
AN INFORMATION THEORY APPROACH TO

SUPERVISED LEARNING

a dissertation

submitted to the department of electrical engineering

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

Maya Rani Gupta

March 2003

c© Copyright by Maya Rani Gupta 2003

All Rights Reserved

ii

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Robert M. Gray
(Principal Adviser)

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Richard Olshen
(Statistics)

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Robert Tibshirani
(Statistics)

Approved for the University Committee on Graduate

Studies:

iii

Abstract

Supervised learning algorithms classify or estimate test points based on labelled train-

ing samples. Learning algorithms have been applied in diverse ares of engineering,

including speech recognition, damage detection, and document analysis. Two difficul-

ties in learning are the ‘curse of dimensionality’ and bias arising from the distribution

of training samples.

In this thesis, a new nonparametric algorithm for supervised classification or esti-

mation is presented. The algorithm extends linear interpolation using the principle of

maximum entropy, and is termed LIME. Compared to other nonparametric methods,

LIME is shown to ameliorate difficulties arising in high dimensions or from asymmet-

rical distributions of training data. Asymptotic theoretical results are shown, as well

as noise robustness and analytical forms for LIME solutions. Simulations show that

error rates are in some circumstances lower than those of other nonparametric algo-

rithms, discriminant analysis methods, neural nets, regularized linear regression, and

decision trees. The problem of supervised learning based on grids of training samples

is considered in-depth. Application of LIME to color management and gas pipeline

integrity are demonstrated. LIME is computationally more expensive than standard

nonparametric algorithms, but the improvement in error rates may be a worthwhile

trade-off. LIME may also be a valuable component in a hybrid classification system.

iv

Acknowledgements

This dissertation is, of course, only a physical manifestation of the long intellectual

journey that constitutes graduate school. The acknowledgements here reflect the pro-

cess of becoming as well as this particular product. I apologize for any appreciations

left unnoted.

Thanks go to James Harris, who was a hero to chair my defense at the last mo-

ment. I would like to thank Rob Tibshirani for being a great assistant adviser and

serving on my defense and reading committee. Many thanks go to Richard Olshen,

who was encouraging and patient with my mathematical efforts, and served as a de-

fense and reading committee member. This year, Bob Gray was nominated for a

Presidential Award for Excellence in Mentoring by the National Science Foundation,

and I am honored to have had him as my primary adviser. In particular, I appreciated

the independence he granted me, his wisdom, encouragement, and speedy revisions.

Behind the scenes of this thesis were the editing efforts, latex advice, and general

positivity of Deirdre O’Brien; a 24 hour optimization helpline operated by Michael

Friedlander; software and computer support from Ken Lin, Remco Teunen, and Mario

Parente; counseling on convergence from Vincent Vanhoucke; and the efficient admin-

istrative assistance of Kelly Yilmaz.

I would like to thank Lorne Campbell for providing a key example and insight that

clarified the procedure for finding an analytic solution to the l1 LIME minimization

problem.

v

Thanks and appreciation to everyone who inspired, mentored, advised, and showed

me how during my graduate school years, including (but certainly not limited to) Rich

Baraniuk, Anna Gilbert, Doug Abraham, Dan Mittleman, Amir Najmi, Warren Fox,

Tom Cover, Elza Erkip, Trevor Hastie, Rob Wilson, Sidney Burrus, Vivek Goyal, Don

Johnson, Bishnu Atal, Phil Chou, Zakkula Govindarajulu, and Anna Friedlander.

Thanks to all the folks at Ricoh’s California Research Center for their suggestions,

advice, and flexibility, especially Kathrin Berkner, Martin Boliek, Michael Gormish,

Peter Hart, and David Stork.

The National Science Foundation provided generous financial support and gave

me the confidence to go to graduate school. Additional financial support was kindly

provided by Hewlett Packard, Ricoh, and Norsk Elektro Optikk.

Much thanks to my family for their continuous positive encouragement and asking

hard questions.

Thanks also to Allison Marino and Al Luckow, for providing a place to hide out

and get things done, complete with grand piano, wine, and wood-chopping.

Lastly, thanks go to Matt Swihart, who showed me how to think beyond my ex-

pectations.

vi

Contents

Abstract iv

Acknowledgements v

1 Introduction 1

1.0.1 Philosophy and supervised learning 2

1.0.2 The supervised learning problem and notation 4

1.0.3 Goals of supervised learning 5

1.1 Supervised learning algorithms . 6

1.2 Holes in the algorithmic blanket . 7

1.2.1 The curse of dimensionality 8

1.2.2 Local bias . 10

1.3 K-NN and linear interpolation . 16

1.3.1 Nearest neighbor and kernel methods 16

1.3.2 Linear interpolation . 19

1.3.3 Introduction to the LIME algorithm 21

2 Linear interpolation with maximum entropy 24

2.1 Linear interpolation with maximum entropy 25

2.2 LIME assumptions . 26

2.3 LIME is a vector algorithm . 27

2.4 Kohonen’s example . 28

2.5 The importance of a good neighborhood 30

2.6 LIME bridges k-NN and linear interpolation 32

vii

2.7 As the number of training samples increase 34

2.8 Performance as the number of

training dimensions increases . 36

2.9 LIME as an adaptive kernel . 37

2.10 Analogs in source coding theory . 40

2.10.1 LIME and variable rate coding 40

2.10.2 LIME and fixed rate coding 40

2.11 Implementing the algorithm . 41

2.12 Prototypes, editing, and clustering 42

2.13 Related work . 43

2.13.1 Maximum entropy and learning 44

2.13.2 The functional D - λ H . 45

2.13.3 Other applications of information theory to supervised learning 48

3 Asymptotics, bounds, and robustness to noise 50

3.1 LIME weight distributions for extreme λ 51

3.2 Exponential form for the optimal distribution 54

3.2.1 Exponential form of weights for any distortion 55

3.2.2 Exponential weights for l1 distortion

and scalar feature space . 57

3.2.3 Exponential weights for l1 distortion and

multi-dimensional feature space 70

3.3 Consistency . 76

3.3.1 Proof of Stone’s first condition 78

3.3.2 Proof of Stone’s second condition 80

3.3.3 Proof of Stone’s third condition 81

3.3.4 Other asymptotic properties 83

3.4 Robustness to noise . 84

3.4.1 LIME expectation unaffected by noise

on training observations . 85

viii

3.4.2 LIME expectation unaffected by noise

on training features . 86

3.4.3 Variation of the law of large numbers 87

3.4.4 LIME solution converges for noisy training observations . . . 89

3.4.5 LIME solution converges for noisy training features 90

3.5 Functions that are fit exactly . 91

3.5.1 Fitting hyperplanes . 91

4 LIME and regular grids 93

4.1 Color management basics . 94

4.2 Estimating a grid for color management 96

4.3 Interpolating a grid . 100

4.4 Product linear interpolation . 102

4.4.1 Formula for product linear interpolation 102

4.4.2 PLI and LIME . 107

4.4.3 Surfaces fit for regular grids 109

4.4.4 LIME and PLI for interpolating grids 112

4.4.5 Color grid experiment . 114

4.4.6 Simulation with additive noise 115

4.4.7 Functional approximation over a grid cell 117

5 More experiments and simulations 119

5.1 Rate of convergence . 120

5.2 Pipeline damage detection . 121

5.2.1 Features . 124

5.2.2 Classification algorithms compared 125

5.3 Vowel data set . 129

5.4 Pima Indians and diabetes . 130

6 Principles of inference 132

6.1 Principle of insufficient reason . 133

6.2 Principle of minimum relative entropy 135

ix

6.3 The principle of minimum expected risk 138

6.4 Policy should suit needs . 140

7 Conclusions 142

7.1 Extensions . 144

A Appendix 146

Bibliography 149

x

List of Tables

1.1 Contrasting plane-fitting and the linear interpolation equations for k

sample points in d dimensions . 20

2.1 Kohonen simulation for two dimensions with increasing training data 35

2.2 Kohonen simulation from two to twenty dimensions and 200 training

points with Bayes’ decision region radius and Bayes’ error 37

4.1 Mean RGB error lengths for color management grid estimation 100

4.2 Mean and variance of CIELAB error lengths 115

4.3 Mean and variance of CIELAB l∞ errors 115

4.4 Mean absolute value errors for approximating the square root of the

sum of the feature dimensions . 117

4.5 Mean absolute value errors for approximating the log of the sum of the

feature dimensions . 118

5.1 Relative frequencies of the twelve pipeline event classes 122

5.2 Mean expected cost for an event of a given class 127

5.3 Mean recall for an event of a given class 128

5.4 Error rates for classifiers on the vowel dataset. 129

5.5 Comparison of classifiers on the Pima Indian Diabetes dataset 131

xi

List of Figures

1.1 Example of training data bias affecting an estimate 11

1.2 Example of how PX can bias classification 13

1.3 Example of how PX can bias classification 14

2.1 Plot of 200 training samples for Kohonen simulation with two dimensions 29

2.2 Kohonen simulation with increasing neighborhood size, twenty feature

dimensions, and 200 training samples 31

2.3 Kohonen simulation varying lambda with two feature dimensions and

200 training points . 33

2.4 Kohonen simulation varying lambda with twenty feature dimensions

and 200 training points . 33

2.5 Kohonen simulation for two dimensions with increasing training data 35

2.6 Kohonen simulation from two to twenty dimensions and 200 training

points . 38

2.7 LIME weights form an adaptive kernel. Top left: neighborhood train-

ing samples at -1, .1, .3, .7 and 1. Top right: neighborhood training

samples at -1, -.5, 0, .5 and 1. Bottom left: neighborhood training

samples at -.1, .6, .7, .8 and .9. Bottom right: neighborhood training

samples at .3, .4, .9, .95 and 1. 39

4.1 Example surfaces fit by PLI. Top left: training observations are 5,5,10,5.

Top right: training observations are 5,10, 10,5. Bottom left: training

observations are 5, 10, 5, 10. Bottom right: training observations are

5, 10, 5, 20. 113

xii

4.2 Simulation of linear surface with additive noise 116

5.1 Gauss mixture simulation with increasing training data 121

5.2 Example 96 × 128 pipeline images. Left to right, top to bottom:

normal, normal, MFL mark, grinder mark, field joint, longitudinal

weld, welds too close, weld cavity, black line, single dot, corrosion

blisters, osmosis blisters. 123

xiii

Chapter 1

Introduction

What has been is what will be...

Ecclesiastes 1:9

The objective of supervised learning is to estimate unknown quantities based on

observed samples. For example, one may have samples of pollutant levels from certain

points throughout Manhattan. Based on those samples, one would like to estimate

the pollutant strength at non-sampled locations in the city. This is a problem of

regression or numerical estimation. If the observation to be estimated is discrete or

categoric, the problem is one of classification. An example is determining if incoming

email is ‘spam’ or ‘legitimate correspondence.’

Algorithms for supervised learning are useful tools in many areas of science and

engineering, from estimating appropriate dosages of medicine for patients to predict-

ing system failures. General references on supervised learning include [31], [54], [111],

and [89]. Two reviews of the supervised learning literature which appeared recently

are [78] and [59]. Supervised learning may be used as an end goal or as a pre-

processing step for other systems. For example, classification of blocks of data into

image or text might precede a document compression system that models the two

categories differently. Estimation of likelihood of failure might establish priorities for

a human safety evaluator.

1

CHAPTER 1. INTRODUCTION 2

In this dissertation, a new nonparametric method for supervised learning is pre-

sented which generalizes linear interpolation by using the principle of maximum en-

tropy. In Chapter 1, the problem of supervised learning, and families of current

solutions are reviewed. Certain aspects of supervised learning are not yet well-solved,

particularly the curse of dimensionality and the bias that may occur from the dis-

tribution of training data. Traditional linear interpolation is shown to ameliorate

these problems, and a generalization of linear interpolation is proposed for supervised

learning. The generalization is termed ‘linear interpolation with maximum entropy’

(LIME). The LIME algorithm is presented in Chapter 2, and simulations are used

to explore its behavior. The theoretical properties of LIME are shown in Chapter 3,

including asymptotics, analytical form of the LIME weights, and robustness to noise.

Chapter 4 takes an in-depth look at the problem of supervised learning with a regular

grid of training samples. More real world examples and simulations are presented in

Chapter 5. Chapter 6 moves beyond the proposed algorithm to take a look at the

underpinnings of the principle of maximum entropy and discuss principles of inference

in general. The concluding chapter summarizes advantages and disadvantages and

considers future extensions of this work.

1.0.1 Philosophy and supervised learning

Supervised learning is a type of induction. Induction, as defined by John Stuart Mill,

is ‘that operation of the mind, by which we infer that what we know to be true in a

particular case or cases, will be true in all cases which resemble the former in certain

assignable respects.’ [88] A given training sampling of data could be taken from an

infinite set of actual complete data sets. Estimates based on a given training sample

are thus probabilistic inferences, never certain answers.

Deduction uses straightforward rules to reach a logical conclusion based on ax-

ioms or data. Induction makes statements about the unknown based on examples.

Deduction comes with the guarantee of logic. Induction lacks this certainty. The

philosopher David Hume criticizes induction in his Enquiry Concerning Human Un-

derstanding [57]. He shows, as should be clear, that the conclusions of induction are

CHAPTER 1. INTRODUCTION 3

not certain and not deductive. Cox moves beyond Hume’s criticism to conclude, ‘If

we are willing to deal with probabilities rather than certainties and admit the rules of

probable inference to the canon of reason, we should counterphrase this remark and

say: If there be any possibility that the course of nature is uniform and that the past

may be some rule for the future, all experience becomes useful and can give support to

some inference.’ [26]. In fact, attributes often change slowly over time or space or can

be correlated with other attributes. In many practical cases we can form probabilis-

tic sets of inferred knowledge that do approximate the truth. However, it is circular

(though self-consistent) to ‘induce’ that induction is useful in general because it has

been seen to be useful in the past.

A method of induction can be viewed as a policy for estimating the unknown,

and judged accordingly. Philosopher C. S. Peirce argued that this viewpoint of in-

duction is justified [99], ‘The validity of an inductive argument consists, then, in the

fact that it pursues a method which, if duly persisted in, must in the very nature

of things, lead to a result indefinitely approximating to the truth in the long run.’

Peirce’s perspective has been supported by later thinkers in the field of probability,

including Kneale [75], and this line of reasoning provides philosophical support to the

pragmatic arguments for supervised learning. In particular, one may be interested in

whether a method of estimation will converge to the expected conditional values in

the limit of infinite training samples. Many supervised learning algorithms converge

to the minimal probabilistic error in the limit of infinite training samples. In this

dissertation, a new method for supervised learning is proposed that (amongst other

useful qualities) is also ‘indefinitely approximating to the truth in the long run.’

For the purposes of an engineering investigation, let us consider the question of the

validity of induction closed. However, it should be noted that eminent philosophers

are found arguing on both sides of the question. Further interesting discussions can

be found in [90], [119], [105], and [124].

CHAPTER 1. INTRODUCTION 4

1.0.2 The supervised learning problem and notation

In this section the mathematical formulation of the supervised learning problem is

presented. Other notation and definitions needed throughout this work are also clar-

ified.

Let the term ‘feature vector’ denote a real valued random vector X ∈ Rd, and the
term ‘observation’ denote a real valued random variable Y ∈ R. The term ‘observa-

tion’ may also be used in a classification context, in which case the observations are

class labels: Y ∈ G, where G is a discrete, typically finite, set of classes. The random
variables X and Y have joint distribution PX,Y .

Let n independent and identically distributed training samples be drawn from

PX,Y , and let these samples form the set of training data, with features and corre-

sponding observation values, {(X1, Y1), (X2, Y2), (X3, Y3), . . . , (Xn, Yn)}. A neighbor-
hood for a feature vector X will be some subset of k training samples, that is, k

features and corresponding observations, {(X1, Y1), (X2, Y2), (X3, Y3), . . . , (Xk, Yk)},
where the indexing may be different than the indexing of the full training data set.

The qth neighborhood training feature for X may be denoted Xq(X). The neigh-

borhood of X may be comprised of the k nearest neighbors or may be determined

in some other manner. If the k nearest neighbors are used, then Xq(X) is the qth

nearest neighbor.

The central problem of supervised learning is to form an estimate of PY |X . An

estimator for a feature vector x may be denoted f(x), where the dependence on the

set of training data is not made explicit. An estimate of an unknown Z may be

represented by Ẑ. Common goals in supervised learning are to estimate the expected

conditional observation E[Y |X = x], or to estimate the value Ŷ given X to minimize

a cost. The cost of estimating Ŷ when the true value is Y is denoted by the cost

function C(Ŷ , Y). For classification problems, a cost matrix C may specify costs

where C(i, j) is the cost of estimating class i when the true class is class j.

In some cases, the training samples {(X1, Y1), (X2, Y2), (X3, Y3), . . . , (Xk, Yk)} and
the test vector X may not be drawn iid. For these cases, certain results, such as

consistency, may not hold.

CHAPTER 1. INTRODUCTION 5

Other preliminary notation

Other notation used in this dissertation is reviewed here.

In general, the function E[·] represents the mathematical expectation of the brack-
eted random quantity. EZ [·] more specifically represents the mathematical expecta-
tion of the bracketed quantity with respect to the distribution of the specified random

variable Z.

The abbreviation ‘iid’ is used for ‘independent and identically distributed.’ The

initials ‘r.v.’ denote ‘random variable.’ The abbreviation ‘pmf’ is used for ‘probability

mass function.’

The notation z[m] denotes the mth component of a vector z.

The indicator function IA is defined as IA(Z) = 1 if Z ∈ A and 0 otherwise. The
indicator may also be used to enact a conditional statement. For example, g(X)Iθ,

where θ is a statement (such asX2 < a) is defined as g(X) if θ is true, and 0 otherwise.

This use corresponds to Stone’s notation [118].

A distortion function is a mapping D : Rd × Rd → R+ from the set of d di-

mensional real vector pairs into the set of non-negative real numbers. The distortion

D(x, x̂) is an indication of how wrong it would be to represent the vector x by x̂.

For example, total squared error is often used as a distortion function. Distortion

functions must have the following intuitive property: D(a, a) = 0.

The definition of the support of a probability measure will also be useful: denote

the probability measure for X by µ, and let Sx,ε be the closed ball centered at x of
radius ε > 0. The collection of all x with µ(Sx,ε) > 0 for all ε > 0 is defined to be the
support of µ, support(µ).

1.0.3 Goals of supervised learning

The primary goals of supervised learning are to create models of the correlative rela-

tionships between a feature space X and the observation space of interest Y , and to

provide minimal risk estimates of the observations corresponding to feature vectors.

However, a model designed to achieve a low risk on a given set of data may be overfit

to that particular set of data and not generalize well to new data. Thus robustness of

CHAPTER 1. INTRODUCTION 6

the estimates is important. Other goals may depend on the application and resources,

including complexity of calculations, computation time, ease of visualization of deci-

sion surfaces, smoothness of estimated surfaces, the ability to handle feature vectors

with missing values, storage needed, and other engineering trade-offs and concerns.

An estimator f(X) may be judged by its expected prediction error (EPE) [54],

EPE = E[C(f(X), Y)] =

∫
C(f(x), y)dPX,Y (x, y).

For classification, if the conditional distributions PY |X) are known for each class,

then the Bayes’ classifier is the classifier that minimizes the EPE by estimating the

class

fBayes(x) = argmin
ŷ
EY |X=x[C(ŷ, Y)].

1.1 Supervised learning algorithms

To apply a supervised learning algorithm, a training sample data set must be created.

Determining the most appropriate or efficient features for an application is a chal-

lenging problem. Is the humidity of the factory an important variable in determining

the probability of failure of a new part? How does the importance of low frequency

fourier coefficients compare to the importance of high frequency coefficients in deter-

mining speech quality? Selecting the right data for features and designing relative

scalings of these features is a difficult and important part of supervised learning, but

not the focus of this work. In this work, it is assumed that these decisions have al-

ready been made and the concern is estimating the distribution of observations PY |X
or the expected observation E[Y |X] for a feature vector X based on a given set of n

identically distributed and independent training features and corresponding training

observations, {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)}.
Supervised learning algorithms can be loosely divided into two camps: paramet-

ric and non-parametric. For parametric algorithms there is an assumed model for

the data source(s) and the parameters for that assumed model are estimated from

the training data. Least squares hyperplane-fits and spline-fitting are examples of

CHAPTER 1. INTRODUCTION 7

parametric estimation algorithms. Parametric classification algorithms model the

conditional class densities. For instance, a popular family of parametric techniques is

to model each class density as a Gaussian.

Nonparametric algorithms do not assume a structure for the data. Neighborhood

nonparametric algorithms, such as weighted nearest neighbor algorithms and kernels,

will be discussed in more detail later. Other nonparametric algorithms, including

decision trees or single-layer neural networks, constrain decision surfaces and may

fit the decision surface by minimizing the empirical or estimated risk on a training

set [54].

In the limit of increasingly large sets of training data, many classification algo-

rithms will theoretically provide the same average error. Simulations with large data

sets show that many algorithms do perform similarly in practice [55]. However, huge

amounts of training data are a luxury. Depending on the application, the cost of train-

ing data may differ greatly, as well as the cost or even possibility of training data

for all the classes under consideration. Some learning applications attempt to train a

computer to mimic a human, including optical character recognition (OCR), speech

recognition, speaker recognition, etc. For these applications, the cost of training data

may be limited by the price of human labor. The Internet has led to movements such

as Open Mind [4] which solicit free training data. Some learning applications imitate

or augment human expertise, such as identifying cancer tumors from an X-ray. It

may be prohibitively costly or difficult to collect a large training set of all the classes

desired, such as ‘no tumor’ and ‘tumor.’ For many applications, there is simply too

little training data to expect asymptotic error rates. Supervised learning algorithms

that show advantages for finite data sets will always be able to find work.

1.2 Holes in the algorithmic blanket

There is a proliferation of algorithms for supervised learning, however, many of these

algorithms are variations on one of a few approaches. Despite the large amount of

work in this field, there are still some gaps in our ability to learn from data. Two

persisting difficulties in learning are the curse of dimensionality [54], and bias from the

CHAPTER 1. INTRODUCTION 8

distribution of the training data. Ideally, an algorithm would always perform better

given more (information carrying) features, and would always perform better given

more training samples. However, this is simply not the case for many algorithms. In

the next sections, a closer look is taken at how more features may hurt estimation, and

how bias from the distribution of data samples can overcome the utility of having more

training samples. The focus of this thesis is a new nonparametric method, termed

LIME, that was developed to address these issues.

1.2.1 The curse of dimensionality

Practical descriptions of causal relationships between features and observations can

lead to expansive feature spaces. For instance, classification of an image may be

based on the values of thousands of pixels or wavelet coefficients. Consider the fol-

lowing short thought experiment about what Richard Bellman termed the ‘curse of

dimensionality.’

Imagine a line segment with endpoints at 0 and 1. Imagine ten points randomly

drawn uniformly over the line segment and marked on the line. Clearly two points of

the ten are on the boundary of the set of points. Each point has a nearest neighbor

in a fairly predictable location - either to the right or to the left.

Next, imagine a three dimensional unit cube. Imagine ten points randomly drawn

uniformly over the cube and marked in the cube. How many points are now on the

boundary of the set? How easy is it to predict where a point’s nearest neighbor will

fall?

Last, imagine a twenty dimensional unit cube. Imagine ten points randomly drawn

uniformly over the cube. How many points are on the boundary of the set? How easy

is it to predict where a point’s nearest neighbor will fall?

This simple thought experiment illustrates some of the issues that arise as the

dimension of the feature space increases. For one, intuition built in one or two di-

mensions does not lead to a clear conception of twenty-dimensional space. Algorithms

based on one-dimensional or two-dimensional intuition may not scale well to twenty-

dimensions. Secondly, an increasing number of randomly drawn points (from just

CHAPTER 1. INTRODUCTION 9

about any distribution) will be at or near the boundary of the set. Learning methods

which fit functions to data (such as least squares plane-fitting) tend to do worst at

boundaries, resulting in biased estimates. Furthermore, learning methods that fit

models or functions to data must accurately fit a growing numbers of parameters

as the dimension increases. Even when the model is well suited to the data, there

may be too many parameters to estimate sensibly. For instance, 1325 parameters

must be estimated for a Gaussian in 50 dimensions (additional structure is often

assumed in order to bring down the number of parameters needed). On the other

hand, neighborhood algorithms that compute a weight for each training sample in a

local neighborhood do not face this problem of increasing parameters with increasing

dimension.

Neighborhood methods, such as k-NN and kernel algorithms, base weightings on

the distance from test to each training point. Points scattered in high-dimensional

spaces tend to be all far away from each other by a Euclidean distance. Thus those

method’s emphasis on pure distance becomes less useful.

High-dimensional feature spaces require more data to populate them densely than

lower dimensional spaces. Thus a ‘local’ neighborhood of the k nearest neighbors

may stretch far in any one dimension; see [54] for examples. Further, the variance in

feature space of the closest neighbor tends to increase sharply with dimension.

Decision trees, including algorithms such as CARTTM [14] and MART [54], provide

some relief from the curse of dimensionality. Most decision trees model the observation

space as a set of rectangular compartments. An important advantage to decision trees

is that they can avoid the confusion of multi-dimensional data by focusing on one or a

few dimensions at a time. However, this advantage is also a disadvantage - linear splits

along feature dimensions may be too constrained a model to represent accurately the

decision boundaries in a multi-dimensional feature space.

Much of the intuition used to design supervised learning algorithms, and in par-

ticular parametric algorithms and neighborhood methods, is based on intuition built

from one or two dimensions and generalized. The LIME algorithm presented in this

work was originally developed for three dimensional color management problems [44]

CHAPTER 1. INTRODUCTION 10

and it will be shown through simulations that it is more suited than standard neigh-

borhood methods for three and higher dimensions.

1.2.2 Local bias

One of the opportunities in nonparametric classification and regression is to reduce

sensitivity to bias. Goin [40] discusses nonparametric estimation bias that is due to

different training and test probability distributions, or due to the population of one

class of training samples being larger than the population of another class of training

samples.

Even when the training distribution and test distribution are iid, the distribution

of feature values of the training data can still cause a local bias of learning estimates.

One would like to estimate PY |X , which can be decomposed as,

PY |X =
PX|Y PY
PX

. (1.1)

K-NN techniques estimate PY |X by estimating the class conditional distribution

PX|Y . The estimated k-NN probability of class 1 at a point x depends on the local

class conditional distributions,

P̂ (y = 1|x) ∼
∫
V
P (x|y = 1)∑

g

∫
V
P (x|y = g) , (1.2)

where V is a local volume centered at x, and is dependent on the local distribution

of training samples, PX .

A local bias arises if the local mean of the class conditional distribution deviates

from the distribution at the point x. In accordance with Friedman’s definition of

bias [35], let the local bias be defined,

bias P̂ (y = 1|x) = P (y = 1|x)− E[P̂ (y = 1|x)] (1.3)

where the expectation is taken over all possible sets of training samples. For k-NN,

the estimate P̂ (X = x|Y = 1) depends on the local sum of training samples of class

1. A local bias may arise if there is a strong local gradient of the class conditional

density.

CHAPTER 1. INTRODUCTION 11

2 3 4 5 6 7 8
0

5

10

15

20

25

kernel estimate
at 5 miles

neighborhood
samples at 4 miles

neighborhood
samples at 6 miles

Figure 1.1: Example of training data bias affecting an estimate

Consider an example, as shown in Figure 1.1. In the example, the feature X ∈ R
represents the number of miles north of a landmark that a measurement is taken.

The observed variable Y ∈ R measures the strength of a cellular phone signal. The

training samples are marked with ‘o’s in the Figure. The problem is to estimate the

signal strength at x = 5 miles. Consider a neighborhood method with a symmetric

neighborhood of 1 mile on either side of the test point. Since the training samples are

equidistant from the test point, most neighborhood methods will give them the same

weight. However, that leads to the biased estimate marked with an ‘+’ at x = 5.

As a classification example of the effect of local bias, consider a two class problem

CHAPTER 1. INTRODUCTION 12

with a one-dimensional feature space, shown in Figure 1.2. The class conditional pdf’s

P (x|y = 1) and P (x|y = 2) have a Gaussian distribution, with mean 0 and σ1 = 1

for class 1 and σ2 = 4 for class 2. The two classes are equally likely. In Figure 1.2

the two conditional distributions are shown, as well as 60 samples drawn randomly

from PX,Y . The Bayes’ decision region is bounded by where the two distributions

are equal, and a classification algorithm will do best on average if it classifies points

within the boundary as class 1, and points outside the boundary as class 2. Imagine

a k-NN algorithm with some k. For points just outside the Bayes’ decision boundary,

a majority of the k nearest neighbors will be from inside the Bayes’ decision region.

This is because the local probability density is higher inside the decision boundary

than just outside the boundary. Thus the probability distribution PX biases the

estimate.

The bias effect grows as more identical, independent Gaussian feature dimensions

are added. Let the conditional probability P (x|y = 1) have a two-dimensional Gaus-
sian distribution with mean 0 and diagonal covariance; the standard deviation is

one in each dimension. Similarly, the conditional probability P (x|y = 2) has a two-
dimensional Gaussian distribution with mean 0 and diagonal covariance; the standard

deviation is four in each dimension. A two-dimensional example of 100 samples drawn

randomly from PX,Y is shown in Figure 1.3. The Bayes’ decision region is outlined

with a circle on the figure. As in the one-dimensional case, test points that fall

slightly outside the circle are more likely to have near neighbors within the circle.

Since samples in the circle are more likely to come from class 1, test points outside

the circle are more likely to be classified by k-NN as class 1. Thus, the distribution

of the sample data PX is biasing the classification.

Any gradient in the distribution of the training samples can lead to a bias in

the estimate. Neighborhood methods such as k-NN, weighted k-NN, and kernels

rely only on distance from a test point to a neighborhood sample to determine the

CHAPTER 1. INTRODUCTION 13

−8 −6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 1.2: Example of how PX can bias classification

CHAPTER 1. INTRODUCTION 14

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 1.3: Example of how PX can bias classification

CHAPTER 1. INTRODUCTION 15

weighting on a sample point. In Section 1.3.1, these methods are discussed in further

detail. Other learning techniques fit parameters to minimize the error on training

sets, creating estimates that may also be biased by the training sample distribution.

For example, consider a least-squares plane-fitting. The plane is fit to minimize total

squared error. If there are many more samples in one part of the feature space than in

others, the plane may be preferentially fit to that part of the feature space, possibly

with significant biases in other parts of the feature space.

Friedman’s t compensation

The effect of local bias on classification error is explored in detail in papers by Fuku-

naga and Hummels [36], and Friedman.

Friedman [35] considers the two-class problem and explores adjusting the estimate

P̂ (y = 1|x) by a global parameter t ∈ [−1, 1]:

P̃ (y = 1|x) = P̂ (y = 1|x) + t (1.4)

Friedman’s adjusted estimate P̃ (y = 1|x) is not guaranteed to fall between 0 and
1. Ideally, the variable t will compensate for the bias P (y = 1|x)− P̂ (y = 1|x). Given
a known distribution PX,Y , Friedman gives examples using k-NN and shows how the

variable t could be determined. He notes that in practice, the true distribution PX,Y

is rarely known, but that t could be trained by cross-validation. Friedman leaves as

future work applying the t compensation to problems where the true distribution is

not considered known.

To judge the validity of Friedman’s t compensation, a few simple simulated exper-

iments were run. The value of t trained by cross-validation approached the optimal

value. For a simulation with a consistent local bias (i.e. the local bias is of the same

sign everywhere), the t compensation worked quite effectively.

The t compensation however adjusts for local bias with the same adjustment (t)

everywhere. In practice, the local bias is likely to differ over the feature space. The

t compensation could be a viable machine learning technique if the compensation

was more local. Another limitation is that Friedman’s work only considers the two-

class problem, but a simple solution to that might be to compensate each class g’s

CHAPTER 1. INTRODUCTION 16

conditional density by tg, and require
∑
g tg = 1. If the t compensation was a practical

technique, it could be coupled with any distribution estimation technique (including

the LIME algorithm proposed in this work).

Reducing the bias of estimation

Bias is often a local phenomena, and as such requires a localized solution. Using the

contextual information when assigning weights in nonparametric estimation can help.

The worth of a training sample depends on what other training samples are in a test

point’s neighborhood. Training samples with similar feature vectors can reduce the

noise of estimates, but as seen in the above example, they can also cause a serious bias.

In the next few sections, neighborhood methods and linear interpolation are reviewed

and it is shown how they may be combined through the principle of maximum entropy

to yield an algorithm that takes into account the spatial relationships of the training

points and thereby reduces the effects of local bias.

1.3 K-NN and linear interpolation

Let us take a closer look at nearest neighbor and kernel methods and at a seem-

ingly completely unrelated algorithm, linear interpolation. The limitations of both

approaches are discussed and the insight gained is used to develop a new approach,

termed LIME. The LIME algorithm is presented and explored through simulations

in the next chapter.

1.3.1 Nearest neighbor and kernel methods

Perhaps the most famous non-parametric method is the k-NN rule, for which Fix and

Hodges [34] provided the first consistency results. The method is simple but performs

competitively on many real-world problems [54], [56].

The 1-NN estimate is equal to the class label (or value, for regression problems)

of the closest training sample to a test point x,

CHAPTER 1. INTRODUCTION 17

f1−NN(x) = y1(x).

where, for any integer j, xj(X) is the jth closest neighbor to a test point x out of

the set of training samples under a chosen metric, and yj(X) is the training obser-

vation corresponding to xj(X). To simplify notation, from this point on the notated

dependence on x will be omitted unless useful for clarity.

More generally, the k-NN rule weights the k nearest neighbors equally, wj(x) =
1
k
,

for j = 1 to k. Then the class or value is chosen that minimizes the expected cost.

Thus, the k-NN rule results in the estimate

fk−NN(x) = argmin
ŷ

1

k

k∑
j=1

C(ŷ, Yj).

Variations on the k-NN rule abound. Weighted nearest-neighbor methods adap-

tively tailor the weights on training points, usually defining a monotonically decreas-

ing kernel that weights neighbors less as a function of their distance to a test point.

Similarly, kernel estimates for regression were proposed (independently) in 1964

by Nadaraya and Watson [50]; kernel estimates had been proposed earlier for density

estimation by Parzen [97], and related ideas can be found in papers by Grenander

from the 1950’s. Define a kernel function K : Rd → R, where K is usually even,

nonnegative, and monotonically decreasing along rays starting at the origin. The

kernel K usually has only one parameter h (which may be a vector) which specifies

the bandwidth. The bandwidth parameter h may be data dependent. As an example,

the Epanechnikov kernel is defined as [54]

Kepan(x− xj) = .75
(
1− ‖x− xj‖

h

)2

for
‖x−xj‖
h

≤ 1, and Kepan(x− xj) = 0 otherwise.
Another popular kernel is the tricube kernel [54], defined as

Ktricube(x− xj) =
(
1− ‖x− xj‖3

)3

for ‖x− xj‖ ≤ 1 and Ktricube(x− xj) = 0 otherwise.

CHAPTER 1. INTRODUCTION 18

For an estimation for feature value x ∈ Rd, the kernel weight corresponding to a
training point xj is

wj(x) =
K(x− xj)∑n
j=1K(x− xj)

.

The kernel estimate is

fK(x) = argmin
ŷ

n∑
j=1

wj(x)C(ŷ, yj)

Various kernels have been proposed and investigated, including kernels with neg-

ative sidelobes. Many variations and properties are reviewed in [30], [54], and [89].

As shown in the example in the last section, kernel and nearest-neighbor methods

can be biased by the distribution of the training samples. The bias of kernels whose

bandwidth overlaps the boundary of the training data can be of a larger order of

magnitude than the bias in the interior [107]. To address this issue modification

schemes for kernels have been proposed [107], [50]. The main cause of the estimation

bias is asymmetry of training data near the boundary. If feature dimension size

increases but the number of training points stays constant, the surface area of the

boundary increases exponentially.

Depending on the distribution of the training data, similar bias problems can

occur in the interior of the feature space as well. Variations of k − NN and kernel

algorithms allocate weight to neighborhood training points based on their distance

to a test point [30], [54], [89]. These training points may be original samples or

points that represent samples, as is the case with edited k-NN or clustered k-NN

(see Section 2.12). This is not a full use of the information at hand, because one

also knows where the training points lie in relation to each other. The information

about the spatial distribution of the training points is not taken into account. The

distribution PX of the data affects the estimate of PY |X . Examples of the local bias

this can cause were given in Section 1.2.2

Clearly, a training point’s worth for estimating P (y|x) depends on the distribution
of training points in the neighborhood. Repeated training points are useful in char-

acterizing and reducing the effect of noise, but it will be shown that these advantages

can be retained while reducing bias effects.

CHAPTER 1. INTRODUCTION 19

In Section 1.3.3, the LIME algorithm is introduced. LIME allocates weight to

training points by taking into account which other training points are available. More

specifically, LIME uses information about the spatial distribution of the training

points in the neighborhood to create linear estimates that are not as biased by the

distribution of the training points. The bias is removed to a first order by constraining

the weights with the equations of linear interpolation. First, let us review linear

interpolation.

1.3.2 Linear interpolation

Linear interpolation is a regression method traditionally applied to a neighborhood

of d + 1 training samples {(x1, y1), (x2, y2), . . . , (xd+1, yd+1)} in d dimensions where
xj ∈ Rd for all j [66], [110]. The d + 1 training samples must contain the test

point within the closure of the convex hull spanned by the d + 1 training samples.

Over the d + 1 samples, weights are solved to satisfy the d-dimensional constraint∑d+1
j=1 wj(x)xj = x, and the one-dimensional constraint

∑d+1
j=1 wj = 1. To form the

estimate for a test point x, the weights are applied in the output domain f(X) =∑
j wj(x)yj.

Contrasting linear interpolation and plane-fitting

Least-squares plane-fitting models data with the hyperplane f(x) = aTx + b that

satisfies

argmin
f(x)

∑
j

(f(Xj)− Yj)2.

When fitting a plane, there is a degree of freedom to specify the slope for each

dimension, plus a degree of freedom for the offset. Thus for k training points in d

dimensions, there are d+ 1 parameters to fit for a hyperplane. Clearly, when k > d,

and the points do not lie on a plane, plane fitting can not fit a plane through all the

points, and thus the plane with minimum distortion (e.g. minimum mean squared

error) is fit. Thus one can say that plane-fitting has d+ 1 parameters to try to fit k

constraints.

CHAPTER 1. INTRODUCTION 20

Estimation Method Number of unknowns to solve for Number of constraints
plane-fitting d+1 k
linear interpolation k d+1

Table 1.1: Contrasting plane-fitting and the linear interpolation equations for k sam-
ple points in d dimensions

On the other hand, linear interpolation selects a weight for each of k training

points. And there is an equation for each dimension, so there are d constraints to

satisfy. An additional d + 1th constraint guarantees that the weights sum to one.

Thus linear interpolation is in some ways the opposite of plane fitting, as summarized

in Table 1.1. However, in order to solve the linear interpolation equations exactly,

the number of unknowns k must equal the number of constraints d+1, which in fact

results in a planar surface estimated between vertices that are the k = d+1 training

points. Least-squares plane-fitting gives for d+1 training points in d dimensions the

same estimates as linear interpolation. However, in this work linear interpolation is

generalized, and then the estimates are no longer planar.

Local regression [54] is a form of nonparametric regression in which a neighborhood

is chosen (as in k-NN or kernel algorithms), and then a model is fit to the observations

in that neighborhood. A popular version of this is to least-squares plane-fit over

a local neighborhood, termed local linear regression. This technique can result in

biased estimates and radical extrapolations at the boundaries of the training data

set in feature space. A number of methods exist to improve the performance of local

regression methods, see [126] for further discussion.

Limitation of linear interpolation

Linear interpolation is interesting because it succeeds where neighborhood algorithms

fail - it takes into account the spatial relationships of the neighborhood training sam-

ples. The system of equations
∑
j wjxj = x works in any number of dimensions and

provides a way to compensate for the empirical distribution of the training samples.

CHAPTER 1. INTRODUCTION 21

Linear interpolation suffers from one basic problem - the number of unknowns k

must equal the number of constraints d+ 1 in order to solve the linear interpolation

system of equations exactly and arrive at the weightings of the k training samples.

For example, solving the linear interpolation system of equations exactly for a one

dimensional problem yields only two weights, restricting the neighborhood to two

training samples. That may not sound too restrictive, but consider an application

such as color management with three feature dimensions. Only four weights can be

solved for, restricting all estimates to a neighborhood of only four training samples in

three dimensions. It is likely that one will have more relevant data to use to form an

estimate. In the following section, linear interpolation is extended to use as many of

the data points as one thinks are relevant. This leads to the LIME estimation method

which decreases training sample distribution bias and performs well with increasing

feature dimensions.

1.3.3 Introduction to the LIME algorithm

Linear interpolation takes into account the spatial distribution of training samples,

but is limited to only d+1 training samples for a d dimensional feature space. Often

there are more than d + 1 training samples considered relevant to estimate a test

point x. Consider the effect of including more data into the d+1 linear interpolation

equations:

k∑
j=1

wjxj = x (1.5)

∑
j

wj = 1 (1.6)

For k > d + 1, there are more unknowns than constraints, and the system of

linear interpolation equations is an underdetermined system with an infinite number

of solutions. Having more data than equations, k > d + 1 is not a problem, but

rather an opportunity to add other criterion to result in only one solution. One good

criterion would be to use the neighborhood training points as equally as possible

CHAPTER 1. INTRODUCTION 22

given the spatial constraints of the linear interpolation equations. The intuition is

that without a reason to trust one neighborhood point more than another, the points

should be weighted as equally as possible.

Different mathematical criteria could formalize this approach. One criterion is

to maximize the entropy of the weights. Jaynes’ principle of maximum entropy [60]

says to solve for probability distributions by choosing the distribution with maximum

Shannon entropy H(w) = −∑
wj log(wj).

To find an unique solution to an underdetermined system of linear interpola-

tion equations, one can maximize the entropy of the weights. Maximizing the en-

tropy chooses the weight solution that commits the least to any one training sample.

This will ensure that sample points are used as diversely as possible. Maximizing

entropy is a popular way to solve under-constrained systems, e.g., [93], [9], [45],

[38], [68], [15], [58], [27], [25], [112]. Under certain assumptions it is the maximum

likelihood solution [79], [127]. Conveniently, maximizing entropy often leads to closed

form solutions. In Chapter 6, the maximum entropy principle is discussed in more

depth.

A more general approach to solving linear interpolation equations is to minimize

the relative entropy to a model instead of maximizing the entropy. Consider the case

that one would like to put more weight on specific sample points. For instance, one

might want to weight training points closer to the test point more heavily. Given a

kernel or model of the weights (monotonically decreasing with distance or otherwise)

one can solve the underdetermined system of linear interpolation equations by solving

for the weight solution that minimizes the relative entropy to the model (or kernel).

From this perspective, maximizing the entropy is simply assuming an equal weight-

ing (k-NN) kernel over the neighborhood. Results are not presented for minimizing

relative entropy to a model(kernel), but it is proposed as an extension in Chapter 7.

Unfortunately, it may not be possible to solve the system of linear interpolation

equations exactly. The linear interpolation equations are infeasible if the test point

x lies outside the convex hull of its neighborhood points. Let D(w) be an alternate

notation for the distortion function D(
∑k
j=1wjxj, x). For example, D(w) could be

the mean squared error between
∑k
j=1wjxj and x. Requiring weights to be chosen to

CHAPTER 1. INTRODUCTION 23

exactly solve the linear interpolation equations is equivalent to requiring D(w) = 0,

and this may not be a feasible problem. A more general goal is to minimize D(w)

and maximize the entropy of the weights, H(w). In the next chapter, the LIME

algorithm is presented, which trades-off the reproduction distortion and the entropy

of the solution.

Chapter 2

Linear interpolation with

maximum entropy

Mitte, wie du aus allen

dich ziehst, auch noch aus Fliegenden dich

wiedergewinnst, Mitte, du Stärkste.

Center, how from all beings

you pull yourself, even from those that fly,

winning yourself back, irresistible center.

Rainer Rilke

The LIME algorithm requires that for each test point X there be chosen a set

of relevant training points, termed the ‘neighborhood.’ A common choice for the

neighborhood of a test point X is to use the k nearest training samples to X, but

the choice of neighborhood rule is left to the discretion of the practitioner. Given

a test point and its neighborhood, the LIME algorithm computes a weight for each

neighborhood training point so that the weights form a probability mass function. The

weights are chosen to both minimize the distortion between the weighted combination

of the local training points and the point to be estimated, and to maximize the entropy

of the weight distribution. The parameter λ controls the trade-off between the two

objectives, minD(w)− λH(w). The algorithm is presented in the next section.

24

CHAPTER 2. LINEAR INTERPOLATION WITH MAXIMUM ENTROPY 25

Some key ideas and issues are explored in the rest of this chapter using simulations.

The impact of neighborhood choice on LIME is considered. One simulation shows

that LIME can exploit a large neighborhood of training sample points effectively

even if the distribution of the training samples is asymmetric. It is seen that LIME’s

use of direction as well as distance becomes increasingly important with increasing

dimension size. The effect of the parameter λ, which controls the trade-off between

minimizing distortion and maximizing entropy, is illustrated. The LIME weights

are shown to be exponential and examples of the resulting data-adaptive kernel are

presented.

2.1 Linear interpolation with maximum entropy

Let (X,Y) be a pair of random variables such that X ∈ Rm and Y ∈ R or Y ∈ G,
a finite set of classes. Given independent, identically distributed training samples

{(X1, Y1), (X2, Y2), (X3, Y3), . . . , (Xn, Yn)} drawn from a distribution PX,Y , estimate

the probability distribution PY |X , or a minimum cost estimate of Y given a value of

X, Ŷ = minE[C(Y,X)].

Step 1) For a test point X, let a neighborhood of training samples be chosen and

let j = 1, 2, . . . , k index the neighborhood set.

Step 2) For each sample pair from the set of k neighborhood training samples,

{(X1(X), Y1(X)), (X2(X), Y2(X)), . . . , (Xk(X), Yk(X))}, calculate the corresponding
weight wj(X), such that

∑
wj(X) = 1 and wj(X) ≥ 0 for all j = 1 to k, and such

that the weights solve

argmin
w

[
D

(
k∑
j=1

wj(X)Xj(X), X

)
− λH(w)

]
where λ ≥ 0 is a chosen parameter, D(r, s) is a distortion function, and H(w) is the

Shannon entropy: H(w) = −∑k
j=1wj logwj .

Step 3) For classification applications, the LIME estimate of the probability that

Y is a member of class g ∈ G is

CHAPTER 2. LINEAR INTERPOLATION WITH MAXIMUM ENTROPY 26

P̂Y |X(g|x) =
k∑
j=1

wj(x)IYj(X)=g.

The expected minimum cost LIME estimate of Y is

fLIME(x) = argmin
ŷ

k∑
j=1

wj(X)C(ŷ, Yj(X)).

Unless otherwise noted, the distortion D(r, s) used in Step 2 is assumed to be

the mean squared error, D(r, s) = 1
m

∑m
d=1(rd − sd)2. However any desired distortion

could be used with LIME. A number of interesting distortion functions have been

developed for or used with k-NN, for instance in [116]. Distortion functions that have

proved successful for compression may also be useful.

By the Weierstrass theorem (see Appendix), a minimizer w∗ for Step 2 exists

as long as the distortion function is continuous in w. A sufficient condition for the

minimizer w∗ to be unique is that the distortion function be convex with respect to

w (for example, any lp distance function or monotonic function thereof).

2.2 LIME assumptions

The algorithm approximates a test point X by a linear combination of training points

{X1, X2, . . . , Xj} and uses the same linear weighting on the training observations
{Y1, Y2, . . . , Yk} to estimate the corresponding estimated observation Ŷ . This limits
the estimated observation to be within the convex hull of the known neighborhood

observations. If a test point X lies beyond the boundaries of the convex hull of

the training features, the algorithm projects X onto the convex hull of the training

features (by minimizing the distortion) and then approximates the projected test

point. Thus test points beyond the boundaries yield estimates constrained to the

range of the neighborhood training data; a conservative estimate, but one that avoids

dot-com dangers of extrapolation. Surface area grows rapidly with dimension, and

for high-dimensional problems many test points occur beyond the boundary of the

training data. For example, on a standard test set for vowel recognition [54], over

CHAPTER 2. LINEAR INTERPOLATION WITH MAXIMUM ENTROPY 27

80% of the test data fall outside of the convex hull formed by the entire set of training

points.

Every estimation algorithm has to make some assumptions in order to estimate

the unknown. Ideally, the information known about a particular dataset is used to

determine which estimation algorithm’s assumptions are most correct for that data

set. For instance, if it is known to be a two class problem where the data represent

the output of two independent Gaussian sources with equal covariance matrices, then

modelling the classes as Gaussians and using linear discriminant analysis may be

the best choice. However, if little information is known about the problem, then a

non-parametric method such as LIME may provide robust estimates.

2.3 LIME is a vector algorithm

In physics, equations usually feature velocity, not speed. The difference is that velocity

is a vector, and speed is merely a magnitude. Methods like k-NN or kernels only take

advantage of the distance that a training point is from a test point, not the direction.

By using the equations of linear interpolation, LIME exploits the vector nature of the

data, taking into account direction as well as distance. This use of the joint vector

information about the training samples, by minimizing the distortion between the

weighted neighborhood training points and the test point itself D(
∑
j wjXj, X), is

the most important way in which LIME differs from k-NN. Nearest-neighbor methods

weight each training point independently of the other training samples available.

LIME weights each training point using the context of the other training data.

There are a large number of variations of kernels and weightings for neighborhood

methods [30], [54], [108], [50]. In the following sections, simulations are presented com-

paring LIME to the basic k-NN algorithm and to the tricube kernel; both algorithms

were detailed earlier in Section 1.3.1. The simple k-NN technique achieves compet-

itive performance over a wide range of classification problems, even when compared

to state-of-the-art classifiers [54], [56]. The tricube kernel is a popular kernel [54] and

is representative of the general class of positive symmetric smoothing kernels. The

simulations show that the difference in performance between k-NN and the tricube

CHAPTER 2. LINEAR INTERPOLATION WITH MAXIMUM ENTROPY 28

kernel is generally small compared to the difference between these symmetric kernels

and LIME. This implies that although one cannot compare to every symmetric kernel,

the simulation results should generalize well to other symmetric kernels. It should

be noted that in some of the simulations (as noted in the simulation description)

the tricube kernel is applied over a neighborhood where the neighborhood consists

of k nearest neighbors instead of a bandwidth. This makes it easier to compare the

neighborhood techniques.

2.4 Kohonen’s example

To see the differences between the LIME algorithm and other neighborhood methods,

an example is used from Kohonen et al. [77]. The same or similar simulations have

been used by other researchers, including [42] and [54]. The Kohonen simulation is

used to show a variety of effects. Separate simulations show the effects of increas-

ing the amount of training data, the effect of increasing the number of iid training

dimensions, the effect of varying λ, and the effect of varying the size of the neigh-

borhood. Comparisons are made with other neighborhood methods and the Bayes’

classifier (which ‘knows’ the class conditional densities and thus achieves on average

the Bayes’ error).

In the Kohonen simulation, there are random feature vectorsX ∼ f(x) = .5f 0(x)+

.5f 1(x) where f g(x) is the conditional pdf given that the class label Y = g and Y

is equally likely to be 0 or 1. The misclassification costs C01 and C10 are taken to

be equal. For Kohonen’s simulation, the two class conditional densities are Gaussian

random vectors with iid components, zero mean, and equal variance. The variances

for each independent feature component are σ2
0 = 1 for class 0 and σ

2
1 = 4 for class 1.

Figure 2.4 shows the results of Kohonen’s simulation with 200 training data sam-

ples and two feature dimensions. Class 0 is represented by zeros and class 1 by crosses.

The thick circle with radius 1.923 in the image is the Bayes’ decision surface. Samples

inside the circle are more likely to have been drawn from class 0, and samples outside

the circle are more likely to have been drawn from class 1.

CHAPTER 2. LINEAR INTERPOLATION WITH MAXIMUM ENTROPY 29

Figure 2.1: Plot of 200 training samples for Kohonen simulation with two dimensions

CHAPTER 2. LINEAR INTERPOLATION WITH MAXIMUM ENTROPY 30

2.5 The importance of a good neighborhood

It is common wisdom in real estate that one should buy property in the nicest neigh-

borhood one can afford. In statistical learning the relevance of a ‘nice’ neighborhood

should also not be underestimated. Nonparametric algorithms often depend on defin-

ing a relevant neighborhood around a test point.

There are many approaches to defining a neighborhood. One of the oldest is the

approach of k-NN, to pick the closest k neighbors, with k a parameter perhaps learned

on the training set. Kernel algorithms define the relevant neighborhood implicity by

the width and fall-off of the kernel.

Figure 2.2 shows simulation results for a twenty dimensional feature space corre-

sponding to Kohonen’s simulation. Here the neighborhood is defined to be the test

point’s k nearest neighbors, where the total number of training samples n = 200. The

error rate is graphed as the neighborhood size k is increased. The λ parameter for

LIME is held constant at 1. These results show that increasing the neighborhood size

does not decrease the error for k-NN or the tricube kernel. However, for a large range

of neighborhood sizes LIME is able to use the additional sample points effectively and

the error rate is decreased. The difference arises in how the local bias of the distribu-

tion of training data is handled. Near the Bayes’ decision boundary, more neighbors

are likely to come from class 0 due to the local slope of the Gaussian sources PX . Go

back to Section 1.2.2 to understand more about how local bias can affect estimations.

In particular, Figure 1.3 is a two-dimensional visual example of the bias effect that

renders extra neighbors useless in the k-NN and tricube results shown in Figure 2.2.

Research into defining the right neighborhood for non-parametric learning algo-

rithms may or may not be directly applicable to LIME. For instance, the work by

Rice in bandwidth choice for kernels [107] chooses the bandwidth to minimize an

unbiased estimate of the risk that only applies to kernel methods. However, recent

work in this area has focused on using the sample observations to specify non-trivial

neighborhoods [52], which should, at least in principle, be useful for defining good

neighborhoods for LIME as well.

CHAPTER 2. LINEAR INTERPOLATION WITH MAXIMUM ENTROPY 31

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Kohonen simulation with twenty dimensions and increasing neighborhood size

Er
ror

Number of training samples in neighbhorhood

k−NN

tricube

Bayes’ Error

LIME

Figure 2.2: Kohonen simulation with increasing neighborhood size, twenty feature
dimensions, and 200 training samples

For some applications, a good neighborhood might be one that adapts in size de-

pending on how sparse the data are in an area. One definition of such a neighborhood

would be all training points falling within a radius (1+α) times the distance from the

point to be estimated to its nearest neighbor. This definition has the benefit of always

including at least one neighbor. A value of α = .26 was shown to work well for at

least one experimental application [43]. Ideally, α would be trained on a training set

of data, or trained by cross-validation, or selected based on some information about

the sparsity of the data.

Another metric for a good neighborhood is whether the test point X is within the

convex hull spanned by the neighborhood points. This is a requirement for traditional

linear interpolation regression estimates. Being within a convex hull of data points can

help decrease estimation bias and informs the estimation about how the observation

space is changing in all directions.

CHAPTER 2. LINEAR INTERPOLATION WITH MAXIMUM ENTROPY 32

2.6 LIME bridges k-NN and linear interpolation

The LIME algorithm includes a parameter λ to trade-off between maximizing the

entropy and minimizing the distortion. Setting λ to a very high constant maximizes

entropy at whatever cost in distortion, and at this extreme the algorithm disregards

the mean constraint that is enforced by the distortion criteria. Maximizing entropy

of a distribution with no other constraints leads to a uniform distribution for the

weights, and thus LIME with a very high λ behaves like a k-NN estimator, where k

is the number of points in the neighborhood.

On the other hand, if λ is set to a relatively low constant, then the algorithm is

focused on achieving zero distortion D(w) and uses the entropy part of the functional

H(w) to choose the most diverse of the set of non-unique solutions. These intuitive

results about the limiting λ cases are proven in Section 3.1.

If the measurements of the training data are noisy, then working hard to achieve

a perfect reconstruction is not so important as the accuracy of the reconstruction

is limited by noise, and thus a higher λ should be used, leading to a more robust

solution. This is exemplified in a simulation with additive noise comparing LIME to

a least squares fitting of a hyperplane in Section 4.4.6

In Figures 2.3 and 2.4, the Kohonen simulation detailed in Section 2.4 is shown

with λ varying from 2.5 × 10−9 to 1010. In the simulation shown in Figure 2.3,

there are two feature dimensions and, and in Figure 2.4 there are twenty feature

dimensions. There were 200 training points and in an earlier simulation (where λ

was held constant at 1) the error was found to be minimized with k = 75 neighbors

for the two dimensional problem and k = 87 neighbors for the twenty dimensional

problem.

The results of Figures 2.3 and 2.4 show how for small λ the maximizing entropy

part of the functional is secondary to minimizing the distortion; the result is virtually

zero distortion and a plateau in the classification accuracy. At the other extreme

CHAPTER 2. LINEAR INTERPOLATION WITH MAXIMUM ENTROPY 33

−20 −15 −10 −5 0 5 10 15 20 25
0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44
Kohonoen 2D simulation with emphasis (lambda) moving from distortion to entropy

Cl
as

sif
ica

tio
n E

rro
r

Natural log of lambda

Figure 2.3: Kohonen simulation varying lambda with two feature dimensions and 200
training points

−20 −15 −10 −5 0 5 10 15 20 25
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Kohonoen 20D simulation with emphasis (lambda) moving from distortion to entropy

Cl
as

sif
ica

tio
n E

rro
r

Natural log of lambda

Figure 2.4: Kohonen simulation varying lambda with twenty feature dimensions and
200 training points

CHAPTER 2. LINEAR INTERPOLATION WITH MAXIMUM ENTROPY 34

the entropy maximization is given preference over distortion minimization, and the

weights become virtually uniform; the entropy, distortion, and classification accuracy

again plateau. In the middle range of λ there is an optimal λ where the trade-off

between distortion and entropy yields the lowest classification error.

2.7 As the number of training samples increase

The next simulation shows the effects of increasing the total number n of training

samples. Consider the fairly simple problem of classifying with two feature dimen-

sions. The Bayes’ decision region for two dimensions is a circle with radius 1.923.

The LIME algorithm has two parameters, the number of neighbors k and the trade-

off between distortion and entropy, λ. The parameter λ was chosen by leave-one-out

cross-validation [54] to be λ = 1 based on one initial run of 1000 test points and 200

training points and a two dimensional feature space. The parameter λ was then held

constant and not tuned further. For the tricube weighting and the nearest neighbor

algorithm the only parameter is the number of neighbors k. For each change in the

number of training samples, an initial learning run with 1000 test points and the

new number of training points was used to optimize the parameter k for each of the

neighborhood methods. For each n number of samples, ten tests were run, with n

new training samples and 1000 new test points generated for each test. Then the ten

tests were averaged. The data representing the average over the ten tests (and thus

10,000 test points) are given in Table 2.1 and shown in Figure 2.5. Note that the

scores for LIME, k-NN, and tricube are actually a little below the Bayes’ error. This

is possible because of the Bayes’ error will be the minimum achievable when aver-

aged with respect to the distributions, and hence only asymptotically when empirical

distributions are used.

In Section 5.1, results are shown for increasing numbers of training samples for a

different simulation. The performance is similar.

CHAPTER 2. LINEAR INTERPOLATION WITH MAXIMUM ENTROPY 35

Num training samples for each class LIME error k-NN error Tricube error
10 .344 .380 .371
50 .290 .298 .317
100 .279 .292 .300
1000 .265 .286 .274
10000 .260 .259 .261

Table 2.1: Kohonen simulation for two dimensions with increasing training data

2 3 4 5 6 7 8 9 10
0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38
Kohononen simulation for two dimensional feature space and increasing training data available

Er
ror

Natural log of number of training samples available

k−NN

tricube

Bayes’ Error

LIME

Figure 2.5: Kohonen simulation for two dimensions with increasing training data

CHAPTER 2. LINEAR INTERPOLATION WITH MAXIMUM ENTROPY 36

2.8 Performance as the number of

training dimensions increases

Table 2.2, and Figure 2.6, show the Kohonen simulation results as the number of fea-

ture dimensions increases from two to twenty. Each feature dimension is iid Gaussian

as detailed earlier. Ten tests are run and averaged for each dimension. For each of

the ten tests, 200 new training points are drawn, and 1000 new test points are drawn.

The results in the table represent the average over the 10,000 test points from the

ten independent tests.

The LIME algorithm has two parameters: k, the number of neighbors, and λ,

the trade-off between distortion and entropycd. The parameter λ was chosen to be

λ = 1 based on one initial run of 1000 test points and 200 training points and a

two dimensional feature space. The parameter λ was then held constant and not

further tuned. For the tricube weighting and the nearest neighbor algorithm the only

parameter is the number of neighbors k. For each change in the number of feature

dimensions, an initial learning run with 1000 test points and 200 training points was

used to optimize the parameter k for each of the neighborhood methods. Particularly

for the higher feature dimensions the optimal k for both the tricube weighting and

the nearest neighbor method was k = 1, resulting in all the weight on the nearest

neighbor and the same accuracy for these two methods.

The Bayes’ decision region for two dimensions is a circle with radius 1.923, as dis-

cussed earlier. For the higher dimensions, the Bayes’ decision region is a hypersphere

with the radius noted in the Table 2.2. The table also notes the corresponding Bayes’

error.

As the number of dimensions increases, the Bayes’ error decreases, since each

added feature carries information about which class a test point belongs to. In high

dimensions there is a compounded asymmetry in the distribution of the test points

such that it becomes increasingly likely that the nearest neighbors of a test point are

from class 0, and not class 1. This causes severe bias in neighborhood methods that

rely on distance.

CHAPTER 2. LINEAR INTERPOLATION WITH MAXIMUM ENTROPY 37

Num of dim Bayes’ radius Bayes’ error LIME error k-NN error Tricube error
2 1.923 .264 .279 .292 .300
3 2.355 .214 .219 .249 .257
5 3.041 .148 .163 .269 .254
10 4.300 .066 .102 .302 .302
15 5.266 .032 .093 .364 .364
20 6.081 .016 .075 .412 .412

Table 2.2: Kohonen simulation from two to twenty dimensions and 200 training points
with Bayes’ decision region radius and Bayes’ error

The results suggest that as the number of dimensions increase and all points

become roughly equally far away, it becomes more important to take into account the

spatial relationships of the feature vectors.

2.9 LIME as an adaptive kernel

Kernel and weighted nearest neighbor techniques were reviewed in Section 1.3.1.

LIME can be interpreted as a data-adaptive exponential kernel. The weights behave

as if they were selected by an exponential kernel, but the slope of the exponential

depends on the spatial relations of the training samples. In Section 3.2.1, it is shown

that the LIME weights take on the exponential form

wj(x, x1, x2, . . . , xk) =
e−α(x)T (xj−x)∑
j

e−α(x)T (xj−x)

where wj denotes the weight corresponding to the training sample {xj, yj}.
An unsymmetrical kernel is not standard. The LIME kernel is adapting to the

data points to control the local training sample distribution bias, and thus the lack of

symmetry is purposeful and adaptive. This is a key point. The insidious effects of local

bias can be reviewed in Section 1.2.2, and an example of LIME triumphing over that

evil can be seen in the previous section in Figure 2.6. Four examples of the adaptive

kernel of LIME weights are shown in Figure 2.7. In the plots, there is only one feature

CHAPTER 2. LINEAR INTERPOLATION WITH MAXIMUM ENTROPY 38

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Kohononen simulation as feature dimension increases

Er
ror

Feature dimensions

k−NN

tricube

Bayes’ Error

LIME

Figure 2.6: Kohonen simulation from two to twenty dimensions and 200 training
points

dimension, the test point X is at the origin, and there are five neighborhood training

samples as noted in the captions. The parameter λ is set at .001, which focuses on

minimizing the distortion and then maximizing the entropy. In each plot the LIME

weight is marked corresponding to each training sample. The weights trace out the

adaptive exponential shape of the LIME weighting function. Note that in the fourth

plot the test point X is outside the convex hull of the training points, and since the

λ = .001 is relatively low, the weight solution focuses on minimizing the distortion

yielding the weight solution 1, 0, 0, 0, 0, a very fast decaying exponential.

Standard kernel algorithms run into bias at boundaries as discussed earlier in

Section 1.3.1. These problems are due in part to the bias of the training sample

distribution at boundaries (and due in part simply to the lack of nearby data at a

boundary). The bias aspect of the boundary issue is controlled to a first order by the

distortion criteria of the LIME algorithm, as is evidenced by the adaptive kernel.

CHAPTER 2. LINEAR INTERPOLATION WITH MAXIMUM ENTROPY 39

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

L
IM

E
 w

e
ig

h
t

Neighborhood training samples
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

L
IM

E
 w

e
ig

h
t

Neighborhood training samples

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

L
IM

E
 w

e
ig

h
t

Neighborhood training samples
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

L
IM

E
 w

e
ig

h
t

Neighborhood training samples

Figure 2.7: LIME weights form an adaptive kernel. Top left: neighborhood training
samples at -1, .1, .3, .7 and 1. Top right: neighborhood training samples at -1, -.5, 0,
.5 and 1. Bottom left: neighborhood training samples at -.1, .6, .7, .8 and .9. Bottom
right: neighborhood training samples at .3, .4, .9, .95 and 1.

CHAPTER 2. LINEAR INTERPOLATION WITH MAXIMUM ENTROPY 40

2.10 Analogs in source coding theory

There are a few similarities and differences between the LIME work and rate distortion

theory.

2.10.1 LIME and variable rate coding

One approach to lossy compression is a variable rate coding of the source. In vari-

able rate coding two common goals are to minimize the distortion caused by the lossy

compression, and minimize the entropy of the compressed data source [39]. For exam-

ple, entropy constrained vector quantization compresses by minimizing a functional

of the form D+ λH [22]. The LIME algorithm performs classification by minimizing

a functional D − λH. The LIME functional maximizes the bits needed to achieve a
certain level of distortion. Which training samples are the most important ones is

unknown, so LIME tries to give weight to all of them by maximizing the entropy of

the weighting distribution. This is analogous to sending a message in many different

languages to a stranger- safer to make it redundant because one does not know which

language is important. Like telling the long version of the story instead of the short

story. Like representing a message in the longest, most exhaustive, most descriptive,

most diversified way possible...

2.10.2 LIME and fixed rate coding

In rate-distortion theory a source is coded in a way to minimize the average distortion

between an original vector and its reproduction, D(X̂,X), traded-off with minimizing

a rate R, where, for fixed rate, R represents the log of the cardinality of the set of

reproduction codewords. This constrains R to be a discrete quantity; R cannot take

on any value one would like. Thus, there are only certain achievable pairs of rate and

distortion (R,D) for a source. The closure of the achievable (R,D) pairs is the rate

distortion region, and its infimum of rates R for a given D is termed the operational

rate distortion function R(D). For optimal (R,D) pairs, minimizing D + λR is

equivalent to minimizing R given a constraint that D be less than some D′, where

CHAPTER 2. LINEAR INTERPOLATION WITH MAXIMUM ENTROPY 41

−λ is the slope at the minimizing point on the rate distortion function.
In LIME, a distortion D also measures the similarity between an original vector

X and a reproduction X̂ =
∑
j wjXj. However, when LIME minimizes D − λH,

it minimizes the distortion D corresponding to a local case, and not the average

distortion. The H in LIME represents the entropy of the weights of local training

points. This differs from the rate R in two important ways. First, the weights

can vary continuously, and thus H can take on any value within a range from 0 to

log k nats, where k is the number of neighborhood samples. This means that the

achievable (H,D) pairs vary continuously, and it is always possible to minimize D−
λH and achieve pairs on the closure of the achievable region. The second important

difference between the entropy H maximized in LIME and the rate R minimized in

rate distortion theory is that R is a global property, and the H of interest is a local

property.

In conclusion, there are fundamental differences between rate distortion theory

and the LIME approach, including optimizing global versus local quantities, the en-

tropy H(w) over samples versus the cardinality of the reproduction set R, and opti-

mizing discrete versus continuous random variables. Hence some of the mathematics

developed for rate distortion theory may be applicable to LIME, and some may not.

2.11 Implementing the algorithm

The LIME algorithm can be implemented in different ways. Consider distortion

functions that are convex with respect to w, such as mean squared error. For convex

distortion functions D(w), the functional D(w) − λH(w) is a sum of convex func-

tions and is thus convex [13]. Then the weights w∗ that minimize the functional

can be found by convex optimization. It may not be necessary to use an iterative

optimization algorithm. For l1 distortion in a d dimensional feature space, such that

D(w) =
∑d
m=1 ‖

∑k
j=1wjXj[m] −X[m]‖), (where Z[m] denotes the mth component

of the vector Z), it is shown in Section 3.2.2 that the weight solution is known to

within 2d possibilities. A closed form solution also exists in the limit that λ → 0

and the training samples lie on a regular grid with the neighborhood defined as the

CHAPTER 2. LINEAR INTERPOLATION WITH MAXIMUM ENTROPY 42

vertices of a unit of the grid, as shown in Section 4.4.2.

A number of methods for solving for the maximum entropy distribution have been

proposed, including hill-climbing, iterative projection, the damped Newton method,

and iterative scaling [127].

In all of the numerical results presented in this work, LIME was implemented with

an iterative convex optimization approach. Total squared error distortion D(w) =∑d
m=1(

∑k
j=1wjXj[m]−X[m])2 was used. The optimization of Step 2 was done with

a primal-dual log-barrier solver implemented from Saunders [5]. This implementation

belongs to the class of interior-point primal-dual methods, so called because all iter-

ates remain in the interior of the inequality constraints (in this case, all iterates are

strictly positive). Interior point methods require the Hessian matrix (the matrix of

second derivatives, see Appendix for details) to be specified for the objective function

D − λH. For squared error distortion, the second derivatives all exist, and thus the
Hessian matrix can be specified.

The interior-point implementation has several useful qualities. First, the iterates

generated at each step of the algorithm remain strictly positive. Thus, the LIME

objective function is guaranteed to always be well defined. Secondly, the algorithm

makes explicit use of the positive definite, diagonal structure of the Hessian. Saunders’

implementation is designed to handle large problems (e.g. 6000 × 6000 matrices).

Further discussion of interior-point methods can be found in any standard book on

optimization, such as [92].

2.12 Prototypes, editing, and clustering

Some neighborhood methods create and use a set of data prototypes that are more

efficient than the original training samples; these methods are equally relevant for

LIME. One approach is to shrink (edit) the original set of training samples in order to

reduce storage requirements and decrease the time needed to find nearest neighbors.

This approach dates back to Hart’s work from 1968 [48]; recent work in this area

includes [106] and [116].

CHAPTER 2. LINEAR INTERPOLATION WITH MAXIMUM ENTROPY 43

Another set of approaches create prototype samples based on the original train-

ing samples. The prototype samples may be selected to speed up finding the near-

est neighbor, to reduce storage requirements, or to reduce noise in the feature vec-

tors. The Lloyd algorithm [39] (also known as k-means) or other clustering meth-

ods [49], [86] can be used to replace clusters of training samples with their centroid.

This is advantageous in reducing the number of samples and the speed of searching

for nearest neighbors. It may also compensate for some noise in the feature vec-

tors. Depending on the clustering method and the underlying distribution of training

samples, this approach may reduce some of the bias resulting from the probability

distribution of the training features. However, a relatively large number of samples

may be needed for a clustering method to obtain bias or noise reduction advantages

without skewing the resulting decision boundary.

Learning vector quantization(LVQ) [76] uses a variation of the k-means algorithm

to create prototypes for classification problems. LVQ uses information about the

training sample observations Y to train a set of prototype samples.

Two simulations in [54] show that prototype methods can marginally outperform

basic nearest neighbor methods. The LIME algorithm could be used with prototype

samples instead of the original training samples. Prototype samples may also be used

to achieve compression of the data set. Gray and Olshen propose and compare the

classification and compression performance of prototype algorithms in [42].

Other research into speeding up the nearest neighbor search uses fast search meth-

ods or builds trees of prototype samples to decrease the average or worst case search

time, including [87], [7], [74], and [82]. Similarly, creating and using a set of prototype

training samples may be an efficient implementation for the LIME algorithm.

2.13 Related work

Research related to the LIME algorithm includes other generalizations of linear in-

terpolation, other applications of information theory to statistical learning, and other

uses of a functional that trades-off distortion and entropy. Very few generalizations

CHAPTER 2. LINEAR INTERPOLATION WITH MAXIMUM ENTROPY 44

of linear interpolation were found. There are methods to generalize linear interpo-

lation for points on a regular grid in two or three dimensions. That work is further

discussed in Chapter 4 on regular grid applications. The next few paragraphs are a

tour of other related work.

2.13.1 Maximum entropy and learning

A number of researchers have applied information theory to statistical learning, in-

cluding the principle of maximum entropy.

The classic approach to using maximum entropy for regression has its roots in

astronomical imaging [16]. The premise is that there is definite prior information

available about the function (discrete or continuous) to be estimated. However, the

data are in the form of known moments or integrals, or bounds of the desired function

(for example, an image). The known information does not uniquely specify the desired

function. The principle of maximum entropy is used to solve for a unique regression

estimate of the desired function. [127]. A recent example of work in this classical vein

is Csiszár et al.’s 1999 paper [27] which extends the maximum differential entropy

approach for use with a range of prior information such as a known Sobolev norm for

the desired function. Gamboa and Gassiat, in their work known as maximum entropy

on the mean (MEM) [38], approach the specific classical problem of an ill-posed

linear system of equations and instead of applying the maximum entropy principle

directly, they apply the principle of minimum relative entropy (maximizing entropy

with respect to a reference distribution) repeatedly with different stochastic reference

distributions to arrive at an estimate.

The classical use of the principle of maximum entropy for regression and the LIME

approach are quite different. The classical approach begins with information about

global integrals or global constraints. On the other hand, LIME models a test point

as the average of local training points. The classical approach maximizes the entropy

over the distribution of the final estimated function. LIME maximizes the entropy of

the weighting of local training points. Generally, the classic approach assumes that

the constraints or prior information are definite. In 1999, Campbell proposed [18]

CHAPTER 2. LINEAR INTERPOLATION WITH MAXIMUM ENTROPY 45

indefinite moment constraints for maximum entropy problems (see Section 2.13.2 and

Section 3.2.2 for further discussion). The LIME algorithm also uses a soft moment

constraint.

An unrelated use of the principle of maximum entropy in learning, is work by

Jaakkola et al. [58]. They proposed using the maximum entropy principle to select

a parametric model for two-class classification. Instead of finding a single parameter

setting, they find a probability distribution over the parameters so that the convex

combination of resulting discrimination functions has both the maximum entropy of

the parameter distribution and minimizes the empirical error on the training set.

This work is quite different from the LIME approach, most directly because it is

parametric. Also, the Jaakkola et al. approach is a global approach, whereas the

LIME is a local approach. Jaakkola’s approach has the disadvantages and advantages

of most parametric approaches.

Another use of the principle of maximum entropy for regression is fitting cubic

splines to noisy data [45]. This is also a parametric approach.

2.13.2 The functional D - λ H

LIME minimizes the functional D(w) − λH(w). The same functional crops up in a
few different places.

One relevant appearance is a 1998 paper by Campbell [18]. Campbell proposes

the general problem of solving for a probability distribution based on a prior and

uncertain side information about the mean. With his formulation, one would like

to estimate a probability distribution w over a set of points {x1, x2, . . . , xk} ∈ R
based on a prior distribution q and uncertain side information that

∑
j wjxj = x.

Campbell proposes minimizing a functional that trades off minimizing the Kullback-

Leibler distance (D) to the prior and minimizing the absolute value difference to the
uncertain mean,

F (w) = D(w, q) + λ|
k∑
j=1

wjxj − x|.

Campbell’s parameter λ, like the LIME λ, is chosen by the practitioner to represent

CHAPTER 2. LINEAR INTERPOLATION WITH MAXIMUM ENTROPY 46

the desired trade-off between the matching the
∑
wjxj and x and matching the chosen

distribution w to the prior q. To clarify the link to LIME, let the prior q be a uniform

distribution such that qj = 1/k for all j. Since minimizing the relative entropy with

respect to a uniform distribution is equivalent to maximizing the entropy, Campbell’s

functional solves the same problem as the LIME functional where the LIME distortion

D is absolute value and the feature vectors are one dimensional. In the same work [18],

Campbell presents a closed form solution for the optimal distribution. We discuss his

closed form solution, and prove a multidimensional generalization in Section 3.2.2.

The functional D − λH also describes the Helmholtz free energy of a system (or

Helmholtz thermodynamic potential) [17], U − TS, where U signifies the system’s

internal energy, T the temperature of the system, and S the Boltzmann entropy,

S = k logP , in which P is the number of microstates that could achieve the system’s

macrostate and k is a constant. Interpreting the relationship between the Helmholtz

free energy of a system, and the LIME use of the functional, is left to the more poetic

reader.

The functional D − λH also appears in the clustering literature for deterministic

annealing [109]. In deterministic annealing, the functional D − TH is minimized

for progressively lower T . In this context, T is a lagrangian multiplier representing

temperature, analogous to the Helmholtz free energy. The D is a distortion that

measures the error of the clustering,

D(x, y) =
∑
x

p(x)d(x, y(x))

where x denotes a discrete source vector; y(x) denotes its best reproduction codevector

from a codebook Y ; p(x) is the probability mass function of the source vector x; and

d(r, s) denotes the distortion between r and s. In practice, an empirical formulation

of the distortion is used where the source vectors are the data. The entropy H in

the deterministic annealing functional is taken as the Shannon entropy over the joint

distribution of source vectors x and representation vectors y,

H(x, y) = −
∑
x

∑
y

p(x, y) log p(x, y).

CHAPTER 2. LINEAR INTERPOLATION WITH MAXIMUM ENTROPY 47

A key problem in clustering is getting trapped in local minima when trying to

minimize the distortion D directly. Deterministic annealing attempts to avoid local

minima traps by valuing randomness (at least at the start) by a high T value, and

then letting T fall to zero over multiple iterations.

Although both LIME and deterministic annealing attempt to reduce the distortion

of a reproduction, deterministic annealing maximizes the conditional randomness of

the reproductions given the source vectors, whereas LIME is maximizing the random-

ness of which training samples are used to create the reproduction. Also, deterministic

annealing iteratively lowers T so that ultimately the functional is the classic cluster-

ing functional: minimize the reproduction distortion D, with no dependence on any

entropy.

Rose [109] also explains how to use deterministic annealing for supervised learning,

employing the functional D − TH again. His implementation is parametric and

lets the distortion D measure the error from some local parametric model (such as

a decision tree) to the training data points. The classifier partitions the feature

space. The entropy H is a function of the conditional probability distribution for the

partitions given a test vector x. The Lagrangian multiplier T is driven to zero so

that in the final iteration the TH term of the functional has basically disappeared.

This technique is related to the expectation maximization algorithm [86] in that the

partitioning is ‘soft.’ Rose emphasizes that H in this context measures the average

level of uncertainty in the partition decisions. This approach is clearly different than

LIME. Deterministic annealing is parametric, LIME is nonparametric. The distortion

in LIME is measured in the feature domain, whereas in the deterministic annealing

setting it is measured in the output domain (a flavor of empirical risk minimization).

Deterministic annealing considers the entropy H as a measure of the uncertainty in

partitioning decisions, whereas LIME uses the entropy H as a tool to measure the

distribution of weighting to near neighbors.

Similar to deterministic annealing clustering, Karayiannis [68] proposes an unsu-

pervised learning algorithm which transitions from a fuzzy maximum entropy clus-

tering to a hard clustering. At the beginning of his algorithm, the entropy of which

cluster each data point belongs to is maximum, and this entropy is slowly reduced.

CHAPTER 2. LINEAR INTERPOLATION WITH MAXIMUM ENTROPY 48

He considers the functional (1 − α)D − αH. This work is conceptually closer to
our use of the maximum entropy principle: Karayiannis considers the entropy of the

membership distribution over different clusters; LIME considers the entropy of the

probability distribution over near-by training points.

2.13.3 Other applications of information theory to super-

vised learning

In this section we discuss some applications of information theory to supervised learn-

ing that do not utilize the maximum entropy concept but are relevant to the issues

at hand.

Complexity regularization

A number of estimation algorithms trade-off between empirical accuracy and complex-

ity. Such methods are willing to ‘pay’ in terms of empirical error for a simpler model,

defended by Occam’s razor, the minimum discrimination length principle, or other

complexity-based costs. Work in this area includes [85], [8], and [123]. These methods

can be motivated in part by a Vapnik-Chervonenkis analysis [78]. Najmi [91] proposed

a parametric model-fitting principle that trades-off maximizing likelihood with mini-

mizing entropy; given a data point x and a set of modelsM, maxθ∈M P (x|θ)−H(θ).
Unlike the above regularization learning approaches, LIME does not trade-off

empirical accuracy and complexity. Instead, the functional D− λH being minimized

trades off distortion in the feature space (not in the output, or observation space)

with diversity in the use of the training data.

The cost of features

Chou in [21] shows that decision trees can be seen as a variable rate source code. All

classification algorithms that divide the feature space into regions, including LIME,

can be implemented as a decision tree. Chou’s insight was that by splitting the feature

space carefully and with simple regions, the number of ‘tests’ that have to be done to

classify a point can be minimized. This approach is particularly important in medical

CHAPTER 2. LINEAR INTERPOLATION WITH MAXIMUM ENTROPY 49

applications where getting data is expensive and possibly dangerous. LIME is unlikely

to identify regions that split nicely along dimensions, and thus from the point of view

of this metric, LIME is likely to create too complex (and hence expensive) a decision

tree.

The cost of data storage

Another application of information-theoretic ideas to pattern recognition is due to

Pearl, who applied rate-distortion theory to the problem of data-storage versus error

rate for supervised pattern recognition and classification [98]. Given a set of data, one

can achieve a certain accuracy on queries about the same or related data. However,

if there is not room to store the complete data set, then average accuracy is expected

to decrease.

Pearl posed this trade-off between the amount of data stored and the accuracy

on classification queries as a trade-off between rate (R) and distortion (D). In his

framework, D is the average probability of answering a query wrong. R is the number

of bits of data that must be stored. Given this framework he applies the insight and

theorems of the Shannon R−D literature [10]. Pearl considers the theoretical storage-
error trade-off without respect to a particular algorithm or type of algorithm.

Obviously, if the underlying space can be well-characterized by a parametric model

the necessary R may be quite low. For non-parametric models the R is necessarily

much higher as these models attempt to characterize more complexity of the space.

In the proposed LIME algorithm, the goal is the lowest possible D. There is no

restriction on how much data can be used. The interesting problem of finding the

minimal storage needed for a given distortion is not considered.

Chapter 3

Asymptotics, bounds, and

robustness to noise

The success of any project really

depends on managing expectations.

Naomi Karten

In this chapter, one finds results about asymptotics, bounds, and robustness to

noise. First, the limiting cases as λ goes to zero or to infinity are considered. In Sec-

tion 3.2, the LIME weights are shown to have exponential form, and for l1 distortion,

the exponential form can be specified to within 2d possibilities for a d-dimensional

feature space (for a one-dimensional feature space, the exponential form can be spec-

ified exactly). Using the known d-dimensional exponential form of the LIME weights,

it is shown in Section 3.3 that the LIME algorithm is weakly consistent, as per Stone’s

conditions.

Robustness to noise is treated in Section 3.4. In Section 3.4.3, a variation of the

law of large numbers is shown to hold for LIME weights. That leads to nice theoretical

properties for well-behaved additive noise on the training features or on the training

observations.

The chapter ends with consideration of which functions are fit exactly by LIME

regression. More results about functions that are fit exactly appear in Chapter 4 on

50

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 51

regular grids.

Readers may find it useful to review Section 1.0.2 on notation choices.

3.1 LIME weight distributions for extreme λ

For the LIME functional D − λH, in the limit as λ grows to infinity the maximum
entropy objective dominates. Similarly, as λ shrinks to zero, minimizing the distortion

takes precedence. This intuition is formalized in the following results.

Lemma 1 Let wuj =
1
k

for all n and for all j = 1, . . . , k, and let F (w, λ) = D(w)−
λH(w). Then,

lim
λ→∞

infw F (w, λ)− F (wu, λ)
λ

= 0 (3.1)

Proof: By definition,

inf
w
F (w, λ) ≤ F (wu, λ).

Then, since λ ≥ 0,

F (wu, λ)

λ
− inf

w

F (w, λ)

λ
≥ 0,

and thus,

lim inf
λ→∞

(
F (wu, λ)

λ
− inf

w

F (w, λ)

λ

)
≥ 0. (3.2)

Also, coupling

D(wu)

λ
−H(wu)− inf

w

(
D(w)

λ
−H(w)

)
≤ D(w

u)

λ
+−H(wu) + sup

w
H(w), (3.3)

with

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 52

lim
λ→∞

(
D(wu)

λ
+ sup

w
H(w)−H(wu)

)
= lim

λ→∞

(
sup
w
H(w)−H(wu)

)
= sup

w
H(w)−H(wu)

= 0,

establishes that

lim sup
λ→∞

(
F (wu, λ)

λ
− inf

w

F (w, λ)

λ

)
≤ 0 (3.4)

Combining (3.2) and (3.4) yields the lemma. q.e.d.

Corollary 1 Given the conditions of Lemma 1,

lim
λ→∞

‖w∗ − wu‖1 → 0

where w∗ = arg infw F (w, λ).

Proof: From Lemma 1, it can be concluded that

lim
λ→∞

(H(w∗)−H(wu)) = 0,
or equivalently,

lim
λ→∞

H(w∗) = H(wu) = log k. (3.5)

A result from information theory (pages 102-103, [41]) relates the l1 distance and

the relative entropy D of two pmfs p and q,

‖p− q‖1 ≤
√
2D(p‖q) (3.6)

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 53

Then

lim
λ→∞

‖w∗ − wu‖1 ≤ lim
λ→∞

√
2D(p‖q)

= lim
λ→∞

√
2(log k −H(w∗))

= 0

where the last line follows from (3.5). q.e.d.

A result can also be stated for the limit λ→ 0.

Lemma 2 Let w∗ = arg supw (H(w)|D(w) = infaD(a)). Then

lim
λ→0

(
inf
w
F (w, λ)− F (w∗, λ)

)
= 0 (3.7)

Proof: By definition,

F (w∗, λ)− inf
w
F (w, λ) ≥ 0

and thus

lim inf
λ→0

(
F (w∗, λ)− inf

w
F (w, λ)

)
≥ 0. (3.8)

Also

lim sup
λ→0

(
D(w∗)− λH(w∗)− inf

w
(D(w)− λH(w))

)
≤ lim sup

λ→0

(
D(w∗)− inf

w
(D(w)− λH(w))

)
≤ lim sup

λ→0

(
sup
w
λH(w)

)
= lim sup

λ→0
λ log k

= 0,

which establishes that

lim sup
λ→0

(
F (w∗, λ)− inf

w
F (w, λ)

)
≤ 0. (3.9)

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 54

Combining (3.8) and (3.9) yields the lemma. q.e.d.

A related conjecture is that

lim
λ→0

arg inf
w
F (w, λ) = arg sup

w

(
H(w)|D(w) = inf

a
D(a)

)
(3.10)

In the special case that a test point is within the convex hull of its neighborhood

points, and D(w) is taken as the l1 distance, then the conjecture can be shown to

hold (see Theorem 3 and Corollary 3).

3.2 Exponential form for the optimal distribution

In this section it is shown that the LIME weights have an exponential form. All the

results are for arbitrary d-dimensional feature spaces unless otherwise noted. For l1

distortion, the exponential is shown to decay as a function of λ. The exponential

form means that LIME can be treated as a data-adaptive kernel as was discussed in

Section 2.9. The exponential form will be used to show consistency in Section 3.3.

For one-dimensional l1 distortion (absolute value distortion), the closed form so-

lution enables one to substitute and solve for the weights directly. For d-dimensional

feature spaces and l1 distortion, we show that the solution is known to be one of 2
d

exponential possibilities, whose distortion and entropy can be calculated to determine

the exact solution. Later, in Section 4.4.2, a closed form solution is derived for any

distortion and λ → 0 such that the distortion is constrained to zero and then the

entropy maximized.

It is well known in the field of information theory that constrained maximum en-

tropy problems result in exponential distributions. Two different proofs for general

cases can be found in Kullback [79] and Cover and Thomas [25]. These proofs as-

sume that the entropy is being maximized subject to some expectation constraint(s).

Instead of a constraint D = 0, we are interested in a trade-off between minimiz-

ing the distortion D and maximizing the entropy H. Similar problems arise in rate

distortion theory, and those solutions have also been shown to have an exponential

form [25], [37]. In Section 3.2.1, it is shown that the LIME weights will have an

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 55

exponential form for any distortion function that is a norm D(a, b) = ‖a − b‖. The
simple proof presented provides an insight: the weights that minimize D(w)−λH(w)
for a test point x are the same as the weights that maximize H(w) with the mean

constraint D(w) = 0 for a different test point x′.

Then, in Section 3.2.2 it is shown that if l1 distortion is used, the weights have an

exponential form with decay dependent on λ. Note that the weighted reconstruction∑
j wjxj is the expectation with respect to the distribution {w1, w2, . . . , wk} on the

points {x1, x2, . . . , xk}. Thus minimzing D(w) can be seen as attempting to fit a
mean constraint to the data set. Campbell, in his work [18], considered the problem

of uncertain side information about the mean of an unknown pmf over a given set

of scalar points. His formulation results in the same optimization problem as LIME.

Campbell gives a closed form solution for the optimal probability mass function for

the scalar case with absolute value distortion, with the assumption that the uncertain

‘mean’ x ∈ R lies within the range of the set of events minj xj ≤ x ≤ maxj xj. We

show an extension of this result for LIME for the l1 distortion over a d-dimensional

feature space and without a range constraint on x ∈ Rd.

3.2.1 Exponential form of weights for any distortion

To show that the LIME weights have an exponential form, we first review a theorem

for solutions of the standard maximum entropy problem with a mean constraint.

Then we present a simple proof extending this result to the LIME weights.

The theorem given here is a special case of Theorem 11.1.1 from Cover and

Thomas [25], pages 267-268. An older proof is due to Kullback [79], who proved

the general case that minimizing relative entropy given a constraint yields an expo-

nential distribution.

Theorem 1 (Cover and Thomas) Consider the points x and xj ∈ Rd for j =

1, . . . , k. If w∗(x) has the form w∗
j (x) = γe

−αT xj for j = 1, . . . , k, where α and γ

satisfy

C1) γ = 1∑
j e

−αT xj

C2)
∑
j γxje

−αT xj = x,

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 56

then w∗(x) uniquely maximizes the Shannon entropy H(w) subject to the mean

constraint
∑
j w

∗
j (x)xj = x.

Conversely, if w∗ maximizes H(w) subject to the mean constraint, then it must

have the form w∗
j (x) = γe

−αT xj , where γ and α satisfy C1 and C2.

Next, we establish that the LIME weights will have the same exponential form as

solutions for the problem of maximizing entropy with a mean constraint as stated in

Theorem 1.

Theorem 2 Consider the points x and xj ∈ Rd for j = 1, . . . , k. If w∗ is a pmf that

minimizes the functional F (w) = D(w)− λH(w), where D(w) = z(‖∑j wjxj − x‖),
for any norm ‖ · ‖ (for example, an lp norm) and any monotonic function z, then w∗

has the form w∗ = γe−α
T xj .

Proof: Suppose that w∗ is an optimal LIME weight distribution, and let x̂ =
∑
j w

∗
jxj.

Consider the new problem of solving for the maximum entropy weighting distri-

bution w) over the {x1, x2, . . . , xk} with the strict mean constraint
∑
j w

)
jxj = x̂.

From Theorem 1, it is known that the minimizing distribution has the form w)j(x) =

γ)e−α
T xj for j = 1, . . . , k.

Next, consider the distortion resulting from using the new weights w) to recon-

struct x (instead of x̂),

D(w)) = z

(
‖
∑
j

w)jxj − x‖
)
.

Similarly, the optimal LIME weights w∗ result in distortion

D(w∗) = z

(
‖
∑
j

w∗
jxj − x‖

)
.

Since x̂ =
∑
j w

∗
jxj, and the weights w

) were chosen so that
∑
j w

)
jxj = x̂,

D(w)) = z (‖x̂− x‖) = D(w∗).

Thus the weights w), which solve the maximum entropy with a strict mean con-

straint of x̂, yield the same distortion as the LIME weights w∗. Then the weight

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 57

distributions w∗ and w) must be the same, because if one set of weights had a higher

entropy it would have been the solution to the other’s problem, since the distortions

D(w)) and D(w∗) are equal, and the maximum entropy with mean constraint w) is

unique (see Theorem 1).

Hence we conclude that the LIME weights will have the same form as maximum

entropy weights for a strict mean-constraint, that is, w∗
j (x) = γe

−αT xj for all j. q.e.d.

3.2.2 Exponential weights for l1 distortion

and scalar feature space

Campbell [18] considered the problem of uncertain side information about the mean

of an unknown distribution. We review Campbell’s closed form solution for scalar

feature spaces with absolute value distortion and then present a constructive proof of

Campbell’s solution. In Section 3.2.3, the theorem is extended to multi-dimensional

random variables x with l1 distortion. The section ends with a note on implementa-

tion.

In Campbell’s formulation [18], one would like to estimate a pmf w over a finite

set of points {x1, x2, . . . , xk} ∈ R given prior pmf q and uncertain side information

that
∑
j wjxj = x. Specifically, he proposes to minimize a penalized distortion,

λD(w‖q) + |
k∑
j=1

wjxj − x| (3.11)

where the minimum is over all pmfs w and the user chooses λ > 0, in order to trade-

off Kullback-Leibler information (D) with the absolute value of the accuracy of the
approximation. Campbell further assumes that minj xj < x < maxj xj. He presents

a closed form solution for the minimizer.

For our purposes of maximizing entropy, the prior q is a uniform distribution such

that qj = 1/k for all j. We will make this assumption from here on.

In this section, we present a constructive proof for Campbell’s solution for one-

dimensional feature spaces without any constraint on the range of x. The proof

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 58

involves two cases: the case where the distortion between x and the optimal re-

production
∑
j wjxj is greater than zero, and the case where the distortion is zero.

Then, we present an analogous theorem for d-dimensional vectors x. In the multi-

dimensional case, the solution is not exactly known, but is narrowed to one of 2d

possibilities.

Before presenting the results, some necessary definitions and lemmas will be given,

as well as a review of the exact penalty function theorem from optimization theory and

a useful corollary. The minimization problems are defined in the style of optimization

theory. These minimization problems could equivalently be considered problems of

defining an infimum over a set and determining when it can be achieved.

After the one dimensional proof we consider the multi-dimensional case with x ∈
Rd.

Problem 1 (l1 LIME minimization problem) Given x ∈ Rd, and xj ∈ Rd, j =
1, . . . , k, and λ > 0, the l1 LIME minimization problem is to minimize the functional,

F (w, λ) =

(
‖

k∑
j=1

wjxj − x‖1 + λ
k∑
j=1

wj logwj

)
(3.12)

over all pmfs w (so that
∑k
j=1wj = 1 and wj ≥ 0 for all j), where ‖ ◦ ‖1 denotes the

l1 norm.

Some observations about the l1 LIME minimization problem defined above will be

useful later. First, note that by the Weierstrass Theorem (see Appendix), a minimizer

w∗ for the problem exists since the objective function F is a continuous function of w

and the constraint region (
∑
j wj = 1) is compact and not empty. Moreover, note that

the objective function is convex since it is a weighted sum of two convex functions

(negative entropy and the l1 norm).

To determine the one-dimensional solution (Theorem 4), the following two lemmas

will prove useful. The first lemma shows that if the average of the set of neighbor-

hood samples is greater than x, then the LIME weight distribution w∗ will construct

a reproduction of x that is also greater than x, that is, if
∑k
j=1 xj/k > x then∑k

j=1w
∗
jxj > x.

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 59

Lemma 3 Given x ∈ R, and xj ∈ R, j = 1, . . . , k such that
∑k
j=1 xj/k > x, and

λ > 0. Suppose that w∗ is a minimizer of the l1 LIME minimization problem, then

k∑
j=1

w∗
jxj ≥ x. (3.13)

Proof: The proof is by contradiction. Consider any distribution of weights w) for

which (3.13) does not hold, so that
∑k
j=1w

)
jxj < x. We show that w) cannot be

optimal.

Let x) =
∑k
j=1w

)
jxj. Let w

u
j = 1/k for j = 1, . . . , k, and x

u =
∑k
j=1 xj/k. Note

that wu has the maximum entropy of all possible weight distributions.

First, consider the case that ‖x) − x‖ ≥ ‖xu − x‖. Then wu is a weight distri-
bution that results in equal or smaller distortion than w), and has strictly greater

entropy than w). Therefore, w) cannot be the minimizing distribution of the l1 LIME

minimization problem.

Conversely, consider the case ‖x)−x‖ < ‖xu−x‖. Define a point x̂ = x)+2‖x−x)‖.
In the next paragraphs we show that x̂ is associated with a set of weights ŵ such

that D(ŵ) − λH(ŵ) < D(w)) − λH(w)). Therefore, w) cannot be the minimizing
distribution of the l1 LIME minimization problem.

Since x) < x̂ < xu, there exists some β ∈ [0, 1] such that

x̂ = βx) + (1− β)xu.

Substituting for x) and xu yields,

x̂ = β
k∑
j=1

w)jxj + (1− β)
k∑
j=1

wuj xj

=
k∑
j=1

(βw)j + (1− β)wuj)xj.

Then, there is a weight distribution with components ŵj = βw
)
j + (1 − β)wuj for

which
∑
j ŵjxj = x̂, and thus ŵ yields the same distortion as w

). The entropy of

ŵ is H(ŵ) = H(βw) + (1 − β)wu) ≥ βH(w)) + (1 − β)H(wu) (since entropy is a

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 60

concave function). Since H(wu) > H(w)), H(ŵ) > H(w)). Therefore, w) cannot be

the minimizing distribution of the l1 LIME minimization problem. Also, ŵ satisfies

(3.13).

In conclusion, for any w) which does not satisfy (3.13), it has been shown that

there exists another weight distribution, wu or ŵ, that does satisfy (3.13) and results

in a lower D(w)− λH(w) for any λ. Thus w) cannot be optimal. q.e.d.

Next, we define the constrained l1 LIME minimization problem, which restricts

possible solutions to pmfs that result in zero distortion. Then, Lemma 4 specifies the

conditions under which a minimizer exists for the constrained l1 LIME minimization

problem and gives a closed form solution for any such minimizer. The constrained

l1 LIME minimization problem (and associated Lemma 4) will be useful in deriving

closed form solutions (Theorem 4 and Theorem 5) for the l1 LIME minimization

problem (problem 1).

Problem 2 (Constrained l1 LIME minimization problem) Given x ∈ Rd, and

xj ∈ Rd, j = 1, . . . , k, the constrained l1 LIME minimization problem is to minimize

the functional,

F (w) =
k∑
j=1

wj logwj (3.14)

over all pmfs w (such that
∑k
j=1wj = 1 and wj ≥ 0 for all j) with the constraints

that
∑k
j=1wjxj[m]− x[m] = 0 for all m = 1, . . . , d.

Some observations about the constrained l1 LIME minimization problem defined

above will be useful. First, note that a minimizer for the problem might not exist

because there may be no feasible vectors w, that is, there may be no w that satisfies

the constraints. Also, note that the objective function is convex (negative entropy).

The next lemma, Lemma 4, specifies the conditions under which a minimizer exists

for the constrained l1 LIME minimization problem and gives a closed form solution

for any such minimizer. The lemma uses the second order necessary and sufficiency

conditions for a minimizer and the notion of a Lagrange multiplier; these terms are

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 61

reviewed in the Appendix and in the proof. The existence conditions and form of

the constrained solution will determine solution for the more general unconstrained

problem (Problem 1).

Recall from the preliminaries on notation(Section 1.0.2) that z[m] denotes the

mth component of the vector z.

Lemma 4 Given x ∈ Rd and xj ∈ Rd, j = 1, . . . , k, then a necessary and sufficient

condition for a solution to exist for the constrained l1 LIME minimization problem,

is that there exist a vector κ ∈ Rd which solves

k∑
j=1

(xj[m]− x[m])
(

e
∑d

r=1 −κ[r](xj [r]−x[r])∑k
i=1 e

∑d
p=1 −κ[p](xi[p]−x[p])

)
= 0,

for m = 1, . . . , d, in which case

w∗
j (κ) =

e
∑d

r=1 −κ[r](xj [r]−x[r])∑k
i=1 e

∑d
p=1 −κ[p](xi[p]−x[p])

for j = 1, . . . , k.

Proof: First, note that the objective−H(w) and all the constraint functions,∑k
j=1wjxj[m]−

x[m] for m = 1, . . . , d, and
∑
j wj − 1, are twice continuously differentiable in w.

In this proof, we initially conjecture that the non-negativity constraint wj ≥ 0 for
all j is non-binding (also known as inactive), which means that solving the constrained

l1 LIME minimization problem without this constraint will still lead to a solution

which satisfies the constraint. To test the conjecture that the constraint is non-

binding, we remove it explicitly from the problem, solve the constrained l1 LIME

minimization problem without this constraint, and then it is seen that indeed the

constraint held.

To show the existence and closed form of the solution w∗ given in the theorem,

we review the second order sufficiency conditions for a constrained minimizer [84].

As applied to the constrained l1 LIME minimization Problem 2, the necessary and

sufficient optimality conditions are as follows (a more general review of the necessary

and sufficient optimization conditions appears in the Appendix):

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 62

C1) For the first order conditions there must exist a w∗ such that the problem’s

constraints hold,
∑k
j=1w

∗
j (xj[m] − x[m]) = 0 for m = 1, . . . , d and

∑
j w

∗
j − 1 = 0,

and additionally there must exist a κ ∈ Rd and µ ∈ R such that

[
∇

k∑
j=1

wj logwj +
d∑
m=1

κ[m]∇
(

k∑
j=1

wj(xj[m]− x[m])
)
+ µ∇(

k∑
i=1

wi − 1)
]
w=w∗

= 0

(3.15)

where ∇z(w) denotes the gradient of z(w) (see the Appendix for definition of gradient
and Hessian).

C2) Given the first-order condition C1 (which specifies a κ and µ), the second-order

condition for optimality is that the matrix

[
∇2

k∑
j=1

wj logwj +∇2

d∑
m=1

κ[m]

(
k∑
j=1

wj(xj[m]− x[m])
)
+∇2µ

(
k∑
i=1

wi − 1
)]

w=w∗
(3.16)

must be strictly positive definite.

First consider the second-order optimality condition C2. Since −H(w) is strictly
convex, and the other terms in the above expression (3.16) are linear, the expression

will be strictly positive definite. Thus the second order optimality condition C2 will

be satisfied if condition C1 is satisfied.

One can solve the first order optimality condition C1 specified in (3.15) for a

possible solution w∗,

w∗
j (κ, µ) = e

µ−1+
∑d

m=1 κ[m](xj [m]−x[m]) (3.17)

for j = 1, . . . , k.

To show that the possible solution w∗ is in fact a minimizer, one must show that

there exist Lagrange multipliers κ and µ such that the constraints of the constrained

l1 LIME minimization problem are satisfied. Solving the constraint
∑
wj = 1 for µ

results in

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 63

µ = 1− log
(

k∑
i=1

e
∑d

p=1 κ[p](xi[p]−x[p])
)
. (3.18)

Substituting for the value of µ in (3.17), the possible solution w∗
j (κ) becomes

w∗
j (κ) =

e
∑d

m=1 −κ[m](xj [m]−x[m])∑k
i=1 e

∑d
p=1 κ[p](xi[p]−x[p])

(3.19)

for j = 1, . . . , k.

Lastly, κ must satisfy the set of constraints,
∑k
j=1wj(xj[m]− x[m]) = 0 for m =

1, . . . , d. Substituting in the potential solution (3.19) for w∗, κ must satisfy

k∑
j=1

(xj[m]− x[m])
(
e
∑d

m=1 −κ[m](xj [m]−x[m])∑k
i=1 e

∑d
p=1 −κ[p](xi[p]−x[p])

)
= 0

for m = 1, . . . , d.

If no κ satisfies the above equation then, by the second order necessary condi-

tions [84], no solution w∗ exists for the d-dimensional constrained l1 LIME minimiza-

tion problem. If κ satisfies the constraints then the solution w∗ exists as stated in

(3.19). q.e.d.

The last problem definition needed is the semi-constrained l1 LIME minimiza-

tion problem, which is the l1 LIME minimization problem with some dimensions

constrained to have zero error of reproduction, (
∑
j wjxj)[m] = x[m] for some m.

Lemma 5 specifies the conditions under which a minimizer exists for the semi-constrained

l1 LIME minimization problem and gives a closed form solution for any such mini-

mizer. The semi-constrained l1 LIMEminimization problem (and associated Lemma 5)

will be useful in proving Theorem 5) for the multidimensional l1 LIME minimization

problem (problem 1).

Problem 3 (Semi-constrained l1 LIME minimization problem) Given x ∈ Rd,
and xj ∈ Rd, j = 1, . . . , k, and λ > 0, and a division of the dimensions into exhaustive

and mutually exclusive sets M and P, the semi-constrained l1 LIME minimization

problem is to minimize the functional,

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 64

F (w) =

(∑
m∈M

k∑
j=1

wjxj[m]− x[m]
)
+ λ

k∑
j=1

wj logwj (3.20)

over all pmfs w (such that
∑k
j=1wj = 1 and wj ≥ 0 for all j) subject to the set of

constraints,
∑k
j=1wjxj[p]− x[p] = 0 for all p ∈ P, and

∑k
j=1wjxj[m]− x[m] > 0 for

all m ∈ M .

Some observations about the semi-constrained l1 LIME minimization problem

defined above will be useful. First, note that a minimizer for the problem might not

exist because there may be no feasible vectors w, that is, there may be no w that

satisfies the constraints.

The next lemma, Lemma 5, specifies the conditions under which a minimizer

exists for the semi-constrained l1 LIME minimization problem and gives a closed

form solution for any such minimizer.

Lemma 5 Given x ∈ Rd and xj ∈ Rd, j = 1, . . . , k, and λ > 0, and a division of

the dimensions into exhaustive and mutually exclusive sets M and P, then a neces-

sary and sufficient condition for a solution to exist for the semi-constrained l1 LIME

minimization problem, is that there exist a vector κ ∈ Rd which solves

k∑
j=1

(xj[p]− x[p])
(
e
∑

r∈M −(xj [r]−x[r])/λ+
∑

s∈P −κ[s](xj [s]−x[s])/λ) = 0,
for p ∈ P, in which case the minimizing pdf is

w∗
j (κ) =

(
e
∑

r∈M −S[r](xj [r]−x[r])/λ+
∑

s∈P −S[s]κ[s](xj [s]−x[s])/λ)∑k
i=1 e

∑
u∈M −S[u](xi[u]−x[u])/λ+

∑
v∈P −S[v]κ[v](xi[v]−x[v])/λ

for j = 1, . . . , k, where S ∈ {−1, 1}d.

Proof: In this proof, we initially conjecture that the non-negativity constraint wj ≥
0 for all j is non-binding (also known as inactive), which means that solving the

constrained l1 LIME minimization problem without this constraint will still lead to a

solution which satisfies the constraint. To test the conjecture that the constraint is

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 65

non-binding, we remove it explicitly from the problem, solve the constrained l1 LIME

minimization problem without this constraint, and then it is seen that indeed the

constraint held.

Assuming that a minimizing pdf w∗ exists, the vector S affects the orientation

of the positive and negative axis for each dimension. Without loss of generality,

let the correct choice of S[m] = 1 for all m ∈ M and note that the correct choice

of S yields
∑
j w

∗
jx[m] − x[m] > 0 for all m ∈ M. Then the set of constraints,∑k

j=1wjxj[m]− x[m] > 0 for all m ∈ M, holds.

Note the objective function is a linear combination of linear functions and a convex

function, and thus the objective function is twice continuously differentiable in w.

Further, the constraint functions,
∑k
j=1wjxj[p] − x[p] = 0 and

∑
j wj − 1, are twice

continuously differentiable in w.

To show the existence and closed form of the solution w∗ given in the theorem, the

second order sufficiency conditions for a constrained minimizer are applied [84] (see

Lemma 4 for a more detailed application, and a more general review of the necessary

and sufficient optimization conditions appears in the Appendix).

First, consider the second-order optimality condition. Since the objective function

is strictly convex, the second-order optimality condition will be satisfied (assuming

the first order optimality condition is satisfied).

One can solve the first order optimality condition for a possible solution w∗,

w∗
j (κ, µ) = e

µ−λ+∑
m∈M(xj [m]−x[m])/λ+

∑
p∈P κ[p](xj [p]−x[p])/λ (3.21)

for j = 1, . . . , k.

To show that the possible solution w∗ is in fact a minimizer, one must show that

there exist Lagrange multipliers κ and µ such that the constraints of the constrained

l1 LIME minimization problem are satisfied. The µ variable ensures that
∑
j wj = 1,

accounting for this constraint, the possible solution w∗
j (κ) becomes

w∗
j (κ) =

e
∑

m∈M(xj [m]−x[m])/λ+
∑

p∈P κ[p](xj [p]−x[p])/λ∑
i e

∑
r∈M(xi[r]−x[r])/λ+

∑
s∈P κ[s](xi[s]−x[s])/λ (3.22)

for j = 1, . . . , k.

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 66

Lastly, κ must satisfy the set of constraints,
∑k
j=1wj(xj[p]− x[p]) = 0 for p ∈ P.

Substituting in the potential solution (3.22) for w∗, κ must satisfy

k∑
j=1

(xj[p]− x[p])
(
e
∑

r∈M −(xj [r]−x[r])/λ+
∑

s∈P −κ[s](xj [s]−x[s])/λ) = 0,
for p ∈ P.
If no κ satisfies the above equation then, by the second order necessary condi-

tions [84], no solution w∗ exists for the d-dimensional constrained l1 LIME minimiza-

tion problem. If κ satisfies the constraints then the solution w∗ exists as stated in

(3.22). In the statement of the lemma, the vector S captures the uncertainty of the

orientation of the negative and positive axis in each dimensions and the correct choice

of S will ensure that all the constraints hold.

q.e.d.

Next, we review the exact penalty function theorem, further discussion of which

can be found in books by Nash and Sofer [92], pages 549-551, Luenberger [84], pages

387-391, and Conn et al. [23], pages 600-612. The theorem is useful because it says

that for heavy weightings of an l1 norm penalty, the minimizer of the l1 penalty

problem is the same as the minimizer for the corresponding constrained optimization

problem.

Theorem 3 (Exact Penalty Function Theorem) Consider the following general

constrained optimization problem: minimize f(w) such that gi(w) = 0 for i = 1, 2, . . . , t

and w ∈ Rk. The objective function f and the constraint functions gi(w) are assumed

to be twice continuously differentiable. Let π be the l1 norm penalty function given by

π(w, λ) = λf(w) + ‖g(w)‖1.

If w∗ satisfies the second order sufficiency conditions for a local minimum of the

constrained optimization problem, that is, for all vectors v such that ∇g(w∗)Tv = 0,

∇f(w∗)Tv = 0 and vT∇2f(w∗)v > 0. If Λ is the reciprocal of the largest Lagrange

multiplier in absolute value for the constraints g, and if λ ≤ Λ, then w∗ is also a

minimizer of π(w, λ).

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 67

We will also need the following corollary to the exact penalty function theorem.

The corollary states that the unconstrained problem’s minimizer will be different

from the constrained problem’s minimizer. Since the constrained LIME problem

has a unique minimizer that yields the maximum entropy given that the distortion is

equal to zero, the unconstrained LIME problem cannot have a different minimizer and

distortion equal to zero. Then, for λ > Λ, the minimal distortion of the unconstrained

LIME problem will be larger than zero. The corollary presented here is Theorem

14.5.2 from Conn et al. [23] (page 613) with different notation and assumptions made

explicit.

Corollary 2 (Conn et al.) Suppose that (w∗, κ∗) is a minimizer pair (minimizer

and Lagrange multiplier) of the constrained minimization problem: minimize f(w)

such that g(w) = 0. Let Λ be the reciprocal of ‖κ∗‖∞. Suppose also that f and g are

twice continuously differentiable, and that the rows of the Jacobian matrix of g(w∗)

are linearly independent. Let π be the l1 norm penalty function given by π(w, λ) =

λf(w) + ‖g(w)‖1. Suppose that

λ > Λ.

Then w∗ is not a local minimizer of π.

Finally, all the building blocks are in place to present Theorem 4 and its proof.

The theorem shows that, like Campbell’s result, there is a closed form solution for

the l1 LIME minimization problem for one-dimensional feature spaces. Theorem 4

adds to Campbell’s result by removing the assumption that minj xj ≤ x ≤ maxj xj.

Theorem 4 Given x, xj ∈ R, j = 1, . . . , k, and λ > 0, define Λ as the solution to (if

a solution exists)

k∑
j=1

xje
−(xj−x)/Λ∑k

i=1 e
−(xi−x)/Λ

= x

and 0 otherwise.

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 68

Then the l1 LIME minimization problem for λ > 0 is solved by the pmf w(λ) =

{w1(λ), w2(λ), . . . , wk(λ)}, given by,

wj(λ) =

e−s(xj−x)/λ∑k

i=1 e
−s(xi−x)/λ if λ ≥ Λ

e−s(xj−x)/Λ∑k
i=1 e

−s(xi−x)/Λ otherwise

for j = 1, . . . , k, where

s =

+1 if
∑k
j=1 xj/k ≥ x,

−1 otherwise.

Proof: First, note that if
∑k
j=1 xj/k < x then s = −1 and the x and xj have their sign

flipped, so that it suffices to prove the theorem with the assumption that
∑k
j=1 xj/k >

x and s = 1.

The proof is divided into two cases. The first case is that λ ≤ Λ. The exact penalty
function theorem(Theorem 3) states that the minimizer of the l1 LIME minimization

problem is the same as the minimizer of the constrained l1 LIME minimization prob-

lem if λ ≤ Λ, where Λ is the reciprocal of the Lagrange multiplier of the constrained
problem. From Lemma 4, it is seen that if the one-dimensional constrained l1 LIME

minimization problem has a solution, then the Lagrange multiplier κ exists and solves,

k∑
j=1

xje
−κ(xj−x)∑k

i=1 e
−κ(xi−x)

= x.

However, if the constrained l1 LIME minimization problem has no solution, then

there is no solution to the above equation. Thus in the theorem, Λ is defined as 1/κ

if the above equation has a solution, and 0 if not. Since by hypothesis λ > 0, the

theorem never equates the minimizer of the l1 LIME minimization problem to the

minimizer of the constrained l1 LIME minimization problem unless the constrained

problem is solvable.

If the l1 LIMEminimization problem satisfies the exact penalty theorem conditions

then it has the same minimizer w∗ as the constrained l1 LIME minimization problem

(see Lemma 4). Substituting Λ = 1/κ into (4), and noting that this is the solution

for any λ ≤ Λ, we conclude that for λ ≤ Λ,

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 69

w∗
j (λ) =

e−(xj−x)/Λ∑k
i=1 e

−(xi−x)/Λ
(3.23)

for j = 1, . . . , k.

The remaining case is that λ > Λ. Recall that
∑k
j=1 xj/k > x by assumption.

Then from Lemma 3, it is known that the minimizing weights w∗ satisfy
∑k
j=1w

∗
jxj ≥

x.

Further, it is known that
∑k
j=1w

∗
jxj > x because by Corollary 2, for λ > Λ,

D(w) �= 0, so that ∑k
j=1w

∗
jxj − x �= 0. (Note, to apply Corollary 2 the rows of the

Jacobian of D(w) must be linearly independent. For a one-dimensional feature space

this is trivially satisfied.)

Thus there exists a minimizer w∗ of the l1 LIME objective function F (w) =

‖∑k
j=1wjxj − x‖+ λ

∑k
j=1wj logwj such that

∑k
j=1w

∗
jxj > x.

Consider a new objective function F ′(w) that is the same as F (w) but without

absolute value signs:

F ′(w) =
k∑
j=1

wjxj − x+ λ
k∑
j=1

wj logwj.

Note that w∗ is a minimizer to F (w) such that
∑k
j=1w

∗
jxj > x. Local to w

∗, F (w)

and F ′(w) are equivalent. So w∗ must also be a minimizer of F ′(w).

Since F ′(w) is strictly convex it has a unique minimizer. Therefore, the unique

minimizer of F ′(w) must be w∗.

Because F ′(w) is differentiable everywhere, one can solve analytically for the min-

imizer of F ′(w).

Since the objective function F ′(w) is the positively weighted sum of a linear func-

tion(convex) and a strictly convex function, the matrix of second derivatives is positive

definite, and the second order optimality condition will be satisfied. Next, we con-

sider the first order optimality condition. Differentiating the objective function F ′(w)

with respect to w, setting it to zero, and solving for the Lagrange multiplier (for the

constraint
∑
j wj − 1 = 0) leads to the solution w∗ = {w1, w2, . . . , wk} where for each

j = 1 to k,

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 70

w∗
j (λ) =

e−(xj−x)/λ∑k
i=1 e

−(xi−x)/λ
. (3.24)

Thus we have shown that the Lagrangian multiplier Λ from the constrained prob-

lem divides the unconstrained problem into two cases. In the first case, λ ≤ Λ and

the l1 distortion for the unconstrained case is zero. By the exact penalty function

theorem the minimizer is then equivalent to the constrained problem’s minimizer, as

shown in (3.23). On the other hand, for λ > Λ the unconstrained problem can be

re-written and solved analytically, yielding the solution shown in (3.24). q.e.d.

3.2.3 Exponential weights for l1 distortion and

multi-dimensional feature space

It would be delightful if one could simply generalize the closed form solution for

l1 distortion from one dimension (Theorem 4) to many dimensions. However, it is

not clear that a simple generalization exists. At the least, one can prove that for

a d-dimensional feature space, the optimal distribution will be one of 2d specifiable

possible solutions.

The problem is that in the multi-dimensional feature space case, it is not known

in which quadrant the best reproduction
∑
j w

∗
jxj lies. For the one dimensional

case x ∈ R, we showed in Lemma 3 that if ∑k
j=1 xj/k > x, then the minimizer

w∗ satisfies
∑k
j=1w

∗
jxj ≥ x. However, in the multiple dimensional case with l1

distortion, the corresponding assertion does not hold. Specifically, it is not true

that if
∑d
m=1

∑k
j=1 xj[m]/k >

∑d
m=1

∑k
j=1 x[m], then the optimal weights satisfy∑d

m=1

∑k
j=1w

∗
jxj[m] >

∑d
m=1

∑k
j=1 x[m]. Counterexamples are easy to construct.

Without knowledge of which quadrant contains the optimal estimate, one can

determine the closed form of the solution only to within a set of 2d specifiable possi-

bilities.

The multi-dimensional unconstrained l1 LIME minimization problem has a solu-

tion that can be stated in closed form, but there are a number of cases. The following

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 71

procedure separates the cases. In the procedure, first the constrained l1 LIME mini-

mization problem is solved for its Lagrange multiplier Λ. Then, if λ ≤ minm ‖Λ[m]‖,
the solution is known; by Theorem 3 the unconstrained solution is the constrained

problem’s solution. If λ > maxm ‖Λ[m]‖, then no constraints hold, and the solution
can be analytically solved for. If minm ‖Λ[m]‖ < λ < maxm ‖Λ[m]‖, then some of the
constraints might hold. To determine which constraints actually hold, a new semi-

constrained l1 LIME minimization problem is set-up and solved, resulting in a new

Lagrange multiplier. Then, the logic repeats itself: how does λ compare to the new

Lagrange multiplier? That will determine how many constraints actually do hold for

the unconstrained solution, and that determines the analytic solution.

Procedure for solving the l1 LIME minimization problem

Given x ∈ Rd, a set of points xj ∈ Rd, j = 1, . . . , k which include a basis of the
d-dimensional space, and λ > 0, follow the steps until a solution w∗ for the l1 LIME

minimization problem is given.

Step 1) Define Λ ∈ Rd as the solution to (if a solution exists) the system of d

equations,
k∑
j=1

(xj[m]− x[m])
(

e
∑d

r=1 −(xj [r]−x[r])/Λ[r]∑k
i=1 e

∑d
p=1 −(xi[p]−x[p])/Λ[p]

)
= 0, (3.25)

for m = 1, . . . , d, and Λ = 0 otherwise.

Step 2) If λ > maxc ‖Λ[c]‖ for c = 1, . . . , d, then the minimizer is

w∗
j (λ) =

e
∑d

r=1 −S[r](xj [r]−x[r])/λ∑k
i=1 e

∑d
p=1 −S[p](xi[p]−x[p])/λ

for j = 1, . . . , k, where S ∈ {−1, 1}d.
Step 3) If λ ≤ minc ‖Λ[c]‖ for c = 1, . . . , d, then the minimizer is

w∗
j (λ) =

e
∑d

r=1 −(xj [r]−x[r])/Λ[r]∑k
i=1 e

∑d
p=1 −(xi[p]−x[p])/Λ[p]

for j = 1, . . . , k.

Step 4) Let m be the smallest integer such that λ > ‖Λ[m]‖.

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 72

Step 5) Let Λ[c] = 0 for c ≤ m and for c = m + 1, . . . , d, let Λ[c] be the solution

to the system of d−m equations,

k∑
j=1

(xj[p]− x[p])
(
e
∑m

r=1 −(xj [r]−x[r])/λ+
∑d

s=m+1 −(xj [s]−x[s])/Λ[s]
)
= 0,

where p = m+ 1, . . . , d.

Step 6) If λ ≥ maxc ‖Λ[c]‖ for c = m+ 1, . . . , d, then the minimizer is

w∗
j (λ) =

e
∑d

r=1 −S[r](xj [r]−x[r])/λ∑k
i=1 e

∑d
p=1 −S[p](xi[p]−x[p])/λ

,

for j = 1, . . . , k, where S ∈ {−1, 1}d.
Step 7) If λ ≤ minc‖Λ[c]‖ for c = m+ 1, . . . , d, then the minimizer is

w∗
j (λ) =

(
e
∑m

r=1 −S[r](xj [r]−x[r])/λ+
∑d

s=m+1 −S[s](xj [s]−x[s])/Λ[s]
)

∑k
i=1 e

∑m
u=1 −S[u](xi[u]−x[u])/λ+

∑d
v+m+1 −S[v](xi[v]−x[v])/Λ[v]

for j = 1, . . . , k, where S ∈ {−1, 1}d.
Step 8) Let c be the smallest integer such that λ > ‖Λ[c]‖ for c = m + 1, . . . , d.

Let m = c. Go to Step 5.

Note that every time Step 4 is reached a less-constrained problem is evaluated.

This has two consequences. First, a solution must always exist for the less-constrained

problem if a solution existed for a more constrained problem (such as that solved in

Step 1). Second, for finite dimensions d, the procedure must end.

Theorem 5 Given x ∈ Rd, a set of points xj ∈ Rd, j = 1, . . . , k which include a

basis of the d-dimensional space, and λ > 0, the Procedure for solving the l1 LIME

minimization problem will result in the correct analytical solution for the minimizing

weight distribution.

Proof: The vector S affects the orientation of the positive and negative axis for each

dimension. Without loss of generality, let the correct choice of S[m] = 1 for all m =

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 73

1, . . . , d and let the definition of the correct choice of S be that
∑
j w

∗
jx[m] > x[m] ≥ 0

for all m = 1, . . . , d, where w∗ is the minimizing pdf.

Consider first the case of Step 2, such that λ > maxc ‖Λ[c]‖. Recall that the vector
S was selected so that

∑
j

w∗
jxj[p]− x[p] ≥ 0

for all p = 1, . . . , d.

For the constraint
∑
j w

∗
jxj[m] − x[m] = 0 to hold, it is necessary that (by first

order optimality conditions) that λ ≤ ‖Λ[c]‖. Combining λ > ‖Λ[c]‖ and (3.2.3) leads
to,

∑
j

w∗
jxj[p]− x[p] > 0.

for all p = 1, . . . , d.

Since, λ > ‖Λ[p]‖ for all p = 1, . . . , d, there exists a minimizer w∗ of the l1
LIME objective function F (w) = ‖∑k

j=1wjxj − x‖1 + λ
∑k
j=1wj logwj such that∑d

m=1

∑
j w

∗
jxj[m]− x[m] > 0.

Consider a new objective function F ′(w) that is the same as F (w) except without

absolute value signs:

F ′(w) =
d∑
m=1

k∑
j=1

wjxj[m]− x[m] + λ
k∑
j=1

wj logwj. (3.26)

As shown above, w∗ is a minimizer to F (w) such that
∑d
m=1

∑
j w

∗
jxj[m]−x[m] >

0. Then, locally around w∗, F (w) and F ′(w) are equivalent. So w∗ must also be a

minimizer of F ′(w).

Since F ′(w) is strictly convex it has a unique minimizer. Therefore, the unique

minimizer of F ′(w) must be w∗. Because F ′(w) is differentiable everywhere, we can

analytically solve for the minimizer of F ′(w).

Since the objective function F ′(w) is the positively weighted sum of linear func-

tions and a strictly convex function, the matrix of second derivatives is positive def-

inite, and the second order optimality condition will be satisfied. Next, we consider

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 74

the first order optimality condition. Differentiating the objective function F ′(w) with

respect to w, setting it to zero, and solving for the Lagrange multiplier (for the

constraint
∑
j wj − 1 = 0) leads to the solution w∗ = {w1, w2, . . . , wk} where for

j = 1, . . . , k,

w∗
j (λ) =

e
∑d

r=1 −(xj [r]−x[r])/λ∑k
i=1 e

∑d
p=1 −(xi[p]−x[p])/λ

. (3.27)

Next consider the case of Step 3 such that λ ≤ minc ‖Λ[c]‖, for c = 1, . . . , d . Then
the exact penalty function theorem (Theorem 3) can be applied. The constrained l1

LIME minimization problem minimizes −H(w) subject to the constraint functions∑k
j=1wjxj[m] − x[m] = 0 for m = 1, . . . , d. The exact penalty function theorem

can be applied to the problem at hand to conclude that the minimizer of the l1

LIME problem is the same as the minimizer of the constrained l1 LIME problem if

λ ≤ minm ‖Λ[m]‖. The minimizer of the constrained l1 LIME problem was shown in

Lemma 4.

If the conditions in Step 2 and Step 3 did not hold, then it must be that

min
m

‖Λ[m]‖ ≤ λ ≤ max
p

‖Λ[p]‖
for some m and some p. In this case some of the constraints might hold, that is, it

could be that ∑
j

w∗
jxj[p]− x[p] = 0,

for some p ∈ P.
In Step 4, variable m is assigned to be the smallest integer such that λ > ‖Λ[m]‖.

To determine if (3.2.3) holds for any p ≥ m + 1, solve the semi-constrained l1 LIME
minimization problem with constraints on the dimensions p ≥ m + 1. Since the

constrained l1 LIME minimization problem had a solution (or else one would not have

arrived at Step 4), the semi-constrained l1 LIME minimization problem will also have

a solution, with an associated reciprocal Lagrange multiplier Λ′, where Λ′[p] = λ/κ[p]

if p ∈ P and 0 otherwise, and κ solves (3.2.2). In Step 5, Λ is re-defined to be zero

for dimensions p = 1, . . . ,m, and Λ[p] = Λ′[p] otherwise.

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 75

Now, one again faces three cases. If λ[p] ≤ minp ‖Λ′[p]‖ for all p > m, then the
EPFT applies and the l1 LIME minimization problem is solved by the same pdf as

the semi-constrained l1 LIME minimization problem. If λ[p] > maxp ‖Λ′[p]‖ for all
p > m, then no constraints hold for the minimizing solution, and instead (3.2.3) holds

for all dimensions, and the l1 LIME minimization problem can be solved analytically

as described above in the proof for Step 2. Lastly, if ‖Λ′[r]‖ ≤ λ ≤ ‖Λ′[s]‖ for some
r, s > m, s > r, the validity of (3.2.3) is not yet known. In this situation, a new semi-

constrained l1 LIME minimization problem must be formulated with the constraints

on the dimensions s for all s such that λ ≤ ‖Λ′[s]‖. This new semi-constrained

problem should be solved, the resultant new Lagrange multiplier is compared to λ,

and once again, three cases are faced.

Thus we have shown that the Lagrangian multiplier Λ from the constrained l1

LIME minimization problem divides the unconstrained problem into three cases. In

the first case, λ ≤ minm ‖Λ[m]‖ and the unconstrained problem’s l1 distortion is
zero. By the exact penalty function theorem the minimizer is then equivalent to

the constrained problem’s minimizer. In the second case, λ > maxm ‖Λ[m]‖, and
the unconstrained problem can be re-written and solved analytically, yielding the

solution shown in (3.27). In the third case, minm ‖Λ[m]‖ ≤ λ ≤ maxp‖Λ[p]‖, and a
semi-constrained l1 LIME minimization problem must be solved recursively until it

can be determined which constraints hold for the unconstrained minimizer. Once it is

known which constraints hold for the unconstrained minimizing solution, the analytic

form for the minimizer is known (from logic presented earlier in the proof).

In the end, one may be left with uncertainty as to the true vector S (recall it was

assumed that the correct vector S was all ones at the beginning of the proof). There

are d components of S and each component can take on one of two values, −1 or 1,
leaving 2d possibilities to test for the final solution.

Notes on implementing with the l1 distortion

All of the numerical results for LIME were obtained using an l2 distortion implemen-

tation of LIME, discussed in Section 2.11.

One could implement the l1 distortion LIME algorithm as follows:

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 76

Step 1) For a test point X ∈ Rd, determine its k nearest neighbors which include
a basis of the d-dimensional space.

Step 2) Solve (3.25) for Λ.

Step 3) Follow the Procedure for solving the l1 LIME minimization problem.

Step 4) If the solution from Step 3 has an unknown S vector, compute F (w) for

each of the 2d possible S solutions from Step 3. The minimum F (w) determines the

optimal solution, w∗.

Step 5) Apply the LIME weights w∗ to estimate the class or value of interest,

f(X),

fLIME(x) = argmin
ŷ

k∑
j=1

w∗
j (X)C(ŷ, Yj(X)).

The most troublesome implementation issue is Step 2, which requires solving (3.25)

for Λ. This problem should be amenable to convex optimization techniques.

3.3 Consistency

Many nonparametric supervised learning classification rules achieve the Bayes’ risk in

the limit of increasing training samples, see [30] for a review of consistency properties

of a number of classes of algorithms. Guaranteeing that an algorithm will asymp-

totically achieve low risk validates the inductive method in some philosophers’ eyes

(see Section 1.0.1). Many parametric algorithms are not guaranteed to converge to

the Bayes’ risk. Algorithms that fit a model of the class densities, or constrain the

decision boundaries, may prove too rigid to adapt to the true decision boundary even

in the presence of infinite data.

In 1967, Cover and Hart [24] showed that for k-NN with k = 1 and the total

number of training samples n→ ∞, the asymptotic error is no worse than twice the
Bayes’ risk. With a one neighbor neighborhood, LIME performs exactly the same as

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 77

k-NN (all the weight goes to the one neighbor) and thus the same result holds.

In this section it is shown that the LIME algorithm with l1 distortion converges to

the Bayes’ risk under standard assumptions of double asymptopia (k → ∞, n→ ∞,
and k/n→ 0).

In 1977 Stone proved [118] that for nonparametric algorithms that assign weights

to neighboring training samples and then apply those weights linearly in the out-

put domain (Ŷ =
∑
j wj(X)Yj), there are five conditions that must be satisfied for

the algorithm to converge; only three conditions are needed if the weights form a

probability mass function.

First we review some definitions and Stone’s theorem, and then present the theo-

rem and proof for LIME.

Given iid training samples {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)} and (X,Y), and real-
valued Y with E|Y |p < ∞, then an estimator is consistent if ˆE[Y |X] → E[Y |X] in
Lp as n→ ∞.
Let w be a sequence of pmfs. Let n be the cardinality of the training sample set,

k(n) the cardinality of the neighborhood. Let wnj be the probability corresponding

to the sample point Xj in the neighborhood.

Stone’s [118] Corollary 1 is the following:

Theorem 6 (Stone) A sequence of pmfs w is universally consistent if and only if

the following three conditions hold:

C1) There is a constant C ≥ 1 such that, for every nonnegative Borel function f

on Rd, E
[∑

j ‖wnj(X)‖f(Xj)
]
≤ CE[f(X)] for all n ≥ 1

C2) limn→∞
∑
j ‖wnj(X)‖I{‖Xj−X‖>a} → 0 in probability for all a > 0

C3) limn→∞maxj ‖wnj(X)‖ → 0 in probability.

Next, LIME with l1 distortion is shown to be consistent. The proof for Stone’s

first condition relies on the l1 distortion function assumption. We conjecture that the

LIME weights will be consistent for l2 distortion as well, however, efforts to prove

this were thwarted by the first condition.

Theorem 7 (LIME consistency) Suppose points X ∈ Rd and Xi ∈ Rd, i =
1, . . . , n are iid. Let Xj, j = 1, . . . , k(n) be the jth nearest neighbor to X from the set

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 78

Xi, i = 1, . . . , n. Suppose w∗
n is the pmf that solves the l1 LIME minimization prob-

lem for X and Xj, j = 1, . . . , k(n). Then the sequence of weights w∗ is universally

consistent as k(n)→ ∞, n→ ∞, and k(n)/n→ 0.

Proof: Stone’s theorem (Theorem 6) is applied. The three conditions are proved

separately in the next three subsections.

3.3.1 Proof of Stone’s first condition

For the first condition of Stone’s corollary, it must be shown that for all n ≥ 1,

E

[∑
i

|wni(X)|f(Xi)
]
≤ CE[f(X)] (3.28)

For this proof, an upper bound on the LIME weights is shown, which will lead

to an upper bound of the left-side of (3.28) for the LIME weights. Then Stone’s

Proposition 11 can be applied to the new weights to show that his first condition

holds for the new weights. Since the new set upperbounds the LIME weights, the

condition also holds for the LIME weights.

The LIME weights wni(X) are upperbounded by a new set of weights w̃nj(X),

j = 1, . . . , k(n):

w̃nj(X) = max
i
(wni(X)) (3.29)

Each new weight w̃nj(X) is the maximum of the set of original weights, and thus

is not less than the corresponding weight wnj(X).

To show that the new set is normalizable, it will be shown that the new weights

can be summed to a finite constant,

k(n)∑
j=1

w̃nj(X) =

k(n)∑
j=1

max
i
(wni(X))

= k(n)max
i
(wni(X))

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 79

Substitute the known form of the weights from Theorem 5. Let

λ∗ =

λ if λ ≥ minm Λ[m] for m = 1, . . . , d
Λ otherwise.

Note that λ∗ > 0 since λ > 0. Then,

k(n)∑
j=1

w̃nj(X) = k(n)max
q

(
e
∑d

r=1 −S[r](xq [r]−x[r])/λ∗∑k(n)
i=1 e

∑d
p=1 −S[p](xi[p]−x[p])/λ∗

)

≤ k(n)
maxq

(
e
∑d

r=1 −S[r](xq [r]−x[r])/λ∗
)

mini
∑k(n)
i=1 e

∑d
p=1 −S[p](xi[p]−x[p])/λ∗

= k(n)
maxq

(
e
∑d

r=1 −S[r](xq [r]−x[r])/λ∗
)

k(n)mini e
∑d

p=1 −S[p](xi[p]−x[p])/λ∗

=
maxq

(
e
∑d

r=1 −S[r](xq [r]−x[r])/λ∗
)

mini e
∑d

p=1 −S[p](xi[p]−x[p])/λ∗

Let ∆ be the distance from the test point x to its furthest neighbor,

∆ = max
j

|X −Xj|

Then the sum of the tilde weights
∑k(n)
j=1 w̃nj(X) can be expressed,

B =

k(n)∑
j=1

w̃nj(X)

≤ ed∆/λ
∗

e−d∆/λ∗

= e2d∆/λ
∗

Since the tilde weights are summable, they can be normalized to sum to one.

Normalize the tilde weights to create a new set of weights

w̃′
n(X) =

w̃n(X)

B
.

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 80

Now, Stone’s condition 1 is shown to hold for the normalized set of weights W̃ ′
ni,

and then it will be shown that if the condition holds for the normalized tilde weights,

it must hold for the original LIME weights.

Proposition 11 from Stone’s paper [118] will be useful.

Proposition 11: Let wn be a pmf monotonically non-increasing function along all

rays centered at X. If f is a nonegative Borel function on Rd such that E[f(X)] <∞,

then

E

[∑
i

wni(X)f(Xi)

]
≤ β(d)E[f(X)],

where β(d) is the minimum number of cones needed to cover the Rd space.

For finite d, β(d) is a finite [118] constant.

The normalized tilde weights w̃′ satisfy Proposition 11’s requirements of a prob-

ability weight function that is non-increasing in all directions. Applying Proposition

11 to the normalized tilde weights results in

E

k(n)∑
i=1

w̃′
ni(X)f(Xi)

 ≤ β(d)E[f(X)].

Then for the unnormalized tilde weights w̃,

E

k(n)∑
i=1

w̃ni(X)f(Xi)

 ≤ β(d)BE[f(X)],

and for the original LIME weights,

E

k(n)∑
i=1

wni(X)f(Xi)

 ≤ β(d)BE[f(X)]

Since β(d)B is a constant, Stone’s first condition holds.

3.3.2 Proof of Stone’s second condition

The second condition of Stone’s corollary requires that the sum of the weights outside

a shrinking neighborhood goes to zero,
∑k
j=1 ‖wnj(X)‖I{‖Xj−X‖>a} → 0 as n → ∞,

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 81

k → ∞, and k/n→ 0, in probability for all a > 0.

Since all of the LIME weights correspond to points inside the neighborhood, this

condition is equivalent to requiring the neighborhood to shrink to zero,

P (‖xk(n)(x)− x‖ > a)→ 0,

where xk(n)(x) is the kth nearest training point to x. Lemma 5.1 from Devore, Gyorfi,

and Lugosi [30] applies here.

Lemma 6 (Devore, Gyorfi and Lugosi) If X is independent of the training data,

then ‖Xk(X)−X‖ → 0 with probability one whenever k/n→ 0 as n→ ∞.

The LIME neighborhood is defined in the theorem with k/n→ 0. Further, X and

the training data Xj, j = 1, . . . , k are assumed to be iid. Thus Lemma 6 holds, and

therefore Stone’s second condition holds.

3.3.3 Proof of Stone’s third condition

Stone’s third condition requires that maxj ‖wnj(X)‖ → 0 in probability. To show

Stone’s third condition, it is sufficient to show that for any ε > 0, there is some n0

such that for every n > n0, maxj wnj < ε.

The proof is by contradiction. For a sequence of pmfs, {an;n = 1, 2, . . .}, let the
set A be such that {an ∈ A iff maxj anj ≥ ε}. For any ε > 0 and any weight sequence
a such that an ∈ A infinitely often, it is shown that there is some n0 for which

F (wun) < F (an) (3.30)

for n > n0, and an ∈ A, where wunj = 1
k(n)

for all n and for all j = 1, . . . , k(n).

Since the weight sequence chosen by the LIME algorithm must minimize the

functional F (w) = D(w)− λH(w) for all n, (3.30) entails that no pmf sequence with
maxj anj ≥ ε infinitely often for any ε > 0 achieves the minimum functional for all

n. Therefore no pmf sequence with maxj anj infinitely often will be the LIME pmf

sequence chosen. Then the LIME pmf sequence must satisfy Stone’s third condition.

To show (3.30), begin with the relation

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 82

F (an) = D(an)− λH(an)
F (an) ≥ −λH(an)

Fano’s inequality [25] applies to the entropy of a pmf with maxj wj ≥ ε,

F (an) ≥ −λ
(
−ε log(ε)− (1− ε) log

(
1− ε
k(n)− 1

))
for an ∈ A.
To compare with F (wun), first note that

D(wun) = ‖ 1

k(n)

k(n)∑
j=1

Xj −X‖1

≤ ‖ 1

k(n)

k(n)∑
j=1

‖Xj −X‖‖1.

The conditions for Lemma 6 (stated in Section 3.3.2) hold, and thus with proba-

bility one

‖Xk(n)(X)−X‖ → 0.

By definition of a jth nearest neighbor, ‖Xj(X) −X‖ ≤ ‖Xk(n)(X) −X‖ for all
j ≤ k(n), and since the sum of the absolute value differences is divided by k(n), we

can conclude that as n→ ∞,

D(wun)→ 0.

Comparing the entropy sequences for n ∈ A,

H(wun)−H(an) = log(k(n)) + ε log(ε) + (1− ε) log
(

1− ε
k(n)− 1

)
= log

(
k(n)

(k(n)− 1)1−ε
)
+ log

(
εε(1− ε)1−ε)

= ε log(k(n)) + (1− ε) log(k(n)

k(n)− 1) + log
(
εε(1− ε)1−ε) .

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 83

for an ∈ A.
For a given ε, as n→ ∞, the above difference is dominated by the ε log k(n) term

and grows without bound as n→ ∞. Thus,

H(wun)−H(an)→ ∞.
for an ∈ A.
Since λ > 0, ε > 0 are fixed, there exists some n0 for which

D(wun) < λ(H(w
u
n)−H(an))

for n > n0, and an ∈ A.
Consequently,

F (wun)− F (an) ≤ D(wun)− λ(H(wun)−H(an))
< 0

for n > n0 and an ∈ A.
Then (3.30) has been shown, and no sequence of pmfs a with maxj anj ≥ ε in-

finitely often will be the weight sequence chosen by the LIME algorithm.

Therefore the LIME weight sequence must have maxj wnj → 0 in probability,

satisfying Stone’s third condition.

In conclusion, the LIME algorithm chooses a weight sequence that satisfies Stone’s

three conditions and thus the LIME algorithm achieves consistency. q.e.d.

3.3.4 Other asymptotic properties

A number of other asymptotic properties may be shown for a learning algorithm.

Stone shows [118] that many of these results are obtainable ‘for free’ once the weights

are shown to be consistent. As an example, in this section convergence of the second

moments is discussed.

Let f and g be Borel functions on Rm such that E[f 2(Y)] <∞ and E[g2(Y)] <∞.
Then the covariance of g(Y) and h(Y) given X is defined by

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 84

Cov(g(Y), h(Y)|X) = E[g(Y)h(Y)|X]− E[g(Y)|X]E[h(Y)|X],
and the conditional variance is defined,

V ar(g(Y)|X) = Cov(g(Y), g(Y)|X).
Let the LIME estimate of the conditional covariance and variance be formed by

using the LIME weights with details as in Theorem 7,

Ĉov(g(Y), h(Y)|X) = ÊLIME[g(Y)h(Y)|X]− ÊLIME[g(Y)|X]ÊLIME[h(Y)|X],

and

V̂ ar(g(Y)|X) = Ĉov(g(Y), g(Y)|X).
Stone showed [118] that the second order conditional moments converge in L1

for any consistent set of weights and corresponding linear estimator that applies the

weights to form estimators of the following form for Borel functions g defined on Rd

with finite expectation,

Ên[g(Y)|X] =
∑
j

wnj(X)g(Yj).

Since it was shown in Section 3.3 that the LIME weights are consistent, and since

the LIME estimators are linear estimators of the form specified, Stone’s results apply

and the LIME estimates of the second order conditional moments converge.

3.4 Robustness to noise

Real measurements of real data are rarely noise-free. In this section it is shown that

if the training samples are corrupted by iid zero-mean additive noise, the expected

LIME estimate will be unaffected, and further, that it will converge to the clean LIME

estimate as the number of neighborhood training samples k → ∞.

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 85

First it is shown that the LIME estimate is unbiased for training data features

{X1, X2, . . . , Xk} with iid zero-mean additive noise, and then it is shown that the
LIME estimate is also unbiased for training data observations {Y1, Y2, . . . , Yk} infected
with iid zero-mean additive noise.

A variation of the law of large numbers is shown for LIME weights. That result is

key for the subsequent proof that iid zero-mean additive noise on either the training

features or on the training observations will result in a noisy LIME estimate that

asymptotically converges to the clean LIME estimate.

3.4.1 LIME expectation unaffected by noise

on training observations

Let εj, for j = 1, . . . , k, be iid zero-mean noise added to the neighborhood training

observations {Y1, Y2, . . . , Yk}. Then the noisy dependent training variables are

Ỹj = Yj + εj

for j = 1, . . . , k. The clean estimate is Ŷ =
∑
j wjYj. The noisy estimate is,

ˆ̃Y =
∑
j

wj(Yj + εj).

Then the expectation of the noisy estimate is, where Eε represents the expectation

taken with respect to the noise random variables,

Eε[
ˆ̃Y] = Eε

[∑
j

wjYj

]
+ Eε

[∑
j

wjεj

]
= Ŷ +

∑
j

wjEε[εj].

Since E[ε] = 0,

Eε[
ˆ̃Y] = Ŷ .

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 86

Thus the expectation of the noisy estimate is the clean estimate. The LIME

solution is unbiased by the presence of additive zero-mean noise on the training ob-

servations.

3.4.2 LIME expectation unaffected by noise

on training features

Consider noisy independent training variables {X̃1, X̃2, . . . , X̃k}, which are the origi-
nal independent training variables {X1, X2, . . . , Xk} infected with iid zero mean ad-
ditive noise εj, j = 1, . . . , k.

LIME solves for the weights that minimize D−λH. Let the distortion D be some
norm ‖ · ‖ of the difference of the reconstruction and original test point,

D = ‖
∑
j

wjXj − x‖.

The noisy training data are,

X̃j = Xj + εj.

Then the noisy LIME estimate solves for the minimizing weights,

argmin
w

‖
∑
j

wj(Xj + εj)−X‖ − λH(w)

≡ argmin
w

‖
∑
j

wjXj +
∑
j

wjεj −X‖ − λH(w)

≡ argmin
w

‖
∑
j

wjXj − (X −
∑
j

wjεj)‖ − λH(w).

The last line specifies the LIME weight solution for estimating the test point

X − ∑
j wjεj with clean training data. Thus iid zero mean additive noise on the

independent training data creates a LIME estimate for a different test point, moved

by the noise. That is, additive noise on the training points acts as additive noise on

the test point,

fLIME(X, X̃1, X̃2, . . . X̃k) = fLIME(X̃,X1, X2, . . . , Xk).

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 87

where X̃ = X −∑k
j=1wjεj.

The actual effect of estimating at the dirty test point depends heavily on the

training data and the function we are estimating. However, we can see that the new

weight solution is unbiased in the sense that the expectation of the noisy estimate

with respect to the noise Eε is equal to X,

Eε

[
X −

∑
j

wjεj

]
= X −

∑
j

wjEε[εj]

= X,

since the expectation of each noise random variable is zero.

Thus, iid zero mean additive noise on the training features {X1, X2, . . . , Xk} is
mathematically equivalent to noise on the test point, X̃ = X − ∑

j wjεj. Further,

we have shown that the expectation of the noisy test point is equal to the true test

point, E[X̃] = X.

3.4.3 Variation of the law of large numbers

To show that the noisy LIME estimates converge to the LIME estimate without noise,

a variation of the law of large numbers must be shown to hold for the LIME weights.

The variation of the law of large numbers shows that n iid random variables weighted

by LIME weights will converge to the random variables’ expectation in the limit

n→ ∞. There are a number of generalizations of the law of large numbers [96] [121].
One such theorem from Taylor [121] shows that a law of large numbers holds for any

weight sequence that forms a Toeplitz sequence.

First, we review the definition of a Toeplitz sequence, then show that the LIME

weights form a Toeplitz sequence, and then apply Taylor’s theorem to conclude that

the LIME weights obey a law of large numbers.

Definition: A double array {wnj : n, j = 1, 2, . . .} of real numbers is said to be a
Toeplitz sequence if

C1) lim
n→∞

wnj = 0 for each j

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 88

C2)
∞∑
j=1

‖wnj‖ ≤ C for each n
where C is a finite constant.

Lemma 7 A LIME weight sequence {wnj : j = 1, . . . , k;n = 1, 2, . . .}, where n→ ∞,

j = 1 to k, k → ∞, and k/n→ 0, is a Toeplitz sequence.

Proof: In Section 3.3.3, it was shown that maxj wnj → 0, and since 0 ≤ wj ≤ maxj wnj
for all j, wnj → 0 for all j. Thus condition C1 of the definition is satisfied.

Secondly, since wnj ≥ 0 by definition and
∑k
j=1(n)wnj = 1 for all k(n), the second

condition is satisfied with C = 1. Therefore, the lemma holds. q.e.d.

A theorem from Taylor [121](which Taylor credits to Pruitt [101]) is also needed.

Theorem 8 (Taylor) Let Z1, Z2, . . . be a sequence of real-valued scalar iid r.v.’s such

that E‖Z1‖ <∞ and let {anj : n, j = 1, 2, . . .} be a Toeplitz sequence such that

∞∑
j=1

‖anj‖ ≤ 1.

A necessary and sufficient condition that

∞∑
j=1

anjZj → E[Z1]

in probability is that the maxj ‖anj‖ → 0.

Taylor’s theorem can be applied to the LIME weights.

Lemma 8 (Law of large numbers for LIME) For iid random variables {εj : j =
1, 2, . . .} with finite mean and finite variance, and LIME weight sequence {wnj : j =
1, . . . , k;n = 1, 2, . . .} for a given test point, the weighted sum

∑k(n)
j=1 wnjεj converges

to E[ε1],

k(n)∑
j=1

wnjεj → E[ε1]

in probability as n→ ∞, k → ∞, and k/n→ ∞.

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 89

Proof: We apply Taylor’s theorem (Theorem 8) such that ε takes the place of Y , and

the LIME weight sequence w takes the place of the theorem’s a. By assumption, ε is a

sequence of iid random variables with finite variance, and it is shown in Lemma 7 that

the LIME weight sequence w forms a Toeplitz sequence. Furthermore, we showed in

Section 3.3.3 that the maximum LIME weight converges to zero, maxj ‖wnj‖ → 0 as

k → ∞, n→ ∞ and k/n→ 0.

Hence one can conclude from applying Taylor’s Theorem 8 that

k(n)∑
j=1

wnjεj → E[ε1]

as n→ ∞, k → ∞, and k/n→ ∞. q.e.d.

This variation of the law of large numbers will be useful to prove that LIME

converges to the clean estimate in the presence of additive iid finite mean noise.

3.4.4 LIME solution converges for noisy training observa-

tions

Lemma 9 A LIME estimate ˆ̃Yn made in the presence of iid zero mean, finite vari-

ance, additive noise {ε1, ε2, . . . , εk} on the training observations {Y1, Y2, . . . , Yk} will

converge to the clean LIME estimate Ŷ in probability as k → ∞, n → ∞, and

k/n→ 0.

Proof: Each noisy training observation is Ỹj = Yj + εj, the clean estimate is Ŷ =∑
j wjYj, and the noisy LIME estimate is (where the sum is over the test point’s

neighborhood),

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 90

ˆ̃Yn =

k(n)∑
j=1

wnj(Yj + εj)

=

k(n)∑
j=1

wnjYj +

k(n)∑
j=1

wnjεj

= Ŷ +

k(n)∑
j=1

wnjεj

Since, by the variation of the law of large numbers proved above,
∑k(n)
j=1 wnjεj → 0

as k → ∞, n→ ∞ and k/n→ 0, we conclude that under those asymptotic conditions,
ˆ̃Yn → Ŷ . q.e.d.

3.4.5 LIME solution converges for noisy training features

Lemma 10 A LIME estimate made in the presence of iid, zero mean, finite variance,

additive noise on the training features will converge in probability to the clean LIME

estimate asymptotically as k → ∞, n→ ∞, and k/n→ 0.

Proof: In Section 3.4.2 it was shown that additive noise on the independent training

points causes the LIME algorithm to solve for weights that actually estimate a noisy

test point,

fn(X̃) = fn(X −
k(n)∑
j=1

wnjεj).

From the variation of the law of large numbers shown in Theorem 8, it can be

concluded that X −
k(n)∑
j=1

wnjεj

 → X

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 91

as k → ∞, n → ∞, and k/n → 0. Hence, asymptotically the noisy LIME estimate

converges in probability to the clean estimate,

fn(X̃) = fn(X −
k(n)∑
j=1

wnjεj)→ f(X).

q.e.d.

3.5 Functions that are fit exactly

What kind of surfaces are fit by LIME? In the extreme as λ → ∞, maximizing the
entropy of the weights will be the focus (see Section 3.1) regardless of distortion.

Then all points within a neighborhood will receive similar weight, and one expects

that LIME will fit piecewise constant surfaces over disjoint neighborhoods, like a

k-NN regression.

The other extreme, as λ→ 0, is more interesting. Based on simulations, a conjec-

ture is that as λ→ 0, the LIME weights will be equivalent to the weights that solve

the problem: maximize H(w) such that D(w) = minvD(v). For this problem, it will

be shown that hyperplanes are fit exactly. Also, an analytical form for the surfaces

fit on rectangular grids is shown in Section 4.4.3 with two-dimensional examples in

Section 4.4.3.

3.5.1 Fitting hyperplanes

Lemma 11 Given a linear relationship between the feature space X and the obser-

vation space Y such that Y = aTX + b, and a set of training data samples (Xj, Yj),

j = 1, . . . , k, then the estimate Ŷ =
∑
j wj(X)Yj, where w solves: maxH(w) such

that D(w) = minvD(v), is exact for all test points X that are in the closure of the

convex hull spanned by the feature samples {X1, X2, . . . , Xk}.

Proof: Any test point in the closure of the convex hull of the training features can be

reproduced with zero distortion by some pmf over the training features by definition.

CHAPTER 3. ASYMPTOTICS, BOUNDS, AND ROBUSTNESS TO NOISE 92

Then the set of weight distributions satisfying the minimum distortion criterion must

yield zero distortion, that is,
∑k
j=1wj(X)Xj = X.

The observations are from a hyperplane, and thus each Yj = a
TXj + b for some

vector a and scalar b. Substituting this form for Yj, the estimate becomes

Ŷ =
k∑
j=1

(
wj(X)a

TXj + wj(X)b
)

= aT
k∑
j=1

wj(X)Xj + b
∑
j

wj(X).

Since
∑k
j=1wj(X)Xj = X, and since

∑
j wj(X) = 1, this resolves to,

Ŷ = aTX + b.

And thus the estimation of test points in the closure of the convex hull spanned

by the training points exactly reconstructs the original hyperplane.

Chapter 4

LIME and regular grids

Andamos sobre un espejo sin azogue

sobre un cristal sin nubes

We walk on an unsilvered mirror

on a crystal without clouds

Federico Garćıa Lorca

In some learning applications, the training samples are taken at vertices of a

regular grid. A grid may be efficient for data collection, data display, or look-up table

(LUT) data interpolation. Examples include geological sampling and digital video.

In some cases, the grid data are not original data samples, but are prototypes based

on (perhaps learned from) original non-grid data. For example, color management

conversions represent information about the color display characteristics via a grid

of training vectors that must be learned from actual non-grid color samples. In

applications such as computer tomography, a rectilinear grid of training vectors needs

to be created based on a non-rectilinear grid of original data samples.

Regular grids and interpolation appear in a wide range of applications, from med-

ical imaging [102] to the finite element method [11]. Many physical engineering fields

and scientific explorations, such as oceanography or minerals prospecting, also use

regular grid sampling and interpolation. The chapter contains an in-depth look at

93

CHAPTER 4. LIME AND REGULAR GRIDS 94

creating and interpolating the 3D regular grids used in current color management

standards to maintain consistency across color displays.

There are two basic problems for interpolations based on regular grids: how to cre-

ate a regular grid from non-grid original samples, and given the grid, how to perform

interpolations. The LIME method can yield robust solutions for both problems.

The LIME method can be used to form grids from original training samples.

Experiments with color management data provide a comparison of LIME with local

linear regression, ridge regression, radial basis neural net, and other common methods.

A common goal is to interpolate test points based on the grid of training vec-

tors. A traditional family of methods for interpolating grids includes linear, bilinear,

and trilinear interpolation. In this work, this family of methods is generalized to

any dimension and term the family ‘product linear interpolation’ (PLI). PLI for any

dimension is then shown to be a special case of the LIME method where the distor-

tion is first minimized and then the entropy of the solution is maximized. Thus a

link is formed between the general LIME method, which uses any number of training

samples with any structure, and the traditional methods for interpolating grids.

The chapter ends with three different grid cell interpolation experiments: a color

management dataset, a simulation with additive noise, and a functional approxima-

tion.

4.1 Color management basics

LIME can be applied to the three-dimensional regression problems that occur in

color management. Experiments show that LIME can be useful for creating the three

dimensional look-up-tables used in contemporary color management. Also, when used

to interpolate test points off the grid, LIME affords possible advantages in decreasing

average interpolation error and variance.

During its lifetime, a color image may pass through many devices: captured with a

digital camera, edited on a monitor, edited later on a laptop with LCD screen, printed,

copied, re-scanned, etc. It is disturbing to users when colors in an image change from

device to device. Color image quality is preserved by device color transformations that

CHAPTER 4. LIME AND REGULAR GRIDS 95

appropriately map the input device’s colorspace to the output colorspace. Quality

color transformations require quality characterizations of a device’s color space.

There are three types of device characterization [33]. First, physical modeling

uses a complex mathematical model to account for physical differences in devices.

Few measurements are needed, but good models are difficult to build for nonlin-

ear devices like printers. Second, empirical modeling fits a statistical model to the

measured differences between two devices. Lastly, exhaustive measurement colori-

metrically measures as many sample points of the transformation as possible. Points

in-between the sampled points are interpolated. Printers, due to their nonlinearity,

are often characterized in this manner.

To manage colors between possibly nonlinear devices, the International Color

Consortium has created a color management standard called the ICC profile [2]. An

ICC profile format allows for color transformations between devices using LUT’s and

interpolation. No algorithms for creating the LUT or performing the interpolation are

specified. The ICC profile format is an important emerging international standard

for color management between disparate devices, including digital cameras, printers,

and projectors.

The goal is to characterize the output of the device in terms of a device-independent

input space. Many color devices work with an 8 bit RGB representation. Take the

color (255,255,255) RGB, which is the brightest white an RGB device can produce.

Clearly, the actual white produced will differ greatly between devices. Thus the RGB

representation is a device-dependent representation of colors.

For these experiments, the CIEL*a*b* space is used, which is a common device-

independent input space. CIEL*a*b* has three components, the channel L ∈ [0, 100]
which correlates with perceived luminance, the channel a ∈ [−100, 100] which ranges
from a saturated green a saturated red, and the channel b ∈ [−100, 100] which ranges
from a saturated blue to a saturated yellow. CIEL*a*b* color values correspond to

actual reflectance spectra under defined viewing conditions. Once an image is spec-

ified in CIEL*a*b* space, the ICC profile for a specific device (and specific lighting

conditions, humidity, inks, and paper) will specify how to convert the image from

CIEL*a*b* space to the device’s RGB space.

CHAPTER 4. LIME AND REGULAR GRIDS 96

Consider the 1 bit CMYK color printer, two species of which, the inkus jetus

and the common laserat printeri, can be found in offices and homes everywhere.

These printing devices accept 8 bit RGB input. Within the device, an undercolor

removal process changes the 8 bit RGB input to 8 bit CMYK. Another internal

step is halftoning, which may upsample the data and which converts the image to

1 bit CMYK, which is printed. Printed color patches can then be measured with a

spectrometer and the calibrated reflectance spectra converted into CIEL*a*b* units.

Thus a printing device maps an RGB input to a CIEL*a*b* output. Given a

desired color in CIEL*a*b*, a color management system determines, ‘What is the

RGB value to send to the printing device so that the desired CIEL*a*b* color is

printed?’

The color management system must estimate the function f that maps a three-

dimensional colorspace (RGB) to another three-dimensional colorspace (CIEL*a*b*).

The brute force solution is to print patches of all 256× 256× 256 possible 8 bit RGB
input values. All 224 patches could have their CIEL*a*b* value measured, and an

exhaustive table of all this data could be stored in the device. However, no part

of that solution is efficient. Instead, the ICC profile includes a three dimensional

rectangular grid of samples of the mapping f between CIEL*a*b* and RGB. First an

appropriate grid of samples of the function must be built and stored in the profile.

Then, during printing, the profile’s grid is accessed and interpolated to estimate the

function f to convert the desired input CIEL*a*b* color to the appropriate device

RGB.

4.2 Estimating a grid for color management

A key problem for ICC profiles is to build a regular grid of CIEL*a*b* values and

their corresponding RGB values for a device. The grid will serve as an LUT from

which to estimate the appropriate device RGB for any input CIEL*a*b* value. An

ICC profile may also contain a gamma-correcting 1-d LUT before and after the 3-D

LUT.

How does one obtain a rectangular grid of CIEL*a*b* values and corresponding

CHAPTER 4. LIME AND REGULAR GRIDS 97

RGB values? Unfortunately, the printer accepts RGB, not CIEL*a*b*. The usual

solution is to send a number of RGB patches (usually a regular sampling, with perhaps

extra gray ramps) to the device and measure the output CIEL*a*b* values. Then,

these training samples are used to estimate the correspondences for a regular grid of

CIEL*a*b* values.

Once a grid has been estimated it cannot be directly evaluated, as the ‘true grid’

is practically impossible to obtain. The following experiment is proposed to evaluate

the estimation of the grid by stepping further through the color management path:

Color Management Grid Estimation Experiment

For a given printing device,

Step 1) Print a large target of RGB test patches

Step 2) Print a small target of RGB test patches

Step 3) Measure the CIEL*a*b* values of both sets of test patches

Step 4) Create a matrix B which is a 17 × 17 × 17 rectangular grid of CIEL*a*b*
values, with equal sampling ([0, 100], [−100, 100], [−100, 100])
Step 5) Based on the large (or small) target’s RGB to CIEL*a*b* samples, estimate

the RGB values for the grid B.

Step 6) Based on the estimated grid, use trilinear interpolation to estimate the small

(or large) target’s RGB value for each CIEL*a*b* value.

Step 7) Evaluate the grid estimation of Step 5 by measuring the mean RGB error

length between the known small (or large) target’s RGB values and the estimated

RGB values from Step 6.

Many learning algorithms require training of some parameter. It is common to

train learning algorithm parameters by cross-validation on the training data set [54].

However, leave-some-out cross-validation results in a grid with severely decreased

accuracy, and preliminary experiments showed that the training neighborhood size

for local linear regression that resulted was far from the optimal parameter for the

test set.

Instead, if the experiment was to use the large target as a training set and the

CHAPTER 4. LIME AND REGULAR GRIDS 98

small target as a test set, then each learning algorithm was trained by estimating the

grid with the large target and then testing on the large target. The learning algorithm

parameter was trained to deliver the best performance for testing on the large target.

After this training, the optimal parameter was used to estimate the grid values and

test (Step 6) on the small test set. The other advantage of learning this way is the

increased speed compared with leave-some-out cross-validation.

The data for the experiment are a large and small test chart that are used in the

company Chromix’s [1] service to create ICC profiles. The large test chart consists

of 918 color patches which span RGB space as well as some extra bright colors and

gray ramps. The small test chart consists of 288 color patches which span RGB space

as well as some extra bright colors and gray ramps. The test charts were printed

on a 600 dpi error diffusing Savin laser printer with EFI E650 Fiery RIP. All of the

printer’s color correction and color management were turned off.

In the next few paragraphs, it is noted how the parameters were trained for each

of the different algorithms used in the experiments:

Local linear regression: Local linear regression was applied to the training set to

estimate the grid over a neighborhood of k nearest neighbors. The parameter k was

trained by minimizing the empirical error of the trilinear interpolation of the grid

in estimating the training set. Training on the large Savin dataset yielded k = 52.

Training on the small Savin dataset yielded k = 20.

Local ridge regression: Local ridge regression [54] was applied to the training set

to estimate the grid over a neighborhood of k nearest neighbors. The parameters k

and the smoothness parameter s were trained by minimizing the empirical error of

the trilinear interpolation of the grid in estimating the training set. The smoothness

parameter s was trained with intervals of .1. For the large Savin dataset, k = 35 and

s = 3.4. For the small Savin dataset, k = 18 and s = .6.

LIME: Training for LIME led to a grossly overfit neighborhood of 2 or three

training points. The overfitting was due to using the training points to estimate the

grid and also to judge the grid. To avoid the overfitting, we implemented the LIME

method by using the neighborhood size chosen by the local linear regression method.

Given k, the delta parameter was trained empirically to within multiplicative intervals

CHAPTER 4. LIME AND REGULAR GRIDS 99

of 10 (λ = .001, .01, .1, 1, 10), and optimized to λ = 1.

k-NN: For comparison sake, k-NN regression was run with k = 1 and k set to the

neighborhood optimized for local linear regression (k = 52, k = 20).

Radial basis neural net: A generalized regression neural network was designed

using the ‘newgrnn’ program available in the neural net toolbox for Matlab 6.1 [3].

The network has two layers, the first layer is composed of radial basis neurons, and

the second layer is purelin neurons. The code for the program can be obtained by

typing ‘type newgrnn’ at a matlab prompt. More details on these kinds of neural

network methods can be found in [125]. A smoothing parameter ‘spread’ is called for

in the design. The spread parameter was trained by minimizing the empirical error

of the trilinear interpolation of the grid in estimating the training set. Intervals of .1

were tested. For training on the large Savin dataset, spread = 3.2. For training on

the small Savin dataset, spread = 3.2. To ensure that overfitting was not a problem,

another net was built for each dataset with the smooth parameter set to the mean

Euclidean distance between input vectors, spread = 3.5722 for training with the large

Savin dataset and spread = 5.3772 for training with the small Savin dataset.

A limitation of the experiment is that the evaluation is mean-squared-error in the

device RGB space. A device’s RGB space tends not to be perceptually uniform, and

equal sized errors may result in unequal color differences. A better metric would be

to print the estimated test RGB values, measure the corresponding test CIEL*a*b*

values, and compare these CIEL*a*b* values to the original test set CIEL*a*b*.

That would directly measure how far the actual printed values differ for each desired

CIEL*a*b* value. Preliminary experiments showed, however, that the average of

RGB errors from RGB test values spread throughout the colorspace does correlate

well with actual visual error. If instead CIEL*a*b* measurements were used as the

metric, the experiment would also be prohibitively difficult due to the number of

samples to be measured to train the learning algorithm parameters. An actual ICC

profile building service (which will build an ICC profile for around $100 dollars [1])

would have to train on RGB values. Lastly, the experiment with the RGB metric

relies only on the small and large target data, and the device is no longer needed.

Thus other experimenters can compare using the same datasets without needing the

CHAPTER 4. LIME AND REGULAR GRIDS 100

original device (and original printing conditions) to evaluate the comparison.

Regression method Trained on large Trained on small
dataset dataset

1-Nearest neighbor regression 38.89 46.43
k-Nearest neighbor regression 45.37 66.65
Local linear regression 34.34 41.33
Local ridge regression 33.94 41.23
Radial basis net with trained spread 35.04 43.73
Radial basis net with mean dist. spread 34.75 42.80
LIME 32.54 42.52

Table 4.1: Mean RGB error lengths for color management grid estimation

The results are shown in Table 4.1. The first column shows results for training on

the larger test chart, and testing on the small test chart. The second column shows

the results for training on the smaller test chart and testing on the large test chart.

For both experiments LIME performed competitively. To estimate the grid using

the small target, LIME was 3% worse than the best method, local ridge regression.

To estimate the grid using the large target, LIME performed 4.3% better than the

next best method, local ridge regression.

The LIME algorithm took the longest time to run of all the algorithms tested;

approximately ten times longer to run than the local linear regression method. This

is not expected to be a problem though as building an ICC profile is not a real-time

operation and other steps in the process (such as paper handling and measuring the

patches) dwarf the computational run-time. The algorithm of choice for a particular

company to estimate the grid is generally a trade-secret.

4.3 Interpolating a grid

Interpolating a grid is necessary in many applications, from computer graphics to

weather estimation. Anisotropic (irregular) grids can yield lower error rates than reg-

ular grids and are engendering some research [29]. The LIME method can interpolate

CHAPTER 4. LIME AND REGULAR GRIDS 101

any arbitrary grid. However, regular rectangular grids are computationally efficient

and in this section we focus on regular grids. A common way to interpolate grids is

traditional linear interpolation, using a convex hull around the test point of d+1 grid

points in d dimensions [66], [110]. However, traditional linear interpolation rarely

leads to the best possible estimate. Traditional linear interpolation may also be diffi-

cult to implement because a convex hull around the test point must be determined,

a difficult task for three or higher feature dimensions. Fast methods to discover a

convex hull exist [110], but do not guarantee that the best convex hull will be found.

A number of three-dimensional grid interpolation algorithms have been proposed

in the color management literature. Tetrahedral interpolation [69] is the linear inter-

polation equations applied to four points forming a convex hull around a test point.

Trilinear interpolation [66] is a linear interpolation applied to all 8 vertices of the grid

cell that contains the test point. In the next section, we generalize trilinear interpo-

lation to any number of dimensions and show that it relates to the LIME method.

Other methods proposed in the color management literature interpolate a test point

using five or six of the surrounding grid vertices [66].

In Kasson et al. [70], several linear interpolation methods are compared and their

experiments show that tetrahedral interpolation provides the best accuracy (and at

low computational cost). A wavelet-based nonlinear color transformation method was

shown to be less accurate than trilinear interpolation [64]. Neural net methods have

been shown to give good results in a number of papers, including [120, 65]. However,

neural nets require parameter-tuning and training, may become overfit, and it has

not been clearly demonstrated that they will perform better than simple trilinear

interpolation.

In the next section we generalize trilinear interpolation and call the generalization

‘product linear interpolation’ (PLI). A formula for the PLI weights is given, and it is

shown that the PLI weights are a special case of the LIME weights. A closed form is

given for the surfaces fit using PLI weights, with some two-dimensional examples.

The chapter ends with three experiments. The first compares grid interpolation

methods for a color management dataset from Apple. The second is a simulation that

considers the effects on estimation of additive noise. The third experiment considers

CHAPTER 4. LIME AND REGULAR GRIDS 102

functional approximation over a grid cell.

4.4 Product linear interpolation

The popular methods of bilinear and trilinear interpolation [66] can be directly gen-

eralized to d dimensions. We term this generalization ‘product linear interpolation’

(PLI) because it works by forming independent weights for each sample point for each

dimension, and then multiplying the weights over the dimensions. However, like bilin-

ear and trilinear interpolation, PLI only works on rectangular grids. In Section 4.4.2,

we will show that PLI is a special subcase of LIME.

A method for creating regular grids of training points is sequential linear interpo-

lation (SLI) [20]. Once the SLI algorithm has selected the training samples, Chang

et al. suggest using bilinear or trilinear interpolation to actually create the estimates.

They propose that SLI can be generalized to higher dimensions. PLI is the straight-

forward multi-dimensional generalization of bilinear and trilinear interpolation.

4.4.1 Formula for product linear interpolation

Product linear interpolation (PLI) is a generalization of linear interpolation that

works with any d-dimensional regular rectangular grid. Training samples must be

given for the vertices of the rectangular grid. A test point’s neighborhood is defined

to be all the 2d vertices of its surrounding rectangular convex hull.

The PLI weights do not depend on shifts, and thus without loss of generality, we

assume that the rectangular hull that forms the local neighborhood around X has

been shifted so that the entire neighborhood lies in the positive quadrant with one

vertex at the origin. Furthermore, since the weights only depend on relative distances

in each dimension, we can without loss of generality assume that the neighborhood

and test point have been scaled so that the neighborhood points are at the corners of

the d-dimensional unit cube. The training features take values at the corners of the

unit hypercube, Xj ∈ {0, 1}d for all j. The test point is contained in the closure of
the unit hypercube, X ∈ [0, 1]d. For d dimensions the neighborhood size is k = 2d.

CHAPTER 4. LIME AND REGULAR GRIDS 103

Then the PLI weights are as follows, where X[m] denotes the mth component of

the d dimensional vector X and absolute value is represented ‖ · ‖ ,

wj(X,X1, X2, . . . , Xk) =
d∏
m=1

‖1−Xj[m]−X[m]‖ (4.1)

The PLI estimate is then formed by applying the weights to the training observa-

tions,

Ŷ =
∑
j

wjYj

In the following theorem, it is established that the PLI weights as given in (4.1)

do generalize linear interpolation by satisfying the linear interpolation equations.

Theorem 9 Let Xj ∈ 0, 1d for all j = 1 to 2d, and X ∈ [0, 1]d.
Then the PLI weights,

wj(X,X1, X2, . . . , Xk) =
d∏
m=1

‖1−Xj[m]−X[m]‖ (4.2)

satisfy the linear interpolation constraints,

C1) wj ≥ 0 for all j

C2)
∑k
j=1wj = 1

C3)
∑k
j=1wjXj = X

Proof: C1 clearly holds because each weight is formed as a product of absolute values.

Next condition C2 and condition C3 are shown by an inductive proof. First, it is seen

that C2 and C3 hold for a base case, a rectangular grid of dimension d = 1. Then,

it is shown that if conditions C2 and C3 hold for a rectangular grid of dimension m,

then they will also hold for a dimension of m+ 1.

Base Case: For d = 1, the training samples are (0, Y1) and (1, Y2), and the PLI

weights are w1 = 1 − X and w2 = X. Then 1 − X + X = 1, so condition C2 is

satisfied. Also, (1−X)0 +X(1) = X, so condition C3 is satisfied.

CHAPTER 4. LIME AND REGULAR GRIDS 104

Inductive Step: Assume that the PLI weights satisfy conditions C2 and C3 for d

dimensions, then we show that they will also satisfy conditions C2 and C3 for d + 1

dimensions.

Specifically, assume that conditions C2 and C3 hold as follows,

k∑
i=1

d∏
m=1

‖1−Xi[m]−X[m]‖ = 1

k∑
i=1

d∏
m=1

‖1−Xi[m]−X[m]‖Xi = X

Next, consider the corresponding d + 1-dimensional situation. Now let the 2k

training samples be denoted Vj = [Xi 0] for j = 1 to k and Vj = [Xi 1] for j = k + 1

to 2k. The test point V ∈ [0, 1]m+1 is defined V [m] = X[m] for m = 1 to d, and the

d+1th component of the vector V can be any point in the closed set, V [d+1] ∈ [0, 1].
It must be shown that condition C2 holds for the d + 1-dimensional case given

that C2 holds for the d-dimensional case.

2k∑
j=1

wj(V, V1, V2, . . . , V2k) =
2k∑
j=1

d+1∏
m=1

‖1− Vj[m]− V [m]‖

=
k∑
j=1

(
d∏
m=1

‖1− Vj[m]− V [m]‖
)
(‖1− Vj[d+ 1]− V [d+ 1]‖)

+
2k∑

j=k+1

(
d∏
m=1

‖1− Vj[m]− V [m]‖
)
(‖1− Vj[d+ 1]− V [d+ 1]‖)

Now, using the relations between Vj and Xi, and between V and X, one can

rewrite the above statement as,

CHAPTER 4. LIME AND REGULAR GRIDS 105

2k∑
j=1

wj(V, V1, V2, . . . , V2k) =

k∑
i=1

(
d∏
m=1

‖1−Xi[m]−X[m]‖
)
(‖1− 0− V [d+ 1]‖)

+
k∑
i=1

(
d∏
m=1

‖1−Xi[m]−X[m]‖
)
(‖1− 1− V [d+ 1]‖)

= [(1− V [d+ 1]) + V [d+ 1]]
[
k∑
i=1

d∏
m=1

‖1−Xi[m]−X[m]‖
]

=
k∑
i=1

d∏
m=1

‖1−Xi[m]−X[m]‖

= 1

where the last step holds because condition C2 was known to hold for d dimensions.

Thus C2 also holds for the d+ 1 dimensional case.

Next, consider condition C3.

2k∑
j=1

wj(V, V1, V2, . . . , V2k)Vj =
2k∑
j=1

d+1∏
m=1

‖1− Vj[m]− V [m]‖Vj

=
k∑
j=1

(
d∏
m=1

‖1− Vj[m]− V [m]‖
)
(1− Vj[d+ 1]− V [d+ 1])Vj

+
2k∑

j=k+1

(
d∏
m=1

‖1− Vj[m]− V [m]‖
)
(1− Vj[d+ 1]− V [d+ 1])Vj

Substitute Xi for Vj as appropriate, and split the equation into two parts, one

equation for the first d components, and another equation for the d+1th component.

The first d components of the above equation can be written

CHAPTER 4. LIME AND REGULAR GRIDS 106

k∑
i=1

(
d∏
m=1

‖1−Xi[m]−X[m]‖
)
(1− V [d+ 1])Xi

+
2k∑
i=1

(
d∏
m=1

‖1−Xi[m]−X[m]‖
)
V [d+ 1]Xi

= [(1− V [d+ 1]) + V [d+ 1]]
[
k∑
i=1

d∏
m=1

‖1−Xi[m]−X[m]‖
]
Xi

=
k∑
i=1

d∏
m=1

‖1−Xi[m]−X[m]‖Xi

=
k∑
i=1

wiXi

= X

Thus one sees that the first d components of the d+1 vector expression
∑2k
j=1wjVj

are equal to the d-dimensional test variable X, and thus also equal to the first d

dimensions of the d+ 1 dimension test variable V .

Now consider the last (d+ 1th) vector component of
∑2k
j=1wjVj,

(
2k∑
j=1

wjVj

)
[d+ 1]

=
k∑
i=1

(
d∏
m=1

‖1−Xi[m]−X[m]‖
)
(1− V [d+ 1])Vi[d+ 1]

+
k∑
i=1

(
d∏
m=1

‖1−Xi[m]−X[m]‖
)
V [d+ 1]Vi+k[d+ 1]

The jth training sample’s d + 1th component value Vj[d + 1] is defined to be

Vj[d + 1] = 0 for j = 1 to k and Vj[d + 1] = 1 for j = k + 1 to 2k. Substituting in

these values yields,

CHAPTER 4. LIME AND REGULAR GRIDS 107

(
2k∑
j=1

wjVj

)
[d+ 1] =

k∑
i=1

(
d∏
m=1

‖1−Xi[m]−X[m]‖
)
V [d+ 1]

= V [d+ 1]
k∑
i=1

(
d∏
m=1

‖1−Xi[m]−X[m]‖
)

= V [d+ 1]
k∑
j=1

wi

= V [d+ 1]

The result is that
∑2k
j=1wjVj yields a vector whose first d components are equiv-

alent to X and whose d+ 1th component is equal to V [d+ 1].

In summary,

2k∑
j=1

wjVj = |X V [d+ 1]|T = V.

Therefore, condition C3 holds.

Then, it has been shown that the PLI weights satisfy the linear interpolation

conditions for the one dimension, and that given that the conditions are satisfied for

d dimensions, then the conditions will remain satisfied for the corresponding d + 1

dimensional problem. In conclusion, the PLI weights satisfy the linear interpolation

equations. q.e.d.

4.4.2 PLI and LIME

In Section 4.4, it was proposed that product linear interpolation (PLI) extends linear

interpolation to a neighborhood of 2d training points that form a rectangular hull

around a test point X in d dimensions. PLI is convenient for interpolating LUT

grids. As previously discussed, for PLI the neighborhood points are at the corners of

a d-dimensional unit cube and the test point X ∈ [0, 1]d.
The following theorem states that of all the weight distributions that exactly

satisfy
∑
j wjXj = X, the PLI weights have the maximum entropy. A corollary after

CHAPTER 4. LIME AND REGULAR GRIDS 108

the theorem establishes that for l1 distortion and λ ≤ some Λ, the LIME weights are

the same as the PLI weights.

Theorem 10 Let Xj ∈ {0, 1}d for all j = 1 to 2d, and X ∈ [0, 1]d. Then the PLI

weight distribution

wj(X,X1, X2, . . . , Xk) =
d∏
m=1

‖1−Xj[m]−X[m]‖

is the weight distribution that solves argmaxw (H(w)|D(w) = 0)

Proof: Recall Theorem 1 discussed previously in Section 3.2.1, which shows that the

maximum entropy weights given a moment constraint D(w) = 0 have an exponential

form. According to the theorem, the weight distribution w∗
j (X) = γe

−αTXj , where

α and γ satisfy conditions C1-C3, uniquely maximizes the entropy given the mean

condition. We will present a γ and α that satisfy these requirements and show that

w∗
j (X) = γe

−αTXj for all j is equivalent to the PLI weights. Thus, the PLI weights

are the maximum entropy weights given the mean constraint D(
∑
j wjXj, X) = 0.

Let

γ =
d∏
m=1

(1−X[m])

and let the mth component of the vector α be as follows,

α[m] = ln

(
X[m]

1−X[m]
)

Substituting γ and α into the equation for the maximum entropy weight distribu-

tion w∗
j (X) = γe

−αTXj yields,

w∗
j (X) =

[
d∏
m=1

(1−X[m])
]
e
∑d

m=1[ln(
X[m]

1−X[m])]Xj [m]

=

[
d∏
m=1

(1−X[m])
][

d∏
m=1

e[ln(
X[m]

1−X[m])]Xj [m]

]

=
d∏
m=1

(1−X[m])
(

X[m]

1−X[m]
)Xj [m]

CHAPTER 4. LIME AND REGULAR GRIDS 109

The neighborhood of training samples Xj is restricted to the vertices of a unit

cube, Xj[m] = {0, 1} for all m. Then Xj[m] acts like a selector in the above weight
equation. If Xj[m] = 1, then that vector component selects X[m]. Or if Xj[m] = 0,

the vector component selects 1−X[m]. Thus this relation can be rewritten as,

w∗
j (X) =

d∏
m=1

‖1−Xj[m]−X[m]‖

Note that the above equation is exactly the formula for the PLI weights. Thus,

a γ and α have been shown for the exponential form that result in the PLI weights.

Thus the PLI weights must be the unique maximum entropy weights given the mean

constraint. q.e.d.

Corollary 3 Let Xj ∈ 0, 1d for all j = 1 to 2d, and X ∈ [0, 1]d. Then the constrained

l1 LIME minimization problem (see Section 3.2.2) has a solution, and let Λ be the re-

ciprocal of the largest Lagrangian multiplier for its solution. If λ ≤ Λ, then a solution

of the l1 LIME minimization problem is equivalent to the PLI weight distribution.

Proof: The constrained l1 solution solves: maximize H(w) such that D(w) = 0, where

D(w) is the l1 distortion. By Theorem 10, the PLI weight distribution is shown to

also solve: maximize H(w) such that D(w) = 0, for any distortion function. Thus

the constrained l1 solution and the PLI distribution must be equivalent.

By Theorem 3, for λ ≤ Λ the solution of the l1 LIME minimization problem is

the same as the solution to the constrained l1 LIME problem.

Then by the transitive property, for λ ≤ Λ, the solution of the l1 LIME minimiza-
tion problem must be equivalent to the PLI weight distribution.

4.4.3 Surfaces fit for regular grids

In this section it is proven that PLI fits a very simple functional form to test points

within a hypercube. Recall that PLI assumes training points at the vertices of a

rectangular polytope, and that without loss of generality for calculating the weights

CHAPTER 4. LIME AND REGULAR GRIDS 110

the feature space can be scaled in each dimension so that the rectangular polytope

becomes a unit hypercube. First, we introduce some notation, then the theorem and

proof, then we show some examples for the two-dimensional case.

Theorem 11 Let the d components of a test point X ∈ [0, 1]d be members of a set

Υ = {X[1], X[2], . . . , X[d]}. Consider the power set P(Υ), which is the set of all 2d

subsets of Υ (including the empty set). Let there be a lexicographical indexing of the

subsets of P(Υ). Let Zi to be the ordinary arithmetic product of the elements in the

ith subset of P(Υ), where the product of the elements of the empty set is defined to

be 1.

Given any test point X ∈ [0, 1]d and training samples (Xj, Yj) for j = 1 to 2d with

Xj ∈ 0, 1d, the surface estimated by PLI has the functional form,

fPLI(X) =
∑
i

aiZi

where Zi is as defined above and ai is some linear combination of the training obser-

vations {Y1, Y2, . . . , Yk}.

Proof: Recall that by definition the PLI weight for the jth training sample Xj is

wj(X) =
d∏
m=1

‖1−Xj[m]−X[m]‖

Since the PLI weights do not depend on shifts, without loss of generality, shift the

feature space so that training point X1 is at the origin. Then the weight on X1 is

w1(X) =
d∏
m=1

‖1−X[m]‖

Since X ∈ [0, 1]d,
w1(X) =

d∏
m=1

(1−X[m])

Expanding the product and re-writing in terms of the random variable Z yields,

w1(X) =
2d∑
i=1

biZi

CHAPTER 4. LIME AND REGULAR GRIDS 111

where bi are nonzero coefficients that depend on some subset of the components of X

and Zi are as defined in the theorem statement.

Note that the other weights can be expanded to yield similar expressions,

wj(X) =
2d∑
i=1

cijZi

where some of the coefficients cij may be zero.

The estimation algorithm then applies the weights to the training observations to

form the estimate

Ŷ =
∑
j

wjYj

=
2d∑
i=1

biZiY1 +
2d∑
j=2

2d∑
i=1

cijZiYj

=
2d∑
i=1

biY1 +
2d∑
j=2

cijYj

Zi
and thus we can conclude that the surface fit has the functional form

fPLI(X) =
2d∑
i=1

aiZi

where ai = biY1 +
∑2d

j=2 cijYj. q.e.d.

Example surfaces fit to a 2D rectangular grid

In this section some examples of surfaces fit to a unit square are given.

The training samples are pairs (X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4) with X1 =

[0, 0], X2 = [1, 0], X3 = [0, 1], X4 = [1, 1].

The test point is X ∈ [0, 1]2.
Then, Z1 = 1, Z2 = X[1], Z3 = X[2], Z4 = X[1]X[2].

CHAPTER 4. LIME AND REGULAR GRIDS 112

The PLI weights are w1 = (1 − X[1])(1 − X[2]), w2 = X[1](1 − X[2]), w3 =

(1−X[1])X[2], and w4 = X[1]X[2].

Then the functional form fit by PLI is

fPLI(X) =
∑
i

aiZi = a1 + a2X[1] + a3X[2] + a4X[1]X[2]

However we know that the estimate at a point X is Ŷ =
∑
j wj(X)Yj. Substituting

in for the weights and equating fPLI(X) and Ŷ , we can solve for a1, a2, a3, and a4 to

find that,

fPLI(X) = Y1 + (Y2 − Y1)X[1] + (Y3 − Y1)X[2] + (Y4 + Y1 − Y2 − Y3)X[1]X[2]

In Figure 4.1, four examples are shown of surfaces fit given different training

observations Y1, Y2, Y3 and Y4 for the corresponding vertices of the unit square.

4.4.4 LIME and PLI for interpolating grids

LIME or PLI may be useful for interpolating grids. PLI is a robust and computa-

tionally efficient way to interpolate points within a grid cell. PLI uses all the grid

vertices, so no searching is needed for a convex hull or near neighbors. The PLI

weights are available in closed form, as shown in Section 4.4.1. PLI will also give

robust estimates for nonlinear data since all the test points are used, and using more

test points means more robustness to additive noise. LIME may offer performance

advantages by relaxing the constraint D(w) = 0, and by allowing smaller, more local

sets of training samples to be used. For example, a ten-dimensional grid has 1024

vertices to each cell. Traditional linear interpolation would use 11 vertices which form

a convex hull around the test point. PLI uses all 1024 vertices. LIME allows any

number of vertices to be used. The LIME computation time may be prohibitive, or

for large grids with small cells, it may be possible to compute all the weights ahead

of time and apply them as appropriate.

An experiment for color management grid interpolation compares tetrahedral in-

terpolation, LIME, and PLI(trilinear). In Section 4.4.6 a simulation shows varying

CHAPTER 4. LIME AND REGULAR GRIDS 113

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
5

6

7

8

9

10

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
5

6

7

8

9

10

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
5

6

7

8

9

10

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
5

10

15

20

Figure 4.1: Example surfaces fit by PLI. Top left: training observations are 5,5,10,5.
Top right: training observations are 5,10, 10,5. Bottom left: training observations
are 5, 10, 5, 10. Bottom right: training observations are 5, 10, 5, 20.

CHAPTER 4. LIME AND REGULAR GRIDS 114

robustness to additive noise. We end with a function approximation over a ten-

dimensional grid cell.

4.4.5 Color grid experiment

We used a data set, courtesy of Dr. Gabriel Marcu of Apple Computer, of 12 × 12

× 12 almost-uniformly sampled data points spanning RGB space sent to an ink jet

printer and printed on plain paper. The CIELAB values of the resultant printer color

patches were then measured under a D50 illuminant. With the exception of the 8

corners of the RGB color cube, we ran a cross-validation experiment where each point

was removed from the set in turn and estimated from the remaining sample points.

We implemented LIME defining the neighborhood based on the number of closest

points to the target point. The LIME implementation used l2 distortion and is further

described in Section 2.11. We experimented with using five through eight nearest

neighbors. The parameter λ was set very low to .001 to make a closer comparison

to tetrahedral interpolation and PLI. Tetrahedral interpolation used the convex hull

made of the four nearest neighbors to form a convex hull. PLI (trilinear interpolation)

uses all 8 vertices.

A standard measure for color error is the l2 norm in CIELAB space, which we refer

to as the ‘error length.’ However, in a visual application such as color transformations,

it is important that the maximum error over the color planes be small. Hence we also

consider the l∞ norm in CIELAB space.

Table 4.2 shows the mean error length and the variance of the error lengths over

the 1720 cross-validated test set. The mean tetrahedral performance is 18% worse

than using LIME with five or six nearest neighbors. Important in this application is

that the variance of the LIME errors is almost half the variance of the tetrahedral

errors, limiting the probability of disturbingly large errors.

Table 4.3 shows the average maximum (over L∗, a∗, b∗) error and the variance of

the maximum error. The tetrahedral average maximum error is 19% worse than the

CHAPTER 4. LIME AND REGULAR GRIDS 115

Mean Error Length Var
tetrahedral 1.50 1.92
LIME w/ 5 nearest 1.28 1.16
LIME w/ 6 nearest 1.27 1.03
LIME w/ 7 nearest 1.34 1.09
PLI 1.38 1.14

Table 4.2: Mean and variance of CIELAB error lengths

Mean l∞ Error Var
tetrahedral 1.29 1.50
LIME w/ 5 nearest 1.08 .86
LIME w/ 6 nearest 1.08 .77
LIME w/ 7 nearest 1.13 .81
PLI 1.16 .86

Table 4.3: Mean and variance of CIELAB l∞ errors

LIME with five or six nearest neighbors. The variance of the tetrahedral interpolation

is almost twice as large, resulting in more large errors with tetrahedral interpolation.

In general, the LIME algorithm is more accurate than tetrahedral interpolation

when relatively large errors occur. This is because LIME is using more information

over the spatial domain, and if the colorspace is changing quickly tetrahedral inter-

polation may not be able to capture the change due to its limited use of the sample

data.

4.4.6 Simulation with additive noise

In practice, noise is always a problem. Theoretical results showing noise robust-

ness were presented in Section 3.4. In this section, a numerical simulation compares

LIME’s robustness to additive noise with least squares fitting for a hyperplane. In

the simulation, the training features are the 8 vertices of a three dimensional unit

cube. The corresponding observations are a linear function of the three dimensional

features: Y = AX, where A = [1 1 1]. The 1000 test samples were sampled uni-

formly throughout the cube. The simulation was run with ten different amounts of

CHAPTER 4. LIME AND REGULAR GRIDS 116

Figure 4.2: Simulation of linear surface with additive noise

independent additive white noise added to the training features, X̃ = X + ε, where

ε ∼ N (0, σ2I), and σ varied from 0 to 1. The corresponding observations were not

infected by noise, Yj = AXj for j = 1 to 8. Estimations were produced by a least-

squares fit of a hyperplane to the data, and by LIME with three different values for

λ, .01, .5, and 10. The results were measures in terms of mean squared error and

plotted in Figure 4.2. Note that no noise was ever added to any test point or training

observation.

Theoretically, one expects noise on the training features to create noisy estimates

that are equivalent to the clean estimates for some point equal to the test point plus

the noise. The simulation bears out these expectations. In particular, the LIME

estimates at high λ weight all of the training points equally, no matter where the

test point is. Thus additive noise on the features does not change the weighting, and

hence the error for high λ stays constant at around .5 despite increasing additive

noise.

The least squares plane fit is the correct model for the underlying relation between

features and observations in this simulation. However, at a high level of added noise

CHAPTER 4. LIME AND REGULAR GRIDS 117

d=5 dimensions d=10 dimensions
LIME w/ d+1 nearest neighbors .0656 .0732
LIME w/ minimum convex hull .0445 .0220
PLI .0443 .0220
Linear regression over grid cell .0519 .0251
Ridge regression over grid cell, k= 3.5(best k) .0471 .0247

Table 4.4: Mean absolute value errors for approximating the square root of the sum
of the feature dimensions

even using the correct model does not perform as well as LIME with a relatively large

λ (or equivalently in the limit as λ→ ∞, k-NN).

4.4.7 Functional approximation over a grid cell

Simulations were run to compare using LIME with the nearest d+1 neighbors (which

may or may not form a convex hull), LIME with the nearest k neighbors such that the

test point is contained with the convex hull of the k neighbors, and PLI (2d training

points). For the two variations of LIME, λ = .00001. Traditional linear interpolation

with the smallest convex hull would be an additionally interesting point to compare

with, but it was prohibitively complex to compute the correct training points.

There were 5000 test points for the five-dimensional problem and 1000 test points

for the ten-dimensional problem. The average k to achieve a convex hull was 9.9

nearest neighbors for five dimensions and 59.51 nearest neighbors for ten dimensions.

For ridge regression (over the total grid cell), an additional 1000 test points was

used to train the ridge regression smoothness parameter.

The first function to approximate is

f(x) =

(
d∑
m=1

x[m]

).5
.

The results are shown in Table 4.4. The maximum of the observations f(x) was

2.7894, and the minimum was 1.3134. The mean was 2.2283. The 10-dimensional

PLI approximations were on average only 1% from the truth. For both 5 and 10

dimensions, PLI performs around 10% better than ridge regression.

CHAPTER 4. LIME AND REGULAR GRIDS 118

d=5 dimensions d=10 dimensions
LIME w/ d+1 nearest neighbors .0559 .0569
LIME w/ minimum convex hull .0420 .0271
PLI .0424 .0276
Linear regression over grid cell .0484 .0304
Ridge regression over grid cell .0469 .0303

Table 4.5: Mean absolute value errors for approximating the log of the sum of the
feature dimensions

For the next functional approximation, the function to approximate is

f(x) = log

(
1 +

d∑
m=1

x[m]

)
.

The observations f(x) ranged from 1.2157 to 2.1478, with a mean of 1.7799. As

shown in Table 4.5, ten-dimensional PLI approximations were on average within 2%

of the truth. Again, the PLI estimates are around 10% better than ridge regression.

These results show that using LIME or PLI, good results for grid interpolations

can be obtained without searching for a minimum convex hull.

Chapter 5

More experiments and simulations

Data is always a powerful

impetus for making decisions.

Richard Moran

The ‘No Free Lunch’ theorem [31] of machine learning states that when classi-

fying or estimating the unknown, no one method will always work best. Certainly

though, some methods work better than others. In this chapter we consider a few

more experiments and simulations to evaluate and understand the performance of

the LIME algorithm. First, there is a Gauss mixture simulation that looks at rate of

convergence. Then we present a start-to-finish classification application for pipeline

integrity verification [94]. There are also two standard datasets included, a vowel

recognition dataset and a medical diagnosis dataset.

The LIME algorithm performs competitively throughout, and often makes rather

different decisions than other comparable algorithms. Hybrid classification systems

which use multiple classifiers have been shown to be useful [100], [71], [80], [46], [95],

and LIME may be able to add to performance when used in conjunction with other

classifiers.

119

CHAPTER 5. MORE EXPERIMENTS AND SIMULATIONS 120

5.1 Rate of convergence

In practice, the actual rate of convergence as a function of training data is impor-

tant. Practitioners are often interested in the most ‘bang for the buck’ in terms of

an algorithm that provides the lowest error rates for a given amount of training data.

Further, the expected marginal value of obtaining more training data may help deter-

mine how much more training data is obtained. The rate of convergence may provide

insight into these issues. A number of authors have looked at rates of convergence

based on large-deviations theory or other techniques; the book [30] provides a good

review of results. Some research has gone into understanding how sample size affects

accuracy, including [103] and [104]. For the nearest neighbor algorithm, Flunking and

Hummers [36] decompose the deviation from the asymptotic error into functions of

sample size, metric, dimensionality, and underlying distribution.

In Section 2.7 we compared rates of convergence on a two class Kohonen simula-

tion. The next Gauss mixture simulation also compares rates of convergence.

Consider a two class problem in ten dimensions. Each class is equally likely and

each class is a mixture of five equally likely Gaussians. For each dimension of each

Gaussian, its mean µ and its standard deviation σ were independently from a uniform

distribution on [0,1]. Training and test points were independently drawn from the

Gauss mixture distribution. In Figure 5.1, classification accuracy is plotted against an

increasing number of training samples, from 50 to 150,000 samples. The classification

accuracy is the empirical accuracy of the same two thousand test points classified

with the increasing number of training samples. Cost of classification error was one

for both cases.

For each training sample size n, the size k of the neighborhood was optimized for

each algorithm independently. The optimization for the neighborhood size k was done

using the n training samples and minimizing the empirical error on an additional 2000

points sampled from the Gauss mixture. For LIME, the λ parameter was optimized to

be λ = .5 by minimizing the empirical error on the 2000 points with the neighborhood

size was set at k = 50 and using 1000 training samples. The parameter λ was held

constant at .5 throughout the simulation. Thus, only the parameter k was tuned for

CHAPTER 5. MORE EXPERIMENTS AND SIMULATIONS 121

3 4 5 6 7 8 9 10 11 12
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Natural log of the training data set

M
ea

n
er

ro
r

ra
te

Bayes’ error

LDA

tricube

k−NN

LIME

Figure 5.1: Gauss mixture simulation with increasing training data

each algorithm as n changed.

5.2 Pipeline damage detection

Natural gas pipelines in the North Sea and on land in continental Europe are aging and

are beginning to show signs of corrosion and decay. Monitoring the pipeline integrity

can avert costly leaks and speed repairs in the event of an accident. Currently,

the primary technology for inspecting these pipelines is magnetic flux detectors [6].

Such inspections are expensive, difficult, and at times inaccurate and dangerous.

CHAPTER 5. MORE EXPERIMENTS AND SIMULATIONS 122

A new optical inspection technology has been developed by Norsk Elektro Optikk

(NEO) which shuttles a laser camera through the pipelines storing images of the

inner walls of the entire pipeline. It is inefficient to manually analyze the resulting

kilometers of data. A goal is to develop an automatic system for analyzing the images

and identifying anomalous events, thus providing information on the overall pipeline

integrity and areas of the pipeline in need of repair.

We designed an image processing and classification
Normal 43

Osmosis blisters 20

Scratches 14

Corrosion dots 17

Vertical welds 20

Weld cavity 19

Welds Too Close 16

Weld 20

Grinder marks 20

MFL marks 13

Corrosion blisters 11

Single dots 15

Table 5.1: Relative fre-

quencies of the twelve

pipeline event classes

method to identify abnormal events. Non-overlapping im-

age blocks are classified into twelve different categories:

normal, black line, grinder marks, magnetic flux leakage

inspector marks, single dots, small black corrosion blis-

ters, osmosis blisters, corrosion dots, longitudinal welds,

field joint, cavity at a weld and longitudinal weld too close

to field joints. Results compare different types of statis-

tical classifiers. The features extracted from the pipeline

image are designed to mimic the features humans use to

identify the different classes. Difficulties include the large

number of classes, the uneven costs associated with dif-

ferent errors, and training on a limited amount of expert

classified data. The classification results show that this

can be a useful tool for pipeline monitoring.

This project was joint work with Deirdre O’Brien, and

the features, results, and details reported are due in part to her. NEO engineers were,

of course, instrumental in providing data, expertise, and financial support. Further

information on the project can be found in [94].

The original dataset is kilometers of JPEG compressed image data. These are bro-

ken into 96 × 128 pixel images, each representing sections of pipeline approximately

96 mm × 128 mm. Examples of the images are shown in Figure 5.2, the background

vertical stripes in the images are due primarily to variations on the laser intensity

across the line imaged by the camera.

CHAPTER 5. MORE EXPERIMENTS AND SIMULATIONS 123

Figure 5.2: Example 96 × 128 pipeline images. Left to right, top to bottom: normal,
normal, MFL mark, grinder mark, field joint, longitudinal weld, welds too close, weld
cavity, black line, single dot, corrosion blisters, osmosis blisters.

CHAPTER 5. MORE EXPERIMENTS AND SIMULATIONS 124

A hand-labelled database was created of twelve classes that were of interest to

NEO. As shown in Table 5.1, the database contains an uneven spread of 228 images,

ranging from 11 corrosion blister images to 43 normal images. For many events, the

table represents the maximum number of examples of those events found.

5.2.1 Features

Features based on raw pixel values, DCT coefficients, and wavelet coefficients for 8 ×
8 blocks were explored early in the project, but did not capture enough information

to achieve useful classification results. The events of interest generally occupied areas

significantly larger than 8 × 8 blocks. Also, the artifacts due to laser variation and

those resulting from the JPEG compression detracted from the information that could

be extracted using this small blocksize.

Nonlinear, statistical, and morphological features were found to yield better dif-

ferentiation between classes. Designing specific features for this particular application

allowed prior knowledge of the artifact appearance to be incorporated into the fea-

tures. This reduced the expected overfitting due to the small dataset.

The features used fall into two categories – those designed using the constrast

feature of gray-level co-occurrence matrices (GLCM) [47] and those which we term

Human Visual Discriminant (HVD) features.

Six GLCM contrast features were designed. First, local contrast was measured

as the squared differences of pixels vertically separated by 4 mm or 8 mm, averaged

over 4 × 4 mm2 image blocks. Then, regions of high contrast were identified, such

that the local contrast is greater than a constant multiple of the image variance. Six

features were extracted which describe the total area and number of these connected

high contrast areas as well as the size of the largest such area.

The 16 HVD features seek to mimic the features used in manually distinguishing

between classes. The first feature measured the standard deviation of image pixels.

Nine features were extracted which capture information about the size, shape and

mean graylevel of relatively dark or bright areas. Dark and bright pixels were iden-

tified as those with graylevels of a number of standard deviations from the image

CHAPTER 5. MORE EXPERIMENTS AND SIMULATIONS 125

mean.

Other features were designed to specifically differentiate certain classes. To rec-

ognize blisters, a feature calculates the number of 8× 8 blocks within the image with
a range larger than a given threshold. To identify horizontal artifacts such as field

joints, the average difference between the graylevel averages of each side of a horizon-

tal boundary that sweeps down the image was included. To help find corrosion dots,

one feature counts how many 4 × 4 blocks have means that are significantly darker
than the column mean. Other features based on vertical strips through the image

measure the mean of the 4 mm wide column standard deviations and the standard

deviation of the mean of 2 mm wide columns as well as the maximum value of the

image mean minus the mean of a 2 mm wide column. These final features are used

to identify vertical artifacts such as longitudinal welds.

Each of these features was normalized to have unit variance. Unit variance feature

scaling may not be the optimum relative scaling for the features. It is likely that

certain features are better discriminants while others are noisy or less informative.

One way to generate improved feature scalings is to use the feature importance metric

incorporated in the CART (classification and regression trees [14]) algorithm. CART

seeks to build a tree that minimizes the misclassification error. The importance of a

particular feature can be measured by how closely a tree built using only that feature

matches the best tree found by CART. Scaling the univariate features by CART’s

feature importance measures significantly improved the classification performance.

5.2.2 Classification algorithms compared

Four classifiers were compared, linear discriminant analysis (LDA) [54], regular-

ized quadratic discriminant analysis (QDA) [54], multiple additive regression trees

(MART) [54], and LIME. MART is a boosted version of a classification tree 1. To

incorporate a cost in LDA and regularized QDA, the methods were considered as

model fitting algorithms. LDA fits a Gaussian to each class with each class having

the same covariance, regularized QDA allows this covariance to be class dependent.

1MART was implemented using code available at http://www-stat.stanford.edu/ jhf/

CHAPTER 5. MORE EXPERIMENTS AND SIMULATIONS 126

Using this model, the probability that a test sample belonged X to class j was esti-

mated, P̂j(X). Given a cost matrix C, where C(i, j) is the cost of assigning a sample

to class j when it belongs to class i, the assigned class was then

argmin
ŷ

∑
j

PjC(ŷ, j)

Each image was classified into one of the twelve classes by each classification

algorithm. Due to the small ratio of labelled data (228 images) to number of classes

(12), leave-one-out cross-validation was chosen to compare classification algorithms.

For each sampleX, any classifier parameters (including the feature scalings calculated

from CART) were estimated based on the other 227 sample points and the estimated

class of X was determined using these parameters. The results shown in Table 5.2

and Table 5.3 are the average performance over all 228 images.

Images from the pipeline are overwhelmingly ‘normal’. The hand-labelled database

is more evenly distributed over the classes. Using either density as a prior resulted

in classifications skewed towards normal. The error rates reported in this paper are

based instead on a uniform prior.

The consequences of different class mislabellings vary significantly. Failing to

detect cavities may seriously compromise the future integrity of pipeline, however

the ramifications of confusing osmosis and corrosion blisters are much less significant.

The misclassification costs were estimated by the researchers at NEO and this cost

matrix was used in all classifiers except for the column titled LIME (0-1 cost) which

was run with equal (0-1) costs for all classes to highlight the effect of NEO’s cost

matrix. Misclassifying images of classes A (normal), E (longitudinal welds), H (field

joints), I (grinder marks) and J (MLF marks) generally had small costs, whereas

misclassifying images of classes F (weld cavity) and G (welds too close) generally had

high costs. For the other classes (which we call medium cost classes) the cost varies

significantly dependent on how the image is misclassified.

In Table 5.2 the average costs per class (calculated using NEO’s cost matrix)

are listed for each algorithm. This information tells us that if there is an event

of a particular class, the average cost is how much cost we expect to incur by the

algorithm’s estimation. Given the small dataset and misclassification cost ranging

CHAPTER 5. MORE EXPERIMENTS AND SIMULATIONS 127

from 5 to 600, a small number of serious errors causes a significant increase in average

cost.

The different algorithms perform quite differently. MART and LIME were more

strongly influenced by the cost matrix than the Gaussian methods (LDA and reg-

ularized QDA). In the low cost classes, listed above, LDA, regularized QDA and

LIME (0-1 cost) generally perform better than MART and LIME. Conversely, for the

medium and high cost classes MART and LIME outperformed, often significantly,

the other methods. On average, the performance of the LIME is better than that

of regularized QDA but for a particular task or goal, one classification algorithm

may be more appropriate than another. Lower error rates may be obtainable with

a hybrid classifier incorporating the opinions of a number of different classification

methods [100].

MART LDA Reg. QDA LIME LIME
(0-1 cost)

A 20.93 0.23 0.70 9.65 0.81
B 11.50 14.75 5.00 5.75 0.00
C 16.79 28.57 37.50 11.79 37.14
D 6.18 117.65 52.94 29.41 47.06
E 12.00 2.50 0.00 1.50 1.25
F 7.89 99.47 17.37 9.47 15.79
G 37.50 161.88 50.00 25.00 74.69
H 27.50 0.00 2.50 25.00 5.00
I 32.00 0.75 0.25 20.75 1.25
J 23.85 3.08 1.54 20.77 1.92
K 20.45 27.27 72.73 20.91 18.18
L 18.00 78.00 41.33 6.00 46.67
Mean
cost

19.55 44.51 23.49 15.50 20.81

Table 5.2: Mean expected cost for an event of a given class

In Table 5.3 the recall per class is listed for each algorithm. Recall for class Y

is the number of images that belong to class Y that were correctly labelled. This

table clearly shows the recall dropping for low cost events when NEO’s cost matrix

is used in the LIME estimation instead of LIME with 0-1 costs. LIME classification

CHAPTER 5. MORE EXPERIMENTS AND SIMULATIONS 128

using 0-1 cost has higher recall than LIME on all but two events (and significantly

higher average recall). The misclassifications by LIME with 0-1 cost were expensive

according to the NEO cost matrix, however. Both MART and LIME misclassify all

samples from class J, but given the low cost of these misclassifications these algorithms

still maintain a low average cost.

MART LDA Reg. QDA LIME LIME
(0-1 cost)

A 0.05 0.98 0.91 0.44 0.91
B 0.40 0.90 0.95 0.65 1.00
C 0.07 0.64 0.50 0.21 0.50
D 0.76 0.53 0.82 0.88 0.82
E 0.60 0.90 1.00 0.85 0.95
F 0.74 0.74 0.89 0.68 0.95
G 0.75 0.63 0.69 0.75 0.75
H 0.45 1.00 0.95 0.50 0.90
I 0.10 0.90 0.95 0.15 0.85
J 0.00 0.69 0.85 0.00 0.77
K 0.45 0.82 0.36 0.73 0.82
L 0.07 0.00 0.33 0.47 0.33
Mean
Re-
call

0.37 0.73 0.77 0.53 0.80

Table 5.3: Mean recall for an event of a given class

More data of critical events such as welds too close could alter the balance of the

results. More useful results might also be had by changing the problem from a twelve

class problem to a ‘normal’ vs. ‘abnormal’ problem. The abnormal images could be

fed to a human discriminator.

Due to the different abilities of each classifier, a majority rule or class-expertise

hybrid classifier might achieve lower expected costs. Other researchers have found

combining classifiers to be useful [71], [80], [46], [95]. For example, such a system

might use Reg. QDA, LIME (0-1 cost) and LIME. If two of the classifiers agree to

the class then the majority class is chosen. If no two classifiers agreed, then the LIME

result could be used (with the assumption that although it might be wrong, it will

provide on average the least costly misclassification).

CHAPTER 5. MORE EXPERIMENTS AND SIMULATIONS 129

5.3 Vowel data set

The next experiment is a vowel classification test based on a benchmark dataset

available from the Information and Computer Science Department at the University

of California, Irvine [12]. The training data consists of 528 data points from eight

mixed-gender speakers saying eleven different words and six data points taken from

the steady-state vowel of each word. The test data is composed of 462 data points

from seven speakers. The eleven words (classes) are the steady-state vowels of British

English: hid, hId, hEd, hAd, hYd, had, hOd, hod, hUd, hud, hed.

The speech sig-
Classification method Error rate

Single-layer Neural Network 67%

Linear Discriminant Analysis 54%

Multi-layer Neural Network 49%

CART (decision tree) 46%

K-Nearest Neighbor 44%

Flexible Discriminant Analysis 39%

LIME 38%

Equal weight on all points in LIME neighborhood 39%

Table 5.4: Error rates for classifiers on the vowel dataset.

nals were low pass

filtered at 4.7 kHz

and then passed

through a 12 bit

ADC with a 10

kHz sampling rate.

Six 512 sample Ham-

ming windowed seg-

ments were taken

from the steady

part of each word’s vowel and then analyzed with twelfth order linear predictive

analysis. Reflection coefficients were used to calculate ten log area parameters which

are entered as a ten dimensional data point to the classifier.

For each test point, its neighborhood was defined as the subset of the training

data that falls within a radius of

(1 + α)

(
min
j

‖Xj −X‖
)
,

where the parameter α was chosen to provide the best classification rate on the train-

ing data via cross-validation. The cross-validation was eight-fold with each speaker

removed from the training set in turn and the remaining data used as the test set.

We conjecture that using an adaptive α neighborhood may be more appropriate for

CHAPTER 5. MORE EXPERIMENTS AND SIMULATIONS 130

datasets like this on in which over 80% of the test points fall outside the convex hull

of the training data.

For the results described in Table 5.4, α = .24 and λ was found to be 10. The

results for the other algorithms come from [54], and exact implementation details are

unknown.

LIME with λ = 10 heavily emphasizes maximizing the entropy with little regard

for the distortion. In the table we include the results for equal weightings over the

LIME neighborhood, and find the results are very close. Then the low classification

error of LIME on this test set is very much a function of neighborhood.

5.4 Pima Indians and diabetes

The Pima Indian diabetes dataset is another benchmark dataset available from the In-

formation and Computer Science Department at the University of California, Irvine [12].

The Pima Indian dataset has 768 instances of eight features (none missing) and two

categories denoting whether each person had diabetes or not. All patients were fe-

males at least 21 years old and of Pima Indian heritage. The eight features are:

1. Number of times pregnant

2. Plasma glucose concentration at 2 hours in an oral glucose tolerance test

3. Diastolic blood pressure (mm Hg)

4. Triceps skin fold thickness (mm)

5. 2-Hour serum insulin (mu U/ml)

6. Body mass index (weight in kg/(height in m)2)

7. Diabetes pedigree function

8. Age (years)

An expert in diabetes might have some insight into how to scale the features with

respect to each other. Or, one might try cross-validation on a training set to scale the

features. However, the object of considering this dataset is to show the rough-and-

ready application of LIME. Each feature was modelled by a Gaussian distribution

with the data’s mean µ and standard deviation σ of each feature calculated over the

CHAPTER 5. MORE EXPERIMENTS AND SIMULATIONS 131

entire data set, and scaled each feature accordingly:

x′i[m] = (xi[m]− µ[m]) /σ[m]
A full-blown machine learning study was done in 1988 for this dataset [117]. The

researchers developed a neural-net style algorithm called ADAP, specifically for this

feature set.

The first 576 instances formed the training set, the last 192 instances the test set.

In the training set there were 198 positive cases (34.38 %) and in the test set there

were 70 positive cases (36.46%).

A two-dimensional joint search was performed for the λ and k nearest-neighbors

neighborhood parameters using leave-one-out cross-validation for LIME. We also used

leave-one-out cross-validation to choose the k parameter for the k-NN algorithm and

for determining the extent of the tricube neighborhood (k nearest-neighbors neighbor-

hood). All algorithms (except ADAP) were evaluated on the normalized features. For

LIME, cross-validation gave a maximum performance on the training set of 72.22%

for λ = 1 and k = 34. Training set cross-validation for k-NN yielded a maximum

accuracy of 71.70% for k = 35. The tricube kernel yielded maximum accuracy of

69.27% at k = 24 on the training data.

The cost of misdiagnosis was con-
Classification method Error rate

Linear Discriminant Analysis 30%

K-Nearest Neighbor 34%

1-Nearest Neighbor 29%

Tricube Kernel 23%

ADAP 24%

LIME 21%

Table 5.5: Comparison of classifiers on the

Pima Indian Diabetes dataset

sidered equal for false positive and false

negative. However, as in many medi-

cal experiments, the community may

feel that different costs are more ap-

propriate.

Chapter 6

Principles of inference

As a rule, probable inference is more like

measuring smoke than counting children. . .

Richard Cox

A practical engineering problem is to assign a pmf q over mutually exclusive

events without enough information. There may be a prior estimate p for q, or some

information about q in the form of constraints or known moments. For example,

in the LIME algorithm we seek a probability distribution over the training samples

that minimizes distortion; this constraint may lead to non-unique solutions and we

use the principle of maximum entropy (or minimum relative entropy) to select one

solution. The general problem of estimating a distribution q given prior information

or a model does not have a unique solution, and requires extra-situational principles

to guide us. Some thinkers claim that the problem is in certain cases unresolvable. In

practice, one can judge inductive estimates by their probabilistic success or behavior

in limiting cases.

In this chapter, we first review the simple but controversial principle of insufficient

reason. Next comes the more general principle of minimum relative entropy, of which

the principle of maximum entropy is a special case. Lastly, we consider a ‘principle

of minimum expected risk,’ which may yield robust estimates.

132

CHAPTER 6. PRINCIPLES OF INFERENCE 133

Some researchers have been concerned that assigning probabilities to events with-

out full knowledge is undefined or ill-advised. Cox balks [26], ‘As a rule, probable

inference is more like measuring smoke than counting children, in that the proba-

bilities themselves are not well-defined.’ Lucas asks [83], ‘How can one base any

conclusions on ignorance?’

The perspective taken here is that the estimate q is a current best working guess,

guided by principles of inference. Probability distributions may be profitably used

to represent our uncertain understanding of a situation without making any claim to

truly represent an underlying random variable. In this work, we consider a probability

distribution assigned to events to represent the relative bets that one would make;

this view is fairly traditional in information theory [25], and acceptable given that so

much of the practical application of probability is by gamblers, investors, and insurers.

From this viewpoint, those thinkers who claim that it is not possible to know the true

distribution (unarguable) or that the distribution may be, in some sense ill-defined,

are simply not very sporting.

6.1 Principle of insufficient reason

The oldest principle of inference is the principle of insufficient reason, which suggests

that one assign equal probabilities to events that, to one’s knowledge, are equal:

If k mutually exclusive and exhaustive events are possible, but there is no evidence

to expect one event more than another, then the a priori probability distribution should

represent the symmetry of ignorance, and the a priori probability should be 1/k for

each event.

Keynes [73] called it the principle of indifference. Lucas [83] refers to it as the

principle of equiprobability, and argues for its validity, ‘The principle of equiprobability

is not a principle but a presumption; not a principle of indifference, but a demand

that differences, if there are any, shall be accounted for.’

Although Lucas’s defense of the principle is cogent, the difficulty of applying the

principle has led to controversy and paradoxes.

The principle of insufficient reason is sometimes attributed to Laplace, or cited as a

CHAPTER 6. PRINCIPLES OF INFERENCE 134

Laplacian viewpoint. However, in Laplace’s A Philosophical Essay on Probability [81],

he lays out ten general principles of probability without explicitly stating a principle

of equiprobability. In fact, he seems to take the idea for granted, clearly applying it

throughout the work in examples, and early in the work (page 7 of the fifth edition)

Laplace states the notion as a key part of his theory of chance:

La théorie des hasards consiste à réduire tous les évènements du même gare, à un

certain nombre de cas également possibles, c’est-à-dire, tels que nous soyons également

indécis sur leur existence; et à déterminer le nombre de cas favorables à l’evenement

dont on cherche la probabilité.

An almost literal translation was done in 1902 [122]:

The theory of chance consists in reducing all the events of the same kind to a

certain number of cases equally possible, that is to say, to such as we may be equally

undecided about in regard to their existence, and in determining the number of cases

favorable to the event whose probability is sought.

The relevant phrase here is, ‘de cas egalement possibles, c’est-a-dire, tels que nous

soyons egalement indecis sur leur existence’. In English, ‘of cases equally possible, that

is to say, to such as we may be equally undecided about in regard to their existence’.

Thus Laplace equates equally possible events and events about which we are equally

undecided. Equal indecision implies equal probability, and equal probability repre-

sents equal indecision.

The principle of insufficient reason has caused a fair amount of controversy over

the years, mostly due to the difficulty in defining ‘equal events’ for a given problem.

For example, a famous reasoning against the principle of insufficient reason comes

from Carnap [19]. Suppose there is an urn with an unknown number of blue, red,

and yellow balls. What is the probability of drawing a blue ball? Carnap presents

a paradox, should the probability of drawing a blue ball should be equal to the

probability of not drawing a blue ball, thus the probability equals 1/2? Then the

probability of drawing a red ball or yellow ball can be similarly reasoned to be 1/2.

Clearly, this reasoning ends in a contradiction.

However, since there is knowledge about three colors of balls, ‘blue’ and ‘not blue’

are not the most equal events known. Equal colors are more equal events and should

CHAPTER 6. PRINCIPLES OF INFERENCE 135

get equal probabilities, resulting in a probability of 1/3 for each color. Properly

enumerating the sample space should decrease the risk of misapplication.

For continuous sample spaces, the continuous analogue of the principle of insuf-

ficient reason suffers also a lack of invariance to nonlinear transformations. Again,

defining the ‘equal events’ clearly should dispel most confusion. A classic example of

the need for well-defined equal events is Bertrand’s paradox (a recent presentation is

found in [31]. In the paradox, a chord is drawn at random in a circle, and the question

is ‘What is the probability that the chord is longer than a side of the inscribed equi-

lateral triangle?’ Attempting to solve the problem by applying the equiprobability

principle it quickly becomes clear that the problem is not well-defined enough to use

the principle; one must know or guess how the chord is drawn at random, whether a

midpoint is chosen randomly, or the ends are chosen randomly, etc.

For continuous distributions, a uniform prior may be nonsensical. Consider, for

example, a parametric distribution with an unknown parameter θ ∈ R. Jeffreys’
proposed [63] that one construct a prior which is flat for a function φ(θ) whose Fisher

Information is constant. This leads to a prior distribution for θ proportional to I .5θ ,

where I is the Fisher Information. The prior for θ then depends on the parameterized

form of the distribution being estimated.

In conclusion, to apply the principle of insufficient reason one must consciously

and carefully define events considered equal.

6.2 Principle of minimum relative entropy

The principle of minimum relative entropy was introduced by Kullback [79] and states

that, given a prior p over a set of events x ∈ Ω, one should choose the pmf that

minimizes the relative information

D(q‖p) =
∑
x∈Ω

q(x) log(
q(x)

p(x)
)

over all feasible pmfs q such that any other constraints concerning q are satisfied.

A prior p with probablity 0 over any event will lead to difficulties, this can be

CHAPTER 6. PRINCIPLES OF INFERENCE 136

avoided by not using priors that have zero probability for any event. In cases where

there is no prior p, the prior is often assumed to be uniform, in which case the

principle is called the principle of maximum entropy. Consideration of distributions

with maximum entropy for some class or some constraint reportedly has its roots in

physics as early as 1937 [113], but it was Jaynes who in 1957 proposed maximizing

entropy as a principle for solving inference problems. The rationale for the principle of

maximum entropy springs from the principle of insufficient reason, that events should

be treated equally if there is no information. When some information is available

(e.g. a moment constraint) then the principle of maximum entropy recommends that

events should be treated as equally as possible after considering the given information.

The principles of minimum relative entropy and maximum entropy have a number

of nice properties, explored in such works as [79], [25], [114], [61], [127]. For coding

applications, the principle can be interpreted as minimizing the extra bits needed to

code a source p given an optimal lossless code for a source q.

The minimum relative entropy solution is the exponential solution with maximum

likelihood [79](pg. 94). Moreover, the maximum entropy solution is the maximum

likelihood solution over all distribution families if it is assumed that no event is known

to be more probable than any another event [127](see the Appendix for a sketch of

this result).

Uniqueness of the solution

Maximizing entropy or minimizing relative entropy over a closed compact set is a

convex optimization problem and thus yields a unique solution.

However, the solutions are not unique in the sense that the maximization (or

minimization) of other measures may result in the same distribution. In fact, it has

been proven that the ‘generalized entropies’ proposed by Havrda-Charvat, Renyi,

Behara-Chawla, and Sharma-Mittal, are equivalent to Shannon’s entropy in terms of

the probabilistic distribution obtained by maximizing those measures under a given

set of fairly general constraints[67].

Likewise, there are cases where the minimum variance or least-norm solution will

be equivalent to the maximum entropy solution.

CHAPTER 6. PRINCIPLES OF INFERENCE 137

Not a panacea

The principle of minimum relative entropy may not always lead to the best estimate

of q. The principle assumes that there is one prior or model that one has significant

faith in. What if there is more than one model one thinks likely? Or what if there is

a prior, but the new evidence is much more important?

The strength of the principle of minimum relative-entropy is precariously depen-

dent on the strength of the prior, yet provides no means to mathematically commu-

nicate the amount of faith we have in our prior. This defect is also pointed out by

Jaynes in his unfinished work [62].

The principle or minimum relative entropy has been developed axiomatically, in-

cluding work by Shore and Johnson [113], and Csiszár [28]. However, when those

axiomatic assumptions fail to hold, the principle may not be appropriate.

One of Csiszár’s axioms [28] is consistency. Csiszár suggests that if a selection

rule (such as the principle of minimum relative entropy) chooses a solution s∗ from a

set of possible solutions S, and then, due to new information, the feasible set shrinks

to S ′, that if the original solution s∗ ∈ S ′ then it should remain the solution.

Yet there are times when new information may suggest that we change our solution

even if it is still feasible.

For example, consider Carnap’s problem discussed earlier. Let the original infor-

mation be that there is a bag with blue balls and some not-blue balls. Based on this

information, one might estimate that the probability of drawing a blue ball is 1/2.

New information arrives that there are three colors of balls in the bag: blue, yellow,

and red. Does Csiszár’s axiom of consistency make sense? Even though the original

estimate is feasible, it no longer seems like a good bet.

Consider another example. A coin is found. Based on good faith in the govern-

ment, one estimates the probability of heads to be, a priori, 1/2. After 100 flips have

yielded 90 heads and 10 tails, what is the new estimate? The original estimate is still

feasible, and a policy satisfying Csiszár’s aim of consistency would retain the original

estimate.

In cases such as the above two examples, a different principle of inference may be

in order.

CHAPTER 6. PRINCIPLES OF INFERENCE 138

6.3 The principle of minimum expected risk

In this section it is proposed that in some cases a better principle for estimating an

unknown pmf is to minimize the expected risk. In particular, minimizing the expected

coding risk is a relevant goal for some applications.

Estimate an unknown pmf as to be that pmf q̂ which minimizes the expected

distortion over all the feasible distributions p, where each feasible distribution has

probability f(p):

q̂ = argmin
q
Ep[D(p, q)] (6.1)

If information is known about the relative probability of each feasible distribution

p, then that information forms the probability distribution over the feasible distribu-

tions, f(p). For example, given observed data x drawn from the pmf to be estimated,

one might use the likelihood f(p) = P (x|p). Or if there was a set of priors, the
posterior probability could be used, f(p) = P (p|x).
If there is no information to favor one possible pmf over another, we propose

invoking the principle of insufficient reason, and supposing that all of the feasible

distributions p are equally likely a priori. It might be appropriate to minimize any of

a variety of distortion measures (such as mean-squared error) for general functions,

but for probability distributions minimizing the relative entropy leads to straight-

forward interpretations:

q̂ = argmin
q
Ep[D(p‖q)] (6.2)

Then the estimated pmf q̂ minimizes the expected inefficiency of assuming the

distribution is q̂ when it was really some distribution p. For instance, if the probability

distribution is being used to build a code, then note that D(p||q̂) is the number of
extra bits needed to code a random variable actually drawn from distribution p.

Then the principle leads to the distribution q̂ which minimizes the expected extra

bits needed for coding.

The principle of minimum expected risk, estimates the unknown pmf to be a pmf

that is a sort of ‘center’ of all the possible pmfs, weighted by the probability of each

CHAPTER 6. PRINCIPLES OF INFERENCE 139

pmf. In quantization terminology, one can say that the estimated pmf forms a Lloyd

centroid for the pmf space.

Consider again the example in which one would like to estimate the probability of

flipping heads or tails of a newfound coin. With unshaken faith, one takes the prior

p to be {1/2, 1/2)}. Information becomes available that ‘the coin is biased towards
heads.’ This is a constraint that the probability of heads must be greater than 1/2.

The true pmf must fall in the open set defined by the endpoints: ({1/2, 1/2}, {1, 0}].
Applying the principle of minimum relative entropy yields {1/2+ε, 1/2−ε} where

ε→ 0. Since the prior is uniform, the principle of maximum entropy yields the same

result. Yet given that the information is ‘the coin is biased towards heads’, the solution

proposed by the principle of minimum relative entropy rings false. Instead, one has

no information other than to assume that all feasible distributions are equally likely,

satisfying the assumptions of the principle of minimal expected risk. The principle of

minimum expected risk yields the estimate {3/4, 1/4}.
In his unfinished work [62], Jaynes notes that it is difficult to communicate math-

ematically how strongly one believes a prior. With this principle it is possible to

express the strength of belief in a prior via the weighting over the priors f(p).

The Bayesian community uses a version of this ‘minimum risk principle’ for esti-

mating parameters for pmfs [72]. For a pmf q(x, θ), the Bayesian Mean Square Error

Estimator is defined as [72] (pages 310-316, 342-350)

θ̂BMMSE =

∫
θf(θ|x)dθ

= argmin
θ̂

∫
(θ − θ̂)2f(θ|x)dθ

where a prior distribution over the θ parameter, f(θ) has yielded a posterior pdf

f(θ|x) based on a new state of knowledge x.
As a general principle, estimating pmfs by minimizing the expected risk may

be a useful in a variety of contexts and applications. Analytical solutions are be

available for simple pmfs (such as Bernoulli random variables). For more complicated

estimations, convex optimization techniques should be usable.

CHAPTER 6. PRINCIPLES OF INFERENCE 140

In comparison, the principle of maximum entropy assumes that all training points

are a priori equally likely to be contributors, and thus should be weighted as equally

as possible. The principle of minimum risk instead assumes (given a uniform prior

f(p)) that all feasible pmfs are equally likely.

For LIME, the intuition was that all training points were equally likely to be

contributors, and thus the principle of minimum relative entropy to the uniform prior

was used. The principle of minimum expected risk could be used instead. In that

case, the linear interpolation equations could be generalized to have as their solution

the pmf q̂ which solves

q̂ = argmin
q
D(

∑
j

qjxj, x) + λEp[D(p‖q)]. (6.3)

6.4 Policy should suit needs

A principle should be applied with full awareness of its assumptions and what the

principle aims to do. In the case of the principle of insufficient reason, there must

be equally natured events and no further information. In the case of the principle

of minimum relative-entropy, the prior should be believed to still be relevant in the

light of the new information. In the case of the principle of minimal expected risk,

the assumption should be satisfied that all the feasible distributions are equally likely,

or that one can specify how they are not equally likely through the distribution over

pmfs f(p).

The literature on maximum entropy, and the related notion of minimal relative

entropy (also known as relative-entropy) is enormous. In the 80’s a conference be-

gan that is dedicated to theory and applications of maximum entropy and Bayesian

methods, called, Maximum Entropy and Bayesian Methods in Science and Engineer-

ing [32]. The principle of maximum entropy has been applied to a wide range of

problems, from astronomical imaging to the distribution of particles among energy

levels [127].

Some applications may be better served by resolving uncertainty with the prin-

ciple of minimum expected risk. However, no one policy will be appropriate for all

CHAPTER 6. PRINCIPLES OF INFERENCE 141

estimations, and one ought to apply a principle of inference with eyes wide open.

Chapter 7

Conclusions

If you persist, you will soon

solve anything at all...

James Thurber

In this work, linear interpolation was extended by using the maximum entropy

principle. Relaxing the linear interpolation equations resulted in a flexible algorithm

for classification or regression, LIME. In Chapter 1, the issues of bias and high di-

mensionality in learning problems were explored. In Chapter 2, LIME was shown

to address these problems and perform significantly better than other standard non-

parametric methods. Theoretical properties of LIME were explored in Chapter 3.

Regression over grids was considered in Chapter 4. The popular interpolation

methods, bilinear and trilinear interpolation, were generalized to any dimensional

grid. The resulting method, termed PLI, was shown to be related to LIME in that

the non-uniqueness of the PLI linear interpolation equations is resolved by the max-

imum entropy criteria. Experiments and simulations showed that PLI could be a

computationally fast and efficient method for multi-dimensional grids.

In Chapter 5, a multi-class pipeline integrity classification application, benchmark

data sets, and a rate of convergence simulation provided more data for evaluating the

LIME algorithm.

142

CHAPTER 7. CONCLUSIONS 143

Maximizing entropy is not the only way to resolve uncertainty. In Chapter 6

featured a closer look at principles of inference, and the principle of maximum entropy

in specific.

This thesis now ends with some summary of the advantages and disadvantages of

LIME and how it may be useful in practice. Lastly, research is by definition never

quite finished, and the last section of this thesis ponders extensions and related ideas.

LIME

LIME has been shown to give different and competitive performance on a number

of datasets. However, LIME is not computationally simple, and may not result in

easily visualized classification boundaries, or easily understood linear surfaces. LIME

has been shown to deal well with unsymmetric distributions of training data and

high dimensional feature spaces. LIME may yield superior error performance in some

applications, but may also be prohibitively difficult, expensive, or ill-suited for real-

time applications. However, processing power and speed is ever on the increase,

making LIME’s complexity a decreasingly important issue.

Hybrid classifiers using a number of different classification algorithms is an active

area of research [100], [71] [80] [46] [95]. LIME approaches statistical learning rather

differently than the discriminant analysis, neural nets, decision trees, or traditional

weighted nearest-neighbor families of methods, and thus may be a valuable algorithm

to incorporate into a hybrid system.

PLI

PLI is related to LIME but restricted to 2d training points at the vertex of a grid

and must solve the linear interpolation equations exactly. On the other hand, there

is a closed form solution for the PLI weights and no neighborhood search must be

done. Also, the surface fit by PLI was shown to have an analytic description. PLI

was shown to work well for interpolating functions over grids. It is an useful and

efficient method for high-dimensional grid applications.

CHAPTER 7. CONCLUSIONS 144

7.1 Extensions

In this work, a ‘vanilla’ version of an algorithm was proposed and developed . Many

of the advanced techniques of supervised learning could be advantageously applied to

the algorithm at hand.

Accuracy would probably be improved by applying state of the art neighborhood

selection techniques [115], [52]. Neighborhood selection can make a significant differ-

ence for nonparametric methods.

The LIME algorithm maximizes the entropy of the weights given some emphasis

on the linear interpolation equations. As discussed in the chapter on principles of

inference, maximizing the entropy is equivalent to minimizing the entropy to a uniform

distribution. A uniform distribution might not be the best prior, or model for the

weights. A kernel that decays with distance may be a better model. Then one could

minimize the relative entropy to such a kernel. However, in high dimensions with

sparse data, almost all points are roughly equally far away, and a kernel may not

result in much better performance.

Adding feature dimensions that are nonlinear transformations of the original fea-

ture dimensions has been useful for machine learning, both for discriminant analysis

(flexible discriminant analysis [53]) and support vector machines [54]. It would be

interesting to explore the impact of such extra feature dimensions for LIME.

In Chapter 3, an analytical exponential form for the LIME weights and consistency

results were given for the l1 distortion. However, the actual implementation used

throughout the thesis was an iterative optimization for l2 distortion. LIME with l1

distortion was not implemented. Empirical l2 results as the size of the training set

grew agreed with the consistency result obtained with l1 distortion. It is expected

that l2 and l1 results would not differ greatly, but this disconnect between consistency

theory and practice could be resolved.

For 0-1 cost environments, the estimated observation is the sum of the training

observations weighted with the LIME weights. An idea, inspired by the generalized

additive model work of Tibshirani and Hastie [51], would be to estimate the obser-

vation as the weighted sum of functions of the training data, or as a function of the

CHAPTER 7. CONCLUSIONS 145

weighted sum of functions of the training data.

LIME unravels some local bias, as shown in Chapter 2. Friedman proposed adjust-

ing a density estimation by an additive factor t [35], which could correct for consistent

global bias. Friedman’s global t-compensation could be added to LIME estimates.

The equations of linear interpolation are useful in resolving bias caused by un-

symmetrically distributed training points. As discussed in Section 1.3.2, traditional

linear interpolation is not flexible enough for general supervised learning problems.

LIME generalizes linear interpolation using the principle of maximum entropy, based

on the intuition that all training points are equally likely to be contributors. A differ-

ent principle of inference might lead to better results in certain cases. For example,

generalizing linear interpolation with the principle of minimum expected risk could

be explored, as outlined in Section 6.3.

Appendix A

Weierstrass Theorem

A continuous function f defined on a compact set S has a minimum point in S; that

is, there is an x∗ ∈ S such that for all x ∈ S, f(x) ≥ f(x∗).

Gradient, Hessian

Suppose f is a real-valued function defined over an open set of d-dimensional Eu-

clidean space. Suppose f has continuous first partial derivatives. Then the gradient

of f is defined to be the vector

∇f(x) = [∂f(x)/∂x1 ∂f(x)/∂x2 . . . ∂f(xk)/∂xk].

Suppose also that f has continuous second partial derivatives. Then the Hessian

of f is denoted ∇2f(x) and is defined to be the symmetric d× d matrix

∇2f(x) =

[
∂2f(x)

∂xi∂xj

]
for i, j = 1, . . . , d.

The Jacobian Matrix

The Jacobian matrix of a vector function f(x) = [f1(x); f2(x); . . . fm(x)]
T , where

x ∈ Rn is defined as the m × n matrix whose (i, j)th element is the derivative of fi
with respect to xj.

146

APPENDIX A. APPENDIX 147

Second order necessary minimization conditions

Suppose that x∗ is a local minimum of f subject to the set of t constraints g1(x
∗) =

0, g2(x
∗) = 0, . . . , gt(x∗) = 0, and that the gradient vectors ∇gi(x∗), i = 1, . . . , t are

linearly independent. Then there is a λ ∈ Rt such that

∇f(x∗) + λT∇g(x∗) = 0
Further, it holds that

dT
(∇2f(x∗) + λT∇2g(x∗)

)
d ≥ 0

for all d such that ∇g(x∗)d = 0.

Second order sufficiency minimization conditions

Suppose that there is a point x∗ satisfying the set of t constraints g1(x∗) = 0, g2(x∗) =

0, . . . , gt(x
∗) = 0, and a λ ∈ Rt such that

∇f(x∗) + λ∇g(x∗) = 0.
Suppose also that

dT
(∇2f(x∗) + λT∇2g(x∗)

)
d > 0

for all d such that ∇g(x∗)d = 0 and d �= 0. Then x∗ is a strict local minimum of f

subject to the set of constraints g(x) = 0.

Maximum entropy and maximum likelihood

The maximum entropy solution is the maximum likelihood solution under the as-

sumption that no event is known to be more probable than any other event. The

basic argument is sketched here as expounded by Wu [127].

Imagine that Nature was forming a distribution over k events by independently

distributing B discrete chunks of probability to the events uniformly randomly. Let

Bj represent the number of tiny bits of probability that fall on the jth event.

APPENDIX A. APPENDIX 148

Let W ({B1/B,B2/B, . . . Bk/B}) represent the number of ways to form the dis-

tribution {B1/B,B2/B, . . . Bk/B}. Then combinatorics dictates,

W ({B1/B,B2/B, . . . Bk/B}) = B!

B1!B2! . . . Bk!

The pmf with maximum likelihood is the pmf that could have occurred in the

greatest number of ways. Equivalently, maximize the log of the number of ways:

logW ({B1/B,B2/B, . . . Bk/B}) = log
(

B!∏k
j=1Bj!

)
Let B become very large (approximating the continuous case) and use Stirling’s

formula for the logarithm of a factorial:

logW ({B1/B,B2/B, . . . Bk/B}) ≈ −
k∑
j=1

Bj logBj +B logB (A.1)

Then the distribution that can be formed in the most number of ways is the

distribution that maximizes (A.1). Since B is independent of which distribution is

chosen, the maximum likelihood distribution is equivalent to the distribution that

maximizes entropy.

When a constraint on the set of possible distributions is added, only those dis-

tributions that satisfy the constraint are considered. From that restricted set it is

asked, which distribution could have occurred in the most ways? Similar logic leads

to the distribution with maximum entropy on the restricted set.

Bibliography

[1] www.chromix.com. 2002. ICC profiling service.

[2] www.color.org/profile.html. 2002. International Color Consortium.

[3] www.matlab.com. 2002. Matlab version 6.1 by Mathworks.

[4] www.openmind.org. 2002.

[5] www.stanford.edu/dept/msande/faculty/saunders. 2002.

[6] D. L. Atherton. Magnetic inspection is key to ensuring safe pipelines. Oil and

Gas Journal, 87(32):52–61, 1989.

[7] S.G. Bakamidis. An exact fast nearest neighbor identification technique. Proc.

of the IEEE ICASSP, pages 658–661, 1993.

[8] A. R. Barron and T. Cover. Minimum complexity density estimation. IEEE

Trans. on Information Theory, 37:1034–1054, 1991.

[9] Jean-Francois Bercher, Guy LeBesnerais, and Guy Demoment. The maximum

entropy on the mean method, noise, and sensitivity. Maximum Entropy and

Bayesian Methods, pages 223–232, 1996.

[10] Toby Berger. Rate Distortion Theory: A Mathematical Basis for Data Com-

pression. Prentice Hall, Englewood Cliffs, New Jersey, 1971.

[11] William Bickford. A first course in the finite element method. Irwin, Inc.,

United States, 1990.

149

BIBLIOGRAPHY 150

[12] C. L. Blake and C. J. Merz. www.ics.uci.edu/simmlearn/mlrepository.html.

2002. UCI Repository of machine learning databases.

[13] Stephen Boyd and Lieven Vandenberghe. Introduction to Convex Optimization

wth Engineering Applications. Stanford University, Palo Alto, 1995.

[14] Leo Breiman, Jerome Friedman, Richard Olshen, and Charles Stone. Classi-

fication and Regression Trees. Chapman and Hall, United States of America,

1984.

[15] J. P. Burg. Maximum entropy spectral analysis. 37th Annual International

Meeting of the Society of Exploratory Geophysics, 1967.

[16] J. P. Burg. Maximum entropy spectral analysis. Stanford University PhD Dis-

sertation, Stanford, CA, 1975.

[17] A.I. Burshtein. Introduction to thermodynamics and kinetic theory of matter.

J. Wiley, United States of America, 1995.

[18] L. Lorne Campbell. Minimum cross-entropy estimation with inaccurate side

information. IEEE Trans. Information Theory, 45:2650–2652, November 1999.

[19] R. Carnap. What is probability? Scientific American, 188:128–138, 1953.

[20] James Chang, Jan Allebach, and Charles Bouman. Sequential linear interpola-

tion of multidimensional functions. IEEE Trans. on Image Processing, 6(9):1231

– 1245, 1997.

[21] P. A. Chou and R. M. Gray. On decision trees for pattern recognition. IEEE

International Symposiom on Information Theory Summaries, page 69, 1986.

[22] P. A. Chou, T. Lookabaugh, and R. M. Gray. Entropy-constrained vector quan-

tization. IEEE Trans. on Acoustics, Speech, and Signal Proc., pages 31–42,

January 1989.

[23] A. R Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. MPS-

SIAM Series on Optimization. SIAM, Philadelphia, 2000.

BIBLIOGRAPHY 151

[24] T. M. Cover and P. E. Hart. Nearest neighbor pattern classification. IEEE

Trans. Information Theory, 13:21–27, 1967.

[25] Thomas Cover and Joy Thomas. Elements of Information Theory. John Wiley

and Sons, United States of America, 1991.

[26] Richard Cox. Algebra of Probable Inference. John Hopkins Press, Baltimore,

1961.

[27] I. Csiszár, F. Gamboa, and E. Gassiat. Mem pixel correlated solution for gener-

alized moment and interpolation problems. IEEE Trans. on Information The-

ory, 45(7):2253–2270, November 1999.

[28] Imre Csiszár. Why least squares and maximum entropy? an axiomatic approah

to inference for linear inverse problems. The Annals of Statistics, 19(4):2032–

2066, 1991.

[29] E. F. D’Azevedo. Are bilinear quadrilaterals better than linear triangles. SIAM

Journal of Scientific Computing, 22(1):198–217, 2000.

[30] Luc Devroye, Laszlo Gyorfi, and Gabor Lugosi. A Probabilistic Theory of Pat-

tern Recognition. Springer-Verlag Inc., New York, 1996.

[31] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification, 2nd Edition.

John Wiley and Sons, New York, 2001.

[32] Gary Erickson and C. Ray Smith. Maximum Entropy and Bayesian Methds in

Science and Engineering. Kluwer Academic Publishers, U.S.A., 1988.

[33] Mark Fairchild. Color Appearance Models. Addison Wesley Inc., Reading,

Massachusetts, 1998.

[34] E. Fix and J. L. Hodges. Discriminatory analysis, nonparametric discrimination:

Consistency properties. Technical Report 4, 1951. USAF School of Aviation

Medicine, TX.

BIBLIOGRAPHY 152

[35] Jerome H. Friedman. On bias, variance, 0/1 loss, and the curse-of-

dimensionality. Data mining and knowledge discovery, 1(1):55–77, 1997.

[36] K. Fukunaga and D. Hummels. Bias of nearest neighbor error estimates. IEEE

Trans. on Pattern Analysis and Machine Intelligence, 9:103–112, January 1987.

[37] Robert Gallager. Information theory and reliable communication. John Wiley

and Sons, New York, 1968.

[38] F. Gamboa and E. Gassiat. Bayesian methods and maximum entropy for ill-

posed inverse problems. The Annals of Statistics, 25:328–350, 1997.

[39] A. Gersho and R. M. Gray. Vector Quantization and Signal Compression.

Kluwer Academic Publishers, Boston, 1992.

[40] James Goin. Classification bias of the k-nearest neighbor algorithm. IEEE

Trans. on Pattern Analysis and Machine Intelligence, 6:379–381, 1984.

[41] Robert M. Gray. Entropy and Information Theory. Springer-Verlag, New York,

1990.

[42] Robert M. Gray and Richard Olshen. Vector quantization and density esima-

tion. Proc. of the Compression and Complexity of Sequences Conference, pages

172–193, 1997.

[43] Maya Gupta, Michael Friedlander, and Robert M. Gray. Maximum entropy

classification applied to speech. Proc. of Asilomar Systems and Signals Confer-

ence, 2000.

[44] Maya Gupta and Robert M. Gray. Color conversions using maximum entropy

estimation. Proc. of the IEEE International Conference on Image Processing,

2001.

[45] H. Gzyl and Y. Velasquez. Maxentropic interpolation by cubic splines with

possibly noisy data. Bayesian Inference and Maximum Entropy Methods in

Science and Engineering: 20th International Workshop, pages 216–228, 2001.

BIBLIOGRAPHY 153

[46] L. Hadjiiski, B. Sahiner, C. Heang-Ping, N. Petrick, and M. Helvie. Classifica-

tion of malignant and benign masses based on hybrid art2lda approach. IEEE

Trans. on Medical Imaging, 18(12):1178–1187, 1999.

[47] R. M. Haralick, K. Shanmugam, and I. Dinstein. Textural features for image

classification. IEEE Trans. on Systems, Man and Cybernetics, 3(6):610–621,

1973.

[48] Peter Hart. The condensed nearest-neighbor rule. IEEE Trans. on Information

Theory, 14:515–516, 1968.

[49] John Hartigan. Clustering algorithms. Wiley and Sons, New York, 1975.

[50] T. Hastie and C. Loader. Local regression: automatic kernel carpentry. Statis-

tical Science, 8(2):120–143, 1993.

[51] T. Hastie and R. Tibshirani. Generalized additive models. St. Edmundsbury

Press Limited, Great Britain, 1990.

[52] T. Hastie and R. Tibshirani. Discriminative adaptive nearest neighbour classifi-

cation. IEEE Trans. on Pattern Analysis and Machine Learning, 18(6):607–615,

1996.

[53] T. Hastie, R. Tibshirani, and A. Buja. Flexible discriminant analysis by optimal

scoring. Journal of the American Statistical Association, 89:1255–1269, 1994.

[54] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of

Statistical Learning. Springer-Verlag, New York, 2001.

[55] Tin Kam Ho and Henry S. Baird. Large-scale simulation studies in pat-

tern recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence,

19(10):1067–1079, 1997.

[56] R. C. Holte. Very simple classification rules prform well on most commonly

used data sets. Machine Learning, 11:63–90, 1993.

BIBLIOGRAPHY 154

[57] David Hume. An enquiry concerning human understanding. Oxford University

Press, Oxford, 1999.

[58] T. Jaakkola, M. Meila, and T. Jebara. Maximum entropy discrimination. Ad-

vances in Neural Information Processing Systems 12, 1999.

[59] A.K. Jain, R.P.W. Duin, and J. Mao. Statistical pattern recognition: a re-

view. IEEE Trans. on Pattern Analysis and Machine Intelligence, 22(1):4–37,

January 2000.

[60] E. T. Jaynes. Information theory and statistical mechanics. Physical Review,

106:620–630, 1957.

[61] E. T. Jaynes. On the rationale of maximum entropy methods. Proc. of the

IEEE, 70(9):939–952, 1982.

[62] E.T. Jaynes. Probability theory: the logic of science. Available at

ftp://bayes.Wustl.edu/Jaynes.book, 1996. This is Jaynes’ unfinished book on

probability.

[63] Harold Jeffreys. Theory of Probability. Oxford University Press, New York,

1961.

[64] Dhiraj Kacker, Ufuk Agar, Jan Allebach, and Bradley Lucier. Wavelet decom-

position based representation of nonlinear color transformations and comparison

with sequential linear interpolation. Proc. of the IEEE International Conference

on Image Processing, 1:186–190, 1998.

[65] Henry Kang. Color scanner calibration. Journal of Imaging Science and Tech-

nology, 36:162 – 170, 1992.

[66] Henry Kang. Color Technology for Electronic Imaging Devices. SPIE Press,

United States of America, 1997.

[67] J. N. Kapur. Measures of Information and Their Application. Wiley Eastern

Limited, New Delhi, 1994.

BIBLIOGRAPHY 155

[68] N. Karayiannis. Meca: Maximum entropy clustering algorithm. Proc. of the

IEEE 3rd International Fuzzy Systems Conference, pages 630–635, 1994.

[69] J. Kasson, W. Plouffe, and S. Nin. A tetrahedral interpolation technique

for color space conversion. Proc. of the SPIE Conference on Color Imaging,

1909:127, 1993.

[70] James Kasson, Sigfredo Nin, Wil Plouffe, and James Hafner. Performing color

space conversions with three-dimensional linear interpolation. Journal of Elec-

tronic Imaging, 4(3):226–250, 1995.

[71] Y. Kawata, N. Niki, H. Ohmatsu, M. Kusumoto, R. Kakinuma, K. Mori,

H. Nishiyama, K. Eguchi, M. Kaneko, and N. Moriyama. Computer-aided

differential diagnosis of pulmonary nodules based on a hybrid classification ap-

proach. Proc. of the SPIE, 4322:1796–1806, 2001.

[72] Steven M. Kay. Fundamentals of Statistical Signal Processing: Estimation The-

ory. Prentice Hall, New Jersey, 1993.

[73] J. M. Keynes. A treatise on probability. Macmillan and Company, London,

1957.

[74] B.S. Kim and S.B. Park. A fast k nearest neighbor finding algorithm based on

the ordered partition. IEEE Trans. on Pattern Analysis and Machine Learning,

8(6):761–766, 1986.

[75] W. Kneale. Probability and Induction. Clarendon Press, Oxford, 1949.

[76] T. Kohonen. Self-Organization and Associative Memory. Springer-Verlag,

United States of America, 1989.

[77] T. Kohonen, G. Barna, and R. Chrisley. Statistical pattern recognition with

neural networks: benchmarking studies. IEEE International Conference on

Neural Networks, 1:61–68, 1988.

BIBLIOGRAPHY 156

[78] S.R. Kulkarni, G. Lugosi, and S. S. Venkatesh. Learning pattern classification-

a survey. IEEE Trans. on Information Theory, 44(6):2178–2206, October 1998.

[79] S. Kullback. Information Theory and Statistics. Wiley, New York, 1959.

[80] A. Kumar and I. Olmeda. A study of composite or hybrid classifiers for knowl-

edge discovery. INFORMS Journal on Computing, 11(3):267–277, 1999.

[81] Pierre Simon Laplace. Essai Philosophique sur les Probabilités, fifth edition.

Huzard-Courcier, Paris, 1825.

[82] S. Lubiarz and P. Lockwood. Evaluation of fast algorithms for finding the

nearest neighbor. Proc. of the IEEE ICASSP, pages 1491–1494, 1997.

[83] J.R. Lucas. The Concept of Probability. Clarendon Press, Oxford, England,

1970.

[84] David Luenberger. Linear and Nonlinear Programming. Addison-Wesley Pub-

lishing Company, United States of America, 1984.

[85] G. Lugosi and K. Zeger. Concept learning using complexity regularization.

IEEE Trans. on Information Theory, 42:48–54, 1996.

[86] Geoffrey McLachlan. The EM algorithm and extensions. John Wiley, New York,

1996.

[87] James McNames. A fast nearest-neighbor algorithm based on a principal axis

search tree. IEEE Trans. on Pattern Analysis and Machine Learning, 23(9):964–

976, 2001.

[88] John Stuart Mill. A system of Logic, ratiocinative and inductive; being a con-

nected view of the principles of evidence, and the methods of scientific investi-

gation. Harper and Brothers, London, 1900.

[89] Tom M. Mitchell. Machine Learning. McGraw-Hill, United States of America,

1997.

BIBLIOGRAPHY 157

[90] Halina Mortimer. The Logic of Induction. John Wiley and Sons, New York,

1988.

[91] Amir Najmi. Data compression, model selection and statistical inference. Stan-

ford University PhD Dissertation, Stanford, CA, 1999.

[92] Stephen Nash and Ariela Sofer. Linear and Nonlinear Programming. McGraw-

Hill Company, United States of America, 1996.

[93] J. Navaza. The use of non-local constraints in maximum-entropy electron den-

sity reconstruction. Acta Crystallographica, pages 212–223, 1986.

[94] Deirdre O’Brien, Maya Gupta, Robert M. Gray, and Jon Kristian Hagene. Au-

tomatic classification of images from internal optical inspection of gas pipelines.

International Chemical and Petroleum Industry Inspection Technology VIII

Conference, 2003.

[95] I. Olmeda and E. Fernandez. Hybrid classifiers for financial multicriteria

decision-making: the case of bankruptcy prediction. Computational Economics,

10(4):317–335, 1997.

[96] W. J. Padgett. Laws of large numbers for normed linear spaces and certain

Frechet spaces. Springer-Verlag, New York, 1973.

[97] E. Parzen. On the estimation of a probability density function and the mode.

Annals of Mathematical Statistics, 33:1065–1076, 1962.

[98] Judea Pearl. An application of rate-distortion theory to pattern recognition

and classification. Pattern Recognition, 8:11–22, 1976.

[99] C. S. Peirce. The philosophy of Peirce: selected writings. Jarrold and Sons

Limited, Great Britain, 1956.

[100] F. Provost and T. Fawcett. Robust classification for imprecise environments.

Machine Learning, 42(3):203–210, 2001.

BIBLIOGRAPHY 158

[101] W. Pruitt. Summability of independent random variables. Journal of Math and

Mechanics, 15:769–776, 1966.

[102] V. Rasche, R. Proksa, R. Sinkus, P. Börnert, and H. Eggers. Resampling of

data between arbitrary grids using convolution interpolation. IEEE Trans. on

Medical Imaging, 18(5):385–391, May 1999.

[103] S.J. Raudys and A.K. Jain. Small sample size effects in statistical pattern recog-

nition: recommendations for practitioners. IEEE Trans. on Pattern Analysis

and Machine Intelligence, 13(3):252–264, March 1991.

[104] S.J. Raudys and V. Pikelis. On dimensionality, sample size, classification error,

and complexity of classification algorithm in pattern recognition. IEEE Trans.

on Pattern Analysis and Machine Intelligence, 2(3):242–252, 1980.

[105] Nicholas Rescher. Induction. University of Pittsburgh Press, Pittsburgh, 1980.

[106] Francesco Ricci and Paolo Avesani. Data compression and local metrics for

nearest neighbor classification. IEEE Trans. on Pattern Analysis and Machine

Learning, 21(4):380–384, 1999.

[107] John Rice. Bandwidth choice for nonparametric regression. The Annals of

Statistics, 12:1215 – 1230, 1984.

[108] John Rice. Boundary modification for kernel regression. Communications in

Statistics, Theory and Methods, 13:893–900, 1984.

[109] Kenneth Rose. Deterministic annealing for clustering, compression, classifi-

cation, regression, and related optimization problems. Proc. of the IEEE,

86(11):2210–2239, November 1998.

[110] Riccardo Rovatti, Michele Borgatti, and Roberto Guerrieri. A geometric ap-

proach to maximum-speed n-dimensional continuous linear interpolation in rect-

angular grids. IEEE Trans. on Computers, 47(8):894–898, August 1998.

BIBLIOGRAPHY 159

[111] Robert Schalkoff. Pattern recognition: statistical, structural, and neural ap-

proaches. John Wiley, New York, 1992.

[112] Louis Scharf. Statistical Signal Processing. Addison-Wesley, United States of

America, 1991.

[113] J.E. Shore and R.W. Johnson. Axiomatic derivation of the principle of max-

imum entropy and the principle of minimum cross-entropy. IEEE Trans. on

Information Theory, 33:26–37, 1 1980.

[114] J.E. Shore and R.W. Johnson. Properties of cross-entropy minimization. IEEE

Trans. on Information Theory, 27:472–482, 7 1981.

[115] R. Short and K. Fukunaga. The optimal distance measure for nearest neighbor

classification. IEEE Trans. on Information Theory, 27(5):622–627, 1981.

[116] D.B. Skalak. Prototype and feature selection by sampling and random mutation

hill climbing algorithms. Proc. 11th Intl. Machine Learning Conference, pages

293–301, 1994.

[117] J. W. Smith, J.E. Everhart, W.C. Dickson, and W.C. Knowler. Using the adap

learning algorithm to forecast the onset of diabetes mellitus. IEEE Proc. of the

Symposium on Computer Applications and Medical Care, pages 261–265, 1988.

[118] Charles Stone. Consistent nonparametric regression. The Annals of Statistics,

5(4):595–645, 1977.

[119] Richard Swinburne. The justification of induction. Oxford University Press,

Oxford, 1974.

[120] Takehisa Tanaka, Katsuji Aoki, Mutsuko Nichogi, and Katsuhiro Kanamori.

Color management systems with multilayer perceptrons. Proc. of the SPIE

Conference on Color Imaging, 3963:110 – 118, 2000.

[121] Robert Taylor. Stochastic convergence of weighted sums of random elements

in linear spaces, volume 672. Springer-Verlag Lecture Notes in Mathematics,

Berlin, 1978.

BIBLIOGRAPHY 160

[122] F.W. Truscott and F. L. Emory. A Philophical Essay on Probabilities by Pierre

Simon, Marquis de Laplace. John Wiley & Sons, London, 1902. translated from

the 6th French edition.

[123] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New

York, 1991.

[124] G. H. von Wright. A treatise on induction and probability. Littlefield, Adams,

and Co., New York, 1960.

[125] P.D. Wasserman. Advanced methods in neural computing. Von Nostrand Rein-

hold, New York, 1993.

[126] Sanford Weisberg. Applied Linar Regression. John Wiley and Sons, Minnesota,

1985.

[127] Nailong Wu. The Maximum Entropy Method. Springer-Verlag, Berlin, 1997.

