of the MEGA algorithm. Replacing
the regression and clustering algorithms with more efficient
implementations will reduce the computational complexity
of the optimization scheme. The database management may
also be improved by examining what points are added to the
database and how many points are retained.

ACKNOWLEDGMENT

This work was supported in part by the Applied Physics
Lab. The authors would like to thank Warren Fox for helpful
discussions.

REFERENCES

[1] J.C. Spall, Introduction to Stochastic Search and Optimization, Wiley-
Interscience, Hoboken, NJ, 2003.

[2] K.F.C. Yiu, Y. Liu, and K.L. Teo, “A hybrid descent method for global
optimization,” Journal of Global Optimization, vol. 28, pp. 229–238,
2004.

[3] O. Polgar, M. Fried, and I. Barsony, “A combined topographical
search strategy with ellipsometric application,” Journal of Global
Optimization, vol. 19, pp. 383–401, 2001.

[4] C. Audet and J.E. Dennis Jr., “Analysis of generalized pattern
searches,” SIAM Journal on Optimization, vol. 13, no. 3, pp. 889–
903, 2003.

[5] J.F. Schutte and A.A. Groenwold, “A study of global optimization
using particle swarm,” Journal of Global Optimization, vol. 31, pp.
93–108, 2005.

[6] D.A. Pierre, Optimization Theory With Applications, Dover Publica-
tions, Inc., New York, NY, 1986.

[7] Z.B. Zabinsky, Stochastic Adaptive Search for Global Optimization,
Kluwer Academic Publishers, Norwell, MA, 2003.

[8] F. Glover and M. Laguna, Handbook of Applied Optimization, chapter
3.6.7: Tabu Search, pp. 194–208, Oxford University Press, New York,
NY, 2002.

[9] D. Solomatine, “Two strategies of adaptive cluster covering with
descent and their comparison to other algorithms,” Journal of Global
Optimization, vol. 14, pp. 55–79, 1999.

[10] R.H. Myers and D.C. Montgomery, Response Surface Methodology:
Process and Product Optimization Using Designed Experiements,
Wiley-Interscience, USA, 2002.

[11] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning, Springer-Verlag, New York, 2001.

[12] P.Y. Papalambros and D.J. Wilde, Principles of Optimal Design,
Cambridge University Press, Cambridge, UK, 1988.

[13] X. Yao, Y. Liu, and G.M. Lin, “Evolutionary programming made
faster,” IEEE Transactions on Evolutionary Programming, vol. 3, pp.
82–102, July 1999.

[14] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Sixth International Symposium on Micro Machine and
Human Science. October 1995, pp. 39–43, IEEE.

[15] M. Clerc and J. Kennedy, “The particle swarm - explosion, stability,
and convergence in a multidimensional complex space,” IEEE Trans.
on Evolutionary Computation, vol. 6, no. 1, pp. 58–72, 2002.


