
Weighted Nearest Neighbor Learning and First-order Error

Maya R. Gupta and William H. Mortensen
gupta@ee.washington.edu, william5@u.washington.edu

Dept of EE, University of Washington
Seattle WA, 98195-2500

Abstract

Weighted nearest-neighbor learning is analyzed in terms of squared error, with a focus on classification problems
where the squared error of probability estimates is considered. Two classes of algorithms for calculating weights are
studied with respect to their ability to minimize the first-order term of the squared error: local linear regression and
a new class termed regularized linear interpolation. A number of variants of each class are considered and compared
analytically, by simulations, and with experiments on benchmark datasets. The experiments establish that weighting
methods which aim to minimize first-order error can perform significantly better than standard k-NN, particularly in
high-dimensions. Regularization functions, the fitted surfaces, cross-validated neighborhood size, and the effect of
high-dimensionality are also analyzed.

1 Introduction
Nearest-neighbor learning is one of the oldest and most intuitive approaches to classification. Nearest neighbor clas-
sifiers can have optimal asymptotic properties [1, 2, 3, 4], and in practice, the simple k-NN classifier often achieves
competitive error rates. For example, in a recent paper comparing the standard k-NN to a polynomial-kernel support
vector machine (SVM) on 35 benchmark datasets, k-NN tied or beat the SVM on 17 of the 35 datasets [5, Table 10].
Nearest neighbor learning is sometimes called lazy learning because most of the calculations are done at test time,
which makes it useful for online applications where the training data changes or grows.

In recent years, researchers have studied how to learn a distance function for nearest-neigbor learning (e.g. [6, 7,
8, 9, 10, 11, 12, 13, 14, 15]), and how to choose the neighbors (e.g. [16, 17, 18]). There have also been significant
advances in designing fast algorithms that find approximately-nearest neighbors, allowing a trade-off between speed
and accuracy (e.g. [19, 20, 21, 22]).

Recently, using regularized linear interpolation weights was proposed for nearest-neighbor learning [23], and was
seen to produce significantly better performance than standard kernel-weighted k-NN for some high-dimensional
problems. Similarly state-of-the-art classification results have been shown with kernelized (similarity-based) [24].
These results motivated this present analysis of how to optimally weight nearest-neighbors to minimize zero-order
error, first-order error and estimation variance. Our focus is on classification, which we analyze as a regression
problem where the class posterior probabilities must be estimated.

After establishing the nearest neighbor problem and notation, we analyze the first-order error for weighted nearest
neighbors in Section 2. We show that there are two approaches that can be used to minimize the first-order error:
local linear regression and regularized linear interpolation. First we consider local linear regression in Section 3. We
review how local linear regression can be formulated as a weighted nearest-neighbor classifier, and then we analyze the
zero-order error and first-order error for different variants, some new. Then we consider the new class of regularized
linear interpolation classifiers in Section 4. Some analytic comparisons are made between these two classes of nearest-
neighbor methods in Section 5. Some simulations and benchmark datasets are presented in Section 6, and are used
to further analyze the different methods in Section 7. The paper closes with conclusions and open questions. For the
reader’s reference, Table 1 summarizes the frequently-used notation.

This paper builds on previous analysis of local learning, predominantly [25] and [3]. The main contributions of
this paper are: the multi-dimensional first-order analysis which shows how to optimally weight nearest-neighbors, the
analysis of local linear regression with respect to zero-order and first-order error for different neighborhood sizes k
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Table 1: Key Notation

I identity matrix I(·) indicator function

Xj ∈ Rd jth random training sample (d× 1) n number of training samples

Yj ∈ {1, 2, . . . , G} random class label for Xj J indices for k neighbors of X

G number of class labels k number of neighbors |J |
X ∈ Rd random test sample (d× 1) β regression model coefficients

X[i] ith component of vector X βg gth component of β

Ŷ ∈ {1, 2, . . . , G} predicted class label for X w, v k × 1 weight vectors

X ∈ Rd+1×k matrix with columns [Xj 1]T for j ∈ J wj weight on (Xj , Yj) for j ∈ J
X0 ∈ Rd×k matrix with columns XT

j for j ∈ J K pre-weight kernel

f(X) ∈ [0, 1]G class probability vector given X A A[j, j] = K(X −Xk), else 0

fg(X) ∈ [0, 1] gth element of f(X);
∑G

g=1 fg(X) = 1 R regularization function

f̂(X) ∈ RG estimate of f(X) D continuous convex function

and number of features d, and the analytic and experimental comparisons of standard and new variants of local linear
regression and regularized linear interpolation classifiers. A key conclusion is that while standard k-NN is a popular
baseline and can perform well in practice, weighted k-NN with weights formed by regularized linear regression or
regularized linear interpolation can significantly improve performance, particularly in very high-dimensional cases
where standard k-NN can simply fail.

1.1 The Nearest Neighbor Problem and Notation
Denote a random test feature vector X ∈ Rd and random training samples pairs {(Xj , Yj)} for j = 1 . . . , n, where
Xj ∈ Rd, and the associated class label Yj ∈ {1, 2, . . . , G}. For our analysis, we assume that all feature vectors
are in general position. For some results, we will further assume that X and each Xj are drawn independently and
identically from some distribution PX . Let a set of neighbors for X be defined by a set of k indices J , such that
training sample Xj is in the neighborhood of test point X if j ∈ J . Weights are calculated for each of the neighbors,
and we use wj to denote the weight on the neighbor Xj , where wj may be a function of X and {Xj} for j ∈ J . The
weights may or may not be positive, and may or may not sum to one.

For the multi-class classifier with G classes, the class estimate Ŷ corresponding to X is

Ŷ = argmin
g∈{1,2,...,G}

G∑

h=1

C(g, h)


∑

j∈J
wj f̂h(Xj)


 , (1)

where C(g, h) is the cost of classifying X as class g if its true class is class h, and f̂h(Xj) is the estimated probability
that Xj is of class h, usually taken to be f̂h(Xj) = 1 if Yj = h and f̂h(Xj) = 0 otherwise. The term

∑
j wj f̂h(Xj)

can be interpreted as a maximum likelihood estimate of the probability that X is from class h given constant class
probabilities over the neighborhood [26].

Many weighting functions have been proposed that are based on the choice of a fixed decreasing function K such
that wj = γK(X − Xj), where γ is a normalization constant so that

∑
j wj = 1 [27, 25]. The rationale for such

distance-decay of the weights is that training samples further from the test point may be less relevant. However, unless
the training samples are in symmetric locations about the test sample, such Nadaraya-Watson estimates will have a
first-order bias [25].

2 First-order Error
In this section we present an analysis of the squared error for weighted nearest neighbor class probability estimates,
and establish how to minimize first-order error.

Let f(X) be a G × 1 vector of class probabilities for X , with fg(X) the probability that X is from the gth class.
For this theoretical analysis, we assume the true class probabilities {f(Xj)} are known. In practice what is given is
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Yj , which is only one sample drawn from f(Xj), and can be used to form an estimate of f(Xj). We discuss the impact
of knowing Yj rather than f(Xj) at the end of the section.

For weighted-nearest neighbor classification, the estimate f̂(X) of f(X) is restricted as per (1) to be a weighted
combination of the neighbor class probability vectors {f(Xj)} such that f̂(X) =

∑
j wjf(Xj).

The weights that produce the optimal nearest neighbor probability estimate with respect to squared error would
solve

w∗ = argmin
w∈Rk

G∑
g=1


fg(X)−

∑

j∈J
wjfg(Xj)




2

(2)

Squared error is a standard error function for regression, and an appropriate error for classification because the posterior
probability estimates that minimize the expected mean-squared error also minimize the expected misclassification cost
[28].

Let f : Rd → RG have gth component fg , and suppose fg has continuous derivatives. (Note that by the Stone-
Weierstrass theorem, if fg is only continuous, it can be uniformly approximated by a polynomial for any closed interval
and this analysis can be done for the approximating polynomial). Form a Taylor series expansion of each fg(Xj),

fg(Xj) = fg(X) +
∞∑

r=1

1
r!

((Xj −X) · ∇)r
fg(X). (3)

Substitute (3) into (2), and define the zero-order error eg = fg(X) − fg(X)
∑

j∈J wj . Note that eg = 0 if and only
if the weights are normalized such that

∑
j∈J wj = 1. The optimization problem (2) can be expressed:

w∗ = argmin
w∈Rk

G∑
g=1


e0 −

∑

j∈J

(
wj(Xj −X)T∇fg(X) + wj

∞∑
r=2

1
r!

((Xj −X) · ∇)r
fg(X)

)


2

. (4)

Assume eg = 0, expand the square in (4), and consider only the first term, which depends only on the first-order
gradients of the true class probabilities. For classification problems, this first-order term may constitute a significant
portion of the total error. Then, the first-order error of (4) is minimized by the weights

w∗ = argmin
w∈Rk

G∑
g=1





∑

j∈J
wjXj −X




T

∇fg(X)




2

≡ argmin
w∈Rk


∑

j∈J
wjXj −X




T

F


∑

j∈J
wjXj −X


 , (5)

where the d × d matrix F =
∑

g ∇fg(X) (∇fg(X))T . Thus for multi-dimensional problems, if the weights solve∑
j wjXj = X they yield zero first-order error.
If no weights solve

∑
j wjXj = X , then the best weights (with regard to first-order error) depend on F , unless

the dimension d = 1 such that F is a scalar and can be ignored when minimizing (5). For multi-dimensional problems
where d > 1, F can be interpreted as changing the distance measure based on the test sample. This analysis provides
theoretical weight to learning a local distance measure for each test point, as already attempted for standard k-NN (see
for example, [11, 12, 13, 14]). In general, the matrix F will not be diagonal, since it is the sum of outer products of
gradient vectors, and thus, (5) is generally not equivalent to first scaling each feature, and then ignoring F .

In practice the known quantities are {Yj}, not {f(Xj)}, which changes the weighted nearest neighbor estimate.
However, if the Bayes’ error is zero conditioned on each {Xj}, then the above analysis is exact, with f(Xj) equal to
the G × 1 vector with fg(Xj) = 1 if Yj = g and zero otherwise. For the case that the Bayes’ error is not zero, let
f̂g(Xj) = 1 if Yj = g, and zero otherwise, and let f̂(Xj) be the G × 1 vector with gth component f̂g(Xj). Then
f̂(Xj) = f(Xj) + Nj , where Nj is a random G × 1 vector with E[Nj ] = ~0. Because the Nj are independent for
j ∈ J , the Nj add randomness that will predominantly manifest as high-order error terms especially for large k. Thus,
using the nearest neighbor classifier with the {Yj} and not the true {f(Xj)} may have only a negligible impact on the
above zero-order and first-order error analysis.
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In some cases, first-order optimal weights such that they solve
∑

j wjXj = X can be computed in closed-form
using local linear regression. We review local linear regression in the next section, and discuss how to modify it to be
a more effective classifier.

3 Local Linear Regression Weights for Classification
Local linear regression is a standard regression technique in which a hyperplane is fit to training samples that are local
to a test sample [29, 25]. First, we review how local linear regression forms a closed-form weighted nearest-neighbor
classifier [3]. Then we analyze the zero-order and first-order error, note that an easily-fixed zero-order error problem
arises when k < d, and consider a standard and new approach to regularizing the classifier.

To use local linear regression for the G-class classification problem, fit G hyperplanes to the neighbors of the
test point X , where the gth hyperplane is fit to {(Xj , f̂g(Xj))}. Calculate the G discriminants {f̂g(X)}, such that
f̂g(X) = β̂T

g X + β̂g,0 where β̂g, β̂g,0 are the estimated d× 1 gradient vector and scalar offset for the gth class in the
local neighborhood of the test point X . Then the estimated class label is calculated:

Ŷ = argmin
g∈{1,2,...,G}

G∑

h=1

C(g, h)
(
XT β̂g + β̂g,0

)
. (6)

To compute β̂g and β̂g,0 let f̂g be a k × 1 vector with ordered elements f̂g(Xj) for j ∈ J , and let X be a (d + 1)× k

matrix with ordered columns
[

Xj

1

]
for j ∈ J . Ideally, the model coefficients β̂g, β̂g,0 would solve

XT

[
β̂g

β̂g,0

]
= f̂g. (7)

The system of equations (7) has k constraints and d + 1 unknowns, and when k > d + 1 there is no solution (because
the points were assumed to be in general position). A common fix is to only require that the squared error between the
terms in (7) be minimized:

(β̂g, β̂g,0) = argmin
(β∈Rd,β0∈R)

∑

j∈J

(
f̂g(Xj)− βT Xj − β0

)2

. (8)

Problem (8) is solved by the Moore-Penrose pseudoinverse (pinv) [30]:

[
β̂g

β̂g,0

]
=

{
X

(
XTX

)−1
f̂g if rank(X) = k(

XXT
)−1 Xf̂g if rank(X) = d + 1

(9)

where (7) is also solved if rank(X) = k.
Given the model coefficients (9), the classification discriminant can be expressed

f̂g(X) =
[

X
1

]T [
β̂g

β̂g,0

]
= wT f̂g =

∑

j∈J
wj f̂g(Xj),

where

w =





(
XTX

)−1 XT

[
X
1

]
if rank(X) = k

XT
(
XXT

)−1
[

X
1

]
if rank(X) = d + 1.

(10)

Thus (6) is equivalent to the standard weighted nearest-neighbor classifier (1) if the model coefficients β solve (8).
This re-interpretation as a nearest-neighbor classifier is helpful in practice because one need only calculate the weights
w given in (10), which conveniently do not depend on the class labels or the number of classes G. We refer to this
classifier as the pinv classifier.
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An interesting symmetry emerges: the model coefficients given in (9) are the pinv solution to the model-fitting
problem (8) which does not include the test point, whereas the weight vector given in (10) is the pinv solution that
minimizes the squared error in expressing the test point as a linear sum of the training samples:

w = argmin
v

∥∥∥∥Xv −
[

X
1

]∥∥∥∥
2

2

, (11)

which does not depend on the class probabilities {f(Xj)}. Minimizing the squared norm of the weights corresponds
to minimizing estimation variance with respect to noise in this context (see Proposition 1 in Section 4.2.2).

If rank(X) = d + 1, then k ≥ d + 1, and the hyperplane fit in (7) may not hold, but (11) is solved exactly such that
the d + 1 system of equations holds:

Xw =
[

X
1

]
. (12)

On the other hand, if rank(X) = k, then k ≤ d + 1, and (9) exactly solves the linear regression problem (7), but (12)
may not hold. Thus, if k < d+1, the pinv weights are not guaranteed to yield zero first-order error, and generally will
not minimize the first-order error (5) due to the term F in (5).

In addition, if k < d + 1, the pinv weights are not guaranteed to sum to one, so there may also be zero-order
error. To fix this, we form a slightly different weighted nearest-neighbor classifier by first subtracting out the mean
class posterior as follows. Assume rank(X) = k, and define the weights v∗ =

(
XT

0 X0

)−1 XT
0 X where X0 has ordered

columns Xj for j ∈ J . The weights v∗ are the pinv weights for fitting hyperplanes to the pairs
{
(Xj , fg(Xj)− f̄g)

}
for g ∈ {1, 2, . . . , G}, where f̄g = 1

k

∑
i∈J fg(Xi). Then

f̂g(X) = (f̂g − f̄g)T v∗ + f̄g = w∗T f̂g,

for w∗ = v∗ − 1
k

∑
i∈J v∗i + 1

k . The weights w∗ sum to one, and we term them the pinv weights norm one.

3.1 Pre-weighting the Model Errors
A common variant of local linear regression is to pre-weight the error term corresponding to each training sample
in (8), where the pre-weight is a decreasing function of distance to the test sample. The pre-weight matrix A is a
diagonal, k × k matrix where A[j, j] = K(X − Xj) and K is a decreasing function of its argument. Pre-weighted
linear regression with a choice of K that down-weights outliers is termed lowess (also known as LOWESS, LOESS,
or loess). A popular choice of K is the tricube function [27],

K(X −Xj) =





(
1−

( ‖X−Xj‖2
‖X−Xfar‖2

)3
)3

, j ∈ J

0 j /∈ J
(13)

where Xfar is X’s furthest neighbor in J .
Given a pre-weight matrix A, the model coefficients for the case that X has rank k are XA

(
XTXA

)−1
f̂g , and the

lowess weights are w =
(
AXTX

)−1
AXT

[
X
1

]
.

3.2 Regularized Local Linear Regression
Another common variant of linear regression is regularized linear regression. In this paper, we consider the popular
example of ridge regression [31, 27], which uses a squared `2 penalty on the model coefficients and results in a closed-
form solution. Since the estimated coefficients will change if the input values are scaled, the inputs are normalized first.
Take the k training samples and shift them so they have mean zero, and scale them so they have identity covariance,
and perform the same shifting and scaling on the test point X . Then let Xr be the d× k matrix whose columns are the
shifted, scaled versions X̃j of the feature vectors Xj , let X̃ be the shifted, scaled version of the test point X , and let
f̄g ∈ R be the mean of the f̂g(Xj)’s. Then, the model coefficients in the shifted, scaled space solve

β̂g = argmin
β∈Rd

∑

j∈J

(
f̂g(Xj)− f̄g − βT X̃j

)2

+ κβT β, (14)
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where the scalar κ dictates the trade-off between the least-squares fit and the regularization of the regression coeffi-
cients. The ridge regression problem (14) is solved by the closed-form solution

β̂g =
(
XrXT

r + κI
)−1 Xr(f̂g − f̄g),

where I is the d× d identity matrix. Then the discriminant is given by

f̂g(X) = β̂T
g X̃ + f̄g = vT (f̂g − f̄g) + f̄g = wT

Rf̂g, (15)

where v = XT
r

(
XrXT

r + κI
)−1

X̃ and the ridge weights are wR = v − 1
k

∑
j∈J vj + 1

k . Because the ridge weights
wR sum to one, there will be no zero-order error. Unlike the pinv weights (10), wR will not in general yield zero
first-order error as per (5) due to the regularization term.

[32] showed that a variant of the above local ridge regression achieved lower error on the benchmark handwritten
character classification task than k-NN, a Parzen window classifier, and a neural network. In their implementation of
ridge regression, they shift the Xj by X , and do not subtract the local mean f̄g , which will result in zero-order error.
Also, they do not standard-normalize the Xj , which changes the effect of the regularization.

We propose regularizing the weights directly, that is, solve

argmin
v

‖X0v −X‖22 + κvT v,

which has solution
v∗ =

(
XT

0 X0 + κI
)−1 XT

0 X.

We term the normalized weights w∗ = v∗ − 1
k

∑
j∈J v∗j + 1

k the regularized pinv weights, and compare the different
regularizations in the experiments.

We expect that other robust regression methods will perform similarly to the squared `2 penalty of ridge and regu-
larized pinv for classification problems [27]. At least one comparison has shown ridge regression to be more effective
than variable subset selection, principal components regression, or partial least squares regression [33]. Although `p

regularization penalties can provide sparser solutions, in this context sparser solutions offer little advantage compared
to the squared `2 penalty which produces both closed-form solutions and noise averaging because of the non-sparse
model coefficients and weights.

4 Linear Interpolation for Classification
In this section, we consider a second weighted nearest-neighbor approach to minimizing the first-order error that we
term regularized linear interpolation classifiers. These classifiers aim to solve X0w = X with the constraints that the
weights w ∈ [0, 1]k and

∑
j∈J wj = 1. The difference with respect to using local linear regression is the constraint

w ∈ [0, 1]k, which by restricting the solution, should produce lower estimation variance. Additionally, this constraint
is key if the desired output is an estimate of the class posterior for the gth class, such as

∑
j∈J wjIYj=g. Because

the pinv weights are unrestricted to [0, 1], the class posterior estimates are unrestricted to [0, 1], and clipping the class
posterior estimates to this interval may result in an estimated class posterior that does not sum to one for all the classes.

Linear interpolation is a standard approach to interpolation [34, 18, 35], and it was first proposed for classification
by [36]. Their algorithm later was formalized as the linear interpolation with maximum entropy (LIME) classifier
[23]. Here, we generalize the LIME weights to regularized linear interpolation weights, which solve

argmin
w∈[0,1]k

(D (X0w −X) + λR(w)) (16)

such
∑

j wj = 1, and where D is a continuous strictly-convex function, λ is a trade-off parameter, and R is some
regularizing function used to reduce estimation variance and define a unique solution.

We also define constrained regularized linear interpolation weights, which do not require a regularization param-
eter λ:

argmin
w∈[0,1]k

R(w) such that D (X0 −X) = min
z∈[0,1]k

D (X0z −X) (17)

such that
∑

j∈J wj = 1 and
∑

j∈J zj = 1.
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The regularized linear interpolation objective (16) is similar to other regularization problems in statistical learning,
such as the minimization problems for ridge regression given in (14), or the weight decay regularization used with
neural networks [27]. However, (16) differs in that it does not trade-off the fit of the regression function to the data
with a penalty on the smoothness of the regression function. In contrast, the regularized linear interpolation objective
(16) trades-off the error between the test point X and a convex combination of the neighboring training samples {Xj}
with a penalty on the weights, without regard for the values {f(Xj)}. Of course, if R(w) rewards more uniform
weights, then the resulting function will be more locally-constant, and in this sense, locally smoother.

Next, we review the LIME classifier, then propose and analyze two other regularization criteria. These classifiers
do not directly minimize the first-order error given in (5). To that end, we propose in Section 4.3 a new regularized
linear interpolation classifier that aims to explicitly minimize (5). All of the described regularized linear interpolation
classifiers are convex optimization problems and can be implemented with standard convex programming methods.

4.1 LIME weights
LIME solves (16) where the regularization function is the negative entropy of the weights R(w) =

∑
j∈J wj ln wj

[23]. Maximizing entropy keeps each of the weights away from zero, so that all neighbors are included in the estima-
tion, and pushes the solution towards the uniform weight vector. The LIME weights exist and are unique because the
objective function is a continuous strictly convex function of w.

Simulation results showed LIME could achieve significantly better results than using uniform or distance-decaying
weights, and better results than local linear regression weights [23]. In applications, LIME classification has performed
better than other classifiers including the boosted decision tree MART, regularized QDA, and Gaussian mixture model
classification [23, 37, 38, 39].

Applying Corollary 4.5 of [40], it follows that if the distortion function D is taken to be some `p norm, and if
λ ≤ λ0 where λ0 depends on the training and test data, then solving for the LIME weights is equivalent to solving the
constrained problem given in (17) with R(w) =

∑
j∈J wj ln wj . [23] showed that interpolation with these constrained

LIME (cLIME) weights over a regular grid is equivalent to the standard linear interpolation technique of interpolating
a regular grid dimension-by-dimension, such as the bilinear interpolation commonly used in image processing, and
the trilinear interpolation used to interpolate look-up tables for color management [34].

4.2 Different regularization strategies
We propose two different regularization functions R(w) for (16): relative entropy and variance.

4.2.1 Linear interpolation with minimum relative entropy (LIMRE)

One expects that neighbors further away from the test point may be less relevant to classifying the test point, and thus
we propose regularizing the weights towards a weight vector that decays with distance from the test point. To this
end, given a normalized, strictly positive weight function v let the linear interpolation with minimum relative entropy
(LIMRE) weights solve (16) with regularization R(w) =

∑
j∈J wj ln(wj/vj). The LIMRE weights exist and are

unique because the objective function is a continuous strictly convex function of w.

4.2.2 Linear interpolation with minimum variance (LIMV)

Let the linear interpolation with minimum variance (LIMV) weights solve (16) with R(w) = wT w. Note that min-
imizing wT w is equivalent to minimizing the variance of the weights in this case, because the sum of the wj is
constrained. The LIMV weights exist and are unique because the objective function is a continuous strictly convex
function of v. This is a quadratic optimization problem which can be solved with standard quadratic programming
methods. However, the LIMV weights are the optimal regularized linear interpolation classifier in terms of minimizing
variance given noisy measurements:

Proposition 1 [LIMV Minimizes Estimation Variance]: Consider the case that in the neighborhood J of the test
point x, f(xj) = g(xj) + Nj , where g(xj) is a deterministic function of xj , and each Nj is independently and iden-
tically drawn from a distribution with zero mean and finite variance σ2. Consider also the second case that f(xj) =
aT (xj + ~Nj), where a ∈ Rd is some constant such that aT a is bounded and ~Nj is a d-dimensional vector where each
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component for each j is drawn iid from a distribution with zero mean and finite variance σ2. Express the weighted
nearest-neighbor estimate as a functional of the regularization function R such that f̂(x,R) =

∑
j∈J wR

j f(xj), where
the wR satisfy (16) with regularization function R(w). Then for both cases, of all the weight vectors wR that achieve
the same distortion D, the estimation variance varN (f̂(x,R)) is minimized if R(w) = wT w.

The proofs of this and all the paper’s propositions are in the appendix.

4.3 Gradient LIME
We propose a variant of LIME that we term gradient LIME which attempts to explicitly minimize (16). Let gradient
LIME weights solve (16) with distortion function D(x̃) =

(‖x̃‖F̂

)2 = x̃T F̂ x̃, where F̂ is an estimate of F , and the
regularization is maximum entropy, R(w) =

∑
j wj ln wj .

For the experiments presented in Section 6 we estimate F̂ =
∑

g

(
∇f̂g

)(
∇f̂g

)T

, where each ∇f̂g is estimated

individually as the d regression coefficients of the ridge-regression hyperplane fitted to the {f̂g(Xj)} for the neigh-
borhood samples j ∈ J . It is common wisdom that a little regularization can have a large stabilizing effect, and to
avoid more free parameters and the associated risk of overfitting, we use a default κ = 10−9 for the ridge regression
regularization parameter.

4.4 Exponential Weights for LIME, LIMRE, and Gradient LIME
As a consequence of maximizing the entropy subject to the soft moment constraint

∑
j wjXj = X , the LIME weights

are an exponential function of the training samples such that [40]

wLIME
j =

e−φT Xj

∑
i∈J e−φT Xi

, (18)

where φ ∈ Rd is a function of the test and training samples. The exponential form of the weights shows clearly that
the LIME weights are asymmetric about the test point.

By direct application of Lemma 3.1 from [40], the LIMRE weights also have an asymmetric exponential form such
that

wLIMRE
j =

vje
−φT Xj

∑
i∈J vie−φT Xi

.

Further, by direct application of Corollary 4.4 of [40], if the distortion function D in (16) is an exact penalty (such as
an `p norm), then the exponential decay φ is bounded.

Similarly, Lemma 3.1 and Corollary 4.4 of [40] can be applied to the gradient LIME weights (because ‖X̃‖F̂ is a
convex function) to show that the gradient LIME weights have the same exponential form as the LIME weights (18).

4.5 First-order Error for Regularized Linear Interpolation Classifiers
In this section, we establish that the regularized linear interpolation classifiers have optimal first-order error under
some conditions.

Proposition 2: [First Order Optimal for d = 1] For d = 1, solutions of (17) have equal or smaller first-order error
than any other positive and normalized weights over the same neighborhood.

Proposition 3: [Zero First-Order Error for Enclosing Neighborhood] Consider weighted nearest-neighbor clas-
sification over an enclosing neighborhood [41, 16, 42] which is defined to be any J such that there exists some
normalized positive weight vector a such that

∑
j∈J ajXj = X . Then solutions of (17) have zero first-order error as

per (5).

Proposition 4: [Smaller First-Order Error Than Uniform] If the matrix F in (5) is known such that the distortion
function in (16) is D = ‖ ·‖2F , then the LIME weights and LIMV weights yield equal or smaller first-order error as per
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(5) than uniform weights, and the LIMRE weights yield equal or smaller first-order error given in (5) than using the
weight vector v used in the LIMRE regularization function. If D = ‖ · ‖2, then the above statements are guaranteed to
hold only for d = 1.

5 Further Analysis
We present some further analysis comparing the two classes of weighted nearest-neighbor classifiers, the pinv classi-
fiers and the regularized linear interpolation classifiers.

5.1 Regression Surfaces

Consider the estimated class probability surface formed by f̂g(x,w) =
∑

j wj(x)fg(xj) for the different weighting
methods over a fixed set of neighbors {(xj , f(xj))}, for j ∈ J . For uniform weights the fitted surface is a constant.
For all of the discussed local linear regression variants, the fitted surface is always a hyperplane, as the fitted surface
can be expressed as xT β for some β that does not depend on x.

For the linear interpolation weights, we are not able to describe the fitted surface in general. For test points that lie
outside the convex hull of the training samples, the fitted surface will be constant along hyper-rays extending from the
convex hull of the training samples because of the constraint w ∈ [0, 1]k: suppose x lies outside the convex hull, and
let w∗ be the linear interpolation weights that solve (16), or (17), for some x that lies outside the convex hull of the
neighbors. Define x̂

.=
∑

j w∗j xj , and note that x̂ lies in the closure of the convex hull by the constraints on w∗. Then
w∗ is also the minimizing solution for x̂, and thus f(x,w∗)= f(x̂, w∗)=

∑
j w∗j f(xj).

Some insight into the regularized linear interpolation classifiers can be gained by considering the regression sur-
face when the neighbors lie on the vertices of a unit hypercube. For this case, we can show that the functional form is
linear in a product basis expansion of the original features of x.

Proposition 5: [cLIME Fitted Surface] Let Υ be the set {x[1], x[2], . . . , x[d]}. Let P (Υ) be the power set of Υ, and
assume a lexicographical ordering of the 2d subsets comprising P (Υ). Define zi(x) to be the arithmetic product of the
elements in the ith subset of P (Υ), where the product of the empty set is defined to be 1. Then the cLIME estimate
has the form

f(x) =
2d∑

i=1

aizi(x),

where ai =
∑k

j=1 bijf(xj) for some scalars {bij} which do not depend on x.

Figures 1 and 2 show two example fitted surfaces for cLIME for test points inside the convex hull. The fitted
surfaces are smooth, curvaceous, and are correct when the test sample is equal to any of the training samples. As per
Proposition 5, one can show that these fitted surfaces have the form f(x) = f(x1)+(f(x2) − f(x1))x[1]+(f(x3) −
f(x1))x[2]+(f(x4) + f(x1)− f(x2)− f(x3))x[1]x[2].

Whereas the pinv classifier weights can be re-formulated as a linear combination of the neighbor feature vectors
as given by (6), Proposition 5 shows that given vertices of a unit hypercube, the cLIME classifier can be re-formulated
as a linear combination of polynomial terms of the neighbor feature vectors. Thus, the cLIME classifier has a similar
functional form as a support vector machine using a finite polynomial kernel.

For the LIME weights, the surface will have a similar form, but will be closer to a constant surface for larger λ.

5.2 Weighting Nearest Neighbors is a k-dimensional Problem
Consider the case k < d, which is likely if the problem is relatively high-dimensional. Once the k neighbors are
determined, the pinv weights norm one or the regularized linear interpolation weights have only k − 1 degrees of
freedom. This is in contrast to many classification approaches where the number of free parameters that must be fit
grows with d. Thus, these nearest neighbor approaches adaptively reduce the dimensionality of the weighting problem
to the subspace spanned by the neighbors.
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5.3 Consistency
A trimmed variant of local linear regression weights forms a consistent classifier [3, Corollary 4]. LIME is consistent
for bounded feature spaces under the standard assumptions that k → ∞, n → ∞, and k/n → 0 [40]. The proof of
LIME’s consistency relies on the exponential form of the weights, and on using an exact penalty function for D, such
as an `p norm (but not a squared `p norm) [40]. Classifying with the LIMRE weights and an exact penalty function
D will be consistent if the weight vector v chosen for the LIMRE regularization function R(w) =

∑
j wj ln(wj/vj)

would itself produce a consistent classifier; the proof follows trivially from the proof in Section 5 of [40] for LIME
consistency, and uses the properties that the LIMRE weights are exponential. Although we hypothesize that the
LIMV classifier is consistent, this remains an open question. We hypothesize consistency for weights that solve the
general regularized linear interpolation objective (16) for some large class of distortion functions D and regularization
functions R.

The first-order error given in (5) asymptotically goes to zero for constrained regularized linear interpolation clas-
sifiers under standard conditions:

Proposition 6: [First-order Error Vanishes] Suppose X and X1, X2, . . . , Xn are drawn iid from an absolutely
continuous distribution with Lebesgue density p, and that the weighted nearest-neighbor classifier acts on the k(n)
nearest neighbors of X . Then any weights that solve (17) will asymptotically have zero first-order error as per (5) with
probability one in the limit n →∞, k(n) = an ln n, where an is a sequence such that an →∞ and k(n)

n → 0.

6 Experiments
We compare the different weighting methods summarized in Table 2 on simulations and benchmark datasets.

For every pair of training and test data, leave-one-out cross-validation was performed on the training data to select
the best combination of k and λ or κ. If multiple combinations of k and λ gave the minimal error rate, we took the
smallest k that gave the minimum error rate with any λ or κ, then λ or κ was taken to be the smallest λ or kappa that
gave the minimum error rate with the chosen k. For the simulations, the choice of k was k ∈ {3, 4, 5, 10, 15, . . . , 95}.
For the benchmark dataset experiments, the choice of k was k ∈ {1, 2, , . . . , 20, 25, . . . , 100, 110, . . . , 200, 220,
. . . 400, 440, . . . , min(n, 800)}. The choice of κ for all experiments for the ridge and regularized pinv classifier was
κ ∈ {10−9, 10−8, . . . , 104}. The choices of λ for LIMV was λ ∈ {2 4

2 , 2
5
2 , . . . , 2

25
2 }. The choices of λ for LIME,

LIMRE, and Gradient LIME was λ ∈ {10
−10
3 , 10

−6
3 , . . . , 10

10
3 }. To speed the cross-validation of the simulations, the

cross-validation choices of λ were restricted to a subset of the choices where the smaller objective values occurred.
The regularized linear interpolation weights were computed using MOSEK’s standard convex optimizer.

6.1 Simulations
The weighted classifiers were compared on two standard simulations [43] where the true class posterior for each class
is a spherical Gaussian, and the classes are differentiated either by their mean and covariance (Different Means), or
only by their covariances (Same Means).

For each run of each simulation, 100 random training samples and 2,000 random test samples were drawn iid from
the density f(x) = 0.5f1(x)+0.5f2(x), where f1(x) and f2(x) are the class-conditional densities. In the Same Means
simulation, the class conditional densities are Gaussian with the same means: f1 = N (0, Σ) and f2 = N (0, 4Σ),
where Σ is the d × d identity matrix. In the Different Means simulation, the class conditional densities are Gaussian
with different means: f1 = N (0,Σ) and f2 = N (1, 4Σ), where 1 is a vector of ones. For each dimension d, each of
the two simulations was run five times. Mean results for the Same Means simulation are shown in Figures 2, 3, and 4;
mean and standard deviation errors for the Different Means simulation are given in Table 3.

6.2 Benchmark Dataset Results
Comparisons were run on the five benchmark data sets from the UCI Machine Learning Repository that, as of May
2006, satisfied the following requirements: had separate training and test sets, all features were Euclidean numbers, the
data was not simulated, and there were no missing features. Selected results are given in Table 4, the cross-validated
parameter choices are listed in Table 5, and the benchmark datasets are summarized in Table 6. Before classification,
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Table 2: Nearest-Neighbor Weights Summarized for X with Rank k

kNN wi = 1/k

Tricube wj = vj/
∑

j vj , where vj = K(X −Xj) given by (13)

LIME solves (16): R(w) =
∑

j wj ln wj , D = ‖ · ‖22, w ∈ [0, 1]k,
∑

j wj = 1

LIMV solves (16): R(w) =
∑

j w2
j , D = ‖ · ‖22, w ∈ [0, 1]k,

∑
j wj = 1

cLIME solves (17): R(w) =
∑

j wj ln wj , D = ‖ · ‖22, w ∈ [0, 1]k,
∑

j wj = 1

LIMRE solves (16): R(w) =
∑

j wj ln wj

vj
, D = ‖ · ‖22, w ∈ [0, 1]k,

∑
j wj = 1

where vj ∼ K(X −Xj) with K(X −Xj) given by (13)

Gradient solves (16): R(w) =
∑

j wj ln wj , D = ‖ · ‖2
F̂

, w ∈ [0, 1]k,
∑

j wj = 1
LIME

Gradient solves (17): R(w) =
∑

j wj ln wj , D = ‖ · ‖2
F̂

, w ∈ [0, 1]k,
∑

j wj = 1
cLIME

Pinv w =
(
XTX

)−1 XT

[
X
1

]
if rank(X) = k

Pinv wj = vj − 1
k

∑
i vi + 1

k where v =
(
XT

0 X0

)−1 XT
0 X

Norm One

Reg. Pinv wj = vj − 1
k

∑
i vi + 1

k where v =
(
XT

0 X0 + κI
)−1 XT

0 X

Ridge wj = vj − 1
k

∑
i vi + 1

k where v = X̃T
(
X̃X̃T + κI

)−1

X̃ .

Lowess w =
(
AXTX

)−1
AXT

[
X
1

]
where A[j, j] = K(X −Xj) as per (13).

Lowess wj = vj − 1
k

∑
i vi + 1

k where v =
(
AXT

0 X0

)−1
AXT

0 X
Norm One and A[j, j] = K(X −Xj) given by (13).
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training and test data were standard-normalized using the sample mean and diagonal sample covariance of the training
data for each benchmark data set.
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Figure 1: Average error for Same Means simulations plotted over dimension for local linear regression classifiers.

7 Discussion of Results
In this section we discuss the experimental results.

7.1 Zero-order Error
As discussed in Section 2, if the weights do not sum to one and k < d + 1, there will generally be zero-order error.
Of all the classifiers in the experiments, only the pinv and lowess yield weights that may not sum to one, which can be
compared to pinv norm one and lowess norm one, which are different only in that the offset is first subtracted off so
that there is no zero-order error. Fig. 2 shows that for the Same Means simulation and d < 20 there is little difference
between pinv (solid line) and pinv norm one (gray solid line), or between lowess (dotted line) and lowess norm one
(gray dotted line). However, for higher d, the gray lines shoot away from the black lines. For d = 500 and n = 100,
it must be that k < d + 1, and thus this case clearly shows what can happen if the zero-order error is not removed.
Similar results are shown in Table 3 for the Different Means simulation.

7.2 Performance Over Dimension
Table 3 and Figs. 2, 3, and 4 show performance over dimension for the two simulations. For classifiers, there are three
different effects as the dimensions increase. One: the class separability increases, making it easier to differentiate
classes. Two: the density of the n = 100 training samples decreases, making it harder to learn. Three: the relationship
of the n = 100 training samples actually becomes very predictable as d →∞. As shown by [44], the n1 points from
class one will occur at the vertices of an equilateral polyhedron, the n2 points from class two will occur at the vertices
of another equilateral polyhedron, and points from the two classes will also be equally far away. We hypothesize that
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Figure 2: Average error for Same Means simulations plotted over dimension for regularized linear interpolation clas-
sifiers.

for d = 500 and n = 100 these effects are already felt, and that this high-dimensional structure can lower estimation
variance for some classifiers by lowering the risk of overfitting some cross-validated parameters.

For high dimensions in the Same Means simulation, the points from class 1 are generally closest to other class
1 points, but the points from class 2 are on average closer to class 1 points than to class 2 points. Thus the 50%
asymptotic error rate of k-NN and tricube in this case is because these classifiers classify all points as class 1 points.
In the Different Means simulation errors occur for both classes.

In general, one expects to achieve the lowest learning error by using a statistical learning technique that is best
fit to the true class conditional distributions. For the two simulations, the “correct” classifier would be quadratic
discriminant analysis (QDA), which models each class conditional distribution as a Gaussian with different means and
different covariances. In fact, QDA using the standard maximum likelihood parameter estimation does not perform
well for high-dimensional runs of the simulation because the high ratio of parameters to estimate to data samples
causes ill-posed estimates. For example, over ten different draws of 100 training samples in d = 500 dimensions for
the Same Means simulation, the QDA error was 47%, whereas the regularized linear interpolation and ridge weighted
nearest-neighbor classifiers achieved zero error. (However, using a Bayesian QDA can also achieve approximately
zero error for this simulation [45].)

7.3 Cross-validation and Overfitting of the Regularization Parameters
It is difficult to choose a set of parameters for cross-validation, with too dense a set of choices leading to overfitting, and
too sparse a set not able to exploit the full flexibility of the model. The simulations show that cross-validated regular-
ization of either the weights or the linear model coefficients can perform significantly better if the training and test data
are truly iid, with the largest differences for the Same Means simulation results shown in Figs. 2 and 3. However, of the
unregularized/regularized pairs (LIME/cLIME, gradient LIME/gradient cLIME, pinv norm one/regularized pinv, and
pinv norm one/ridge), only ridge performed consistently better than its unregularized counterpart on the benchmark
datasets, which are not truly iid and thus pose a greater risk for overfitting. We hypothesize that the local standard
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Figure 3: Average error for Same Means simulations plotted over dimension for selected nearest-neighbor classifiers.

Table 3: Different Means Simulation: average error, with the standard deviation of the errors in parentheses for five
runs of the simulation for each dimension.

Dimension

5 20 50 100 500

kNN 20.4 (2.8) 33.4 (4.7) 50.6 (0.9) 50.4 (1.6) 50.2 (0.5)

Tricube 19.8 (2.1) 26.0 (3.7) 45.8 (2.3) 49.4 (1.9) 50.1 (0.6)

LIMV 13.6 (1.2) 4.2 (0.7) 1.3 (0.7) 0.5 (0.3) 0 (0)

LIME 14.4 (2.8) 4.0 (0.8) 1.1 (0.5) 0.5 (0.3) 0 (0)

cLIME 18.2 (1.4) 5.6 (1.9) 1.5 (0.8) 0.6 (0.3) 0 (0)

LIMRE 15.4 (2.3) 5.1 (0.7) 1.5 (0.7) 0.5 (0.3) 0 (0)

Gradient LIME 13.4 (0.7) 4.1 (1.8) 5.9 (1.1) 1.3 (0.5) 0 (0)

Gradient cLIME 21.0 (2.4) 6.1 (0.5) 2.3 (0.9) 0.8 (0.5) 0 (0)

Pinv 18.4 (1.0) 5.2 (3.6) 5.6 (2.3) 18.7 (3.7) 22.0 (1.5)

Pinv Norm One 18.4 (1.0) 5.2 (3.6) 5.6 (2.3) 2.6 (0.2) 0 (0)

Lowess 17.4 (2.1) 5.4 (2.5) 9.7 (7.7) 18.7 (3.7) 22.0 (1.5)

Lowess Norm One 16.6 (1.4) 5.4 (2.5) 6.9 (2.2) 3.2 (0.4) 0.2 (0.3)

Regularized Pinv 15.6 (1.1) 5.3 (3.5) 2.0 (1.7) 1.1 (1.1) 0 (0)

Ridge 15.2 (3.0) 3.5 (0.6) 2.5 (2.6) 1.3 (1.3) 0.1 (0.1)

normalization of the training feature vectors helps homogenize the different neighbor-test point geometries, and that
the increased homogeneity reduces the risk of overfitting relative to the other regularization methods.

While a different set of cross-validation choices for the regularization parameters may have performed better, it
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Table 4: Test error % on UCI benchmark datasets

Image Seg. Isolet Opt. Digits Pen Digits Vowel

kNN 12.6 9.1 3.4 2.5 49.4

Tricube 15.7 6.7 3.3 2.4 49.4

LIME 9.9 4.7 2.3 2.0 49.4

cLIME 9.9 4.7 2.5 1.9 49.4

Pinv Norm One 9.4 6.9 2.4 1.7 45.9

Lowess Norm One 11.7 7.4 1.9 1.2 46.1

Regularized Pinv 10.4 6.7 2.1 1.5 45.9

Ridge 8.7 5.7 1.7 1.5 40.5

Table 5: Cross-validated Parameters for UCI benchmark datasets

Image Seg. Isolet Opt. Digits Pen Digits Vowel

k λ k λ k λ k λ k λ

kNN 6 25 3 3 1

Tricube 55 110 10 19 1

LIME 45 10−5 75 10 220 10−1 35 10−
4
3 1

cLIME 45 45 140 35 1

Pinv Norm One 3 35 240 70 6

Lowess Norm One 180 35 640 640 7

Regularized Pinv 45 10−4 95 102 30 101 60 10−1 6 10−9

Ridge 11 100 300 102 120 101 70 100 11 10−1

will never be possible a priori to choose an optimal balance between overfitting and model flexibility.
In general, the cross-validation made the most positive difference on the Same Means simulation. We hypothesize

that this is because in the Same Means simulation all points have the same relationship to the decision boundary,
whereas in the Different Means simulation the classes are more separable, but some points are far from the decision
boundary and some points are close, thus one expects a greater number of points may be needed to train the classifier,
and there is likely more variability in the optimal regularization parameter with respect to different test points.

Table 6: Information About the Benchmark Datasets

Number of Classes Number of Features Number of Total Samples

(Training/Test)

Image Seg. 7 19 210/2,100

Isolet 26 617 6,238/1,559

Opt. Digits 10 64 3,823/1,797

Pen Digits 10 16 7,494/3,498

Vowel 11 10 528/462

7.4 Distance-decay weights
The experiments included three distance-decay comparisons: kNN to tricube, pinv to lowess, and LIME to LIMRE,
with all comparisons using the tricube kernel given in (13) to implement the distance-decay.

The tricube kernel performs slightly better than kNN throughout. There is no statistically significant difference
between lowess and pinv on the simulations, but lowess achieved relatively low error on the Opt. Digits and Pen Digit
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datasets. These results agree with the common intuition that distance-decay can be of some help, and is unlikely to
hurt the results.

However, implementing distance-decay by regularization had different results: LIMRE performed consistently
worse than LIME on the simulations, and since there was no difference in cross-validation parameters, we concluded
that it is not a reasonable alternative to LIME.

7.5 Different Regularizations
For the regularized linear interpolation classifiers, the entropy regularization of LIME and the variance regularization
of LIMV performed similarly. Theoretically, gradient LIME should perform better than LIME in terms of the first-
order error. In practice, Gradient LIME performance did not improve over LIME. The reason could be that our ridge-
based estimate of F̂ was not accurate enough for gradient LIME to be an improvement. However, we hypothesize
that the primary reason is that the first-order error provided by LIME may already be small enough to ensure correct
classification, such that further improvement of the first-order error that could be afforded by Gradient LIME would
not improve error rates. This hypothesis is supported, for example, by comparing the simulation results for LIME and
pinv (see Fig. 2 and Fig. 3). For small d, pinv is guaranteed to have zero first-order error, and yet does not perform
as well as LIME. Thus there is little reason to believe that further reducing the first-order error for LIME (by using a
gradient LIME with exact F ) would be helpful for classification.

For the local linear classifiers, we compared regularizing the hyperplane slope coefficients βT β to regularizing
the weights wT w. Given the same regularization choices, the two regularizations performed similarly better than pinv
norm one on the simulations, where the training and test data were truly iid. As discussed in Sec. 7.3, only ridge
performed consistently better than its unregularized counterpart on the benchmark datasets, which we hypothesize is
largely due to the pre-processing of the neighborhood feature vectors which would have increased homogeneity of the
regularization’s impact on different test sample draws.

7.6 Neighborhoods and Locality
Nearest neighbor methods are often called “local classifiers,” but in fact, the cross-validated neighborhood sizes k were
often extremely non-local. For the simulations, the cross-validated neighborhood size was usually k = 1 for the kNN
and tricube classifier for d > 5. For the other classifiers, k increased as d increased. With d = 500, both the locally
linear classifiers and the regularized linear interpolation classifiers choose a k in the range 60 − 95 out of n = 100
possible training samples. This suggests that the effect of using the neighborhood was to exclude the farthest points,
rather than to include only “near” points.

Usually nearest neighbor methods are run with choices of k from one to twenty, while n may be in the thousands.
For the benchmark datasets, we allowed choices of k up to 800 neighbors. As shown in Table 5, lowess chose k = 640
by cross-validation on Pen Digits and Opt. Digits, and produced relatively low errors. For Pen Digits, k = 640 out
of n = 7494 training samples in d = 16 feature dimensions is roughly 10% of the data, which corresponds roughly
to the number of training samples in each of the ten classes. For Opt Digits, all of the locally linear and regularized
linear interpolation classifiers except for regularized pinv chose k > 100. Lowess’s choice of k = 640 neighbors for
Opt Digits is almost 20% of the training samples. Similarly, many of the methods choose roughly 20% of the training
samples for Image Segmentation, with lowess choosing 6/7 of the training samples.

Cross-validating the neighborhood parameter k is likely to suffer from some overfitting, and raises the larger
question of how to define the neighborhood. Although using k nearest neighbors is a classic approach, there is little
reason to believe that each test sample is best served by the same neighborhood size, or that the neighborhood should
be parameterized by the number of neighbors. For linear interpolation, [18] suggested using the set of training samples
whose Voronoi cells are adjacent to the test point’s Voronoi cell given a Voronoi tessellation of the training points plus
the test point. Sibson termed these the natural neighbors. [16] has shown significant reductions in error for color
management using Sibson’s natural neighbors for local linear regression over a three-dimensional feature space. [16]
also proposed an adaptive neighborhood which uses the smallest k neighbors that minimize the distance between the
convex hull of the training samples and the test point. These enclosing neighborhooods can enable zero first-order
error as described in Proposition 3, but not if the test point is outside the convex hull of the n training points, as is
often true for practical classification problems. Optimal neighborhood definitions for nearest neighbors classifiers is
an open question.
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The ability of lowess to work well given a large percentage of the training data suggests that using all the training
samples but with a fixed, aggressive distance-decay weighting could also be effective, and would remove the need to
cross-validate k.

7.7 Local Linear Regression Compared to Regularized Linear Interpolation
The simulation and experimental results show that both the local linear regression and the regularized linear inter-
polation classification methods can work well, and differences in mean results may be attributable to differences in
cross-validation and in the data pre-processing for ridge. Using the Wilcoxon paired test for statistical significance
with a significance level of .05, the simulation results for d < 50 were not statistically significantly different for any
of the comparable pairs LIME v. Ridge, LIME v. regularized pinv, or cLIME v. pinv norm one. For d = 500 for
the Same Means simulation, ridge and regularized pinv were statistically significantly better than LIME, but not sta-
tistically significantly different than Gradient LIME. For the Different Means simulation and d = 50 and d = 100,
cLIME and gradient cLIME were statistically significantly better than their counterparts pinv norm one and lowess
norm one (this is a relevant comparison as none of these algorithms has a cross-validated regularization parameter).
On the benchmark datasets, ridge beat LIME on the four lower-dimensional datasets. For Isolet, which has about ten
times more features than the next highest-dimensional dataset (Opt. Digits), LIME and cLIME performed the best.

Another difference suggested by the simulations data and the theory is that the regularized linear interpolation
classifiers appear to have less variance than the corresponding local linear regression classifiers. For example, com-
paring the standard deviations of the errors in Table 3 for cLIME and Gradient cLIME to that of pinv norm one and
lowess norm one, there is generally less error variance. Lower estimation variance is supported by the theory because
the regularized linear interpolation classifiers have the additional constraint that w ∈ [0, 1]k, and constraints will lower
the variance.

Based on the overall similar performances between these two classes of classifiers, the choice to use either a pinv
classifier or the LIME/cLIME classifiers or should be driven by concerns other than performance, such as computa-
tional efficiency and whether one wishes to interpret the outputs as class probability estimates.

7.8 Computation
The local linear classifiers all have closed-form solutions, while the regularized linear interpolation classifiers require
convex optimization. However for large values of k and/or d, it may be faster to run a convex optimization than
to invert the large matrices in the closed-form solution. The convex optimization can also trade-off accuracy of the
weights for speed, for example by adjusting the number of iterations in the numerical solver. Lastly, ridge requires a
d×d matrix inversion, which for relatively high-dimensional feature spaces may be infeasible or more computationally
intensive than the k × k matrix inversion required for regularized pinv.

8 Conclusions and Open Questions
The main contributions of this paper are the analysis of the first-order error for weighted nearest-neighbor classi-
fiers in general, zero-order and first-order analysis for local linear regression classifiers, and first-order analysis for
a new class of regularized linear interpolation classifiers. In addition to the analysis, we established through simula-
tions and experiments that weighted nearest-neighbors whose weights are designed to minimize first-order error can
significantly outperform simple distance-decay weights such as the tricube kernel. In fact, for the Different Means
simulation, tricube and uniform weights are little better than coin-flipping for d = 50 dimensions and higher, but the
methods which take into account both zero-order and first-order error can capture the class separability, with all of the
regularized linear interpolation classifiers achieving zero errors by d = 500 dimensions. Similarly on the benchmark
datasets, the first-order error classifiers produced up to 50% lower error than the simpler uniform and tricube weights.

Within the class of local linear regression classifiers, we showed it was important to take into account the response
variable offset, so that the final weights would sum to one. We compared two different regularization techniques and
pre-weighting the errors, and showed that with standard data pre-processing for ridge and our set of cross-validation
parameters, consistently low classification errors could be achieved.

For the class of regularized linear interpolation classifiers, we compared three regularization strategies, and showed
that minimizing relative entropy was not as effective as maximizing entropy or minimizing variance, which performed
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similarly. Based on our first-order error analysis, we proposed the gradient LIME weights, but given that the local
gradient had to be estimated, we were not able to show an improvement over LIME. Also, we compared unregularized
versions of LIME and gradient LIME to regularized versions, and with the given cross-validation parameters, showed
that on benchmark datasets where the data was not iid, the regularization did not add value. Because the regularization
does show a statistically significant improvement on the iid simulations, we believe that a sparser cross-validated
regularization could still prove effective.

This work highlights a number of issues and open questions, such as the difficulty of cross-validation, the size and
definition of neighborhoods, whether local learning is best understood as learning from near samples or as rejecting far
samples, and whether, for high-dimensional problems, a closed-form solution will be computationally more effective
than an iterative solution.
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Appendix 1: Proofs

Proof of Proposition 1
Consider the first case of the proposition. Let N be a vector with jth component equal to Nj , and let w∗ solve (16).
Given any of the three cases of f(Xj) described in the proposition,

var(f̂(x,R)) = var(w∗T N)
(a)
= E[(w∗T N)2]

(b)
= w∗T E[NNT ]w∗

(c)
= σ2w∗T w∗,

where (a) and (b) follow because w∗ is deterministic in this scenario, w∗ is independent of f(xj), and E[N ] = ~0,
and (c) follows because E[NNT ] = σ2I Thus, the w∗ that minimizes var(f̂(x,R)) is the w∗ that minimizes wT w.
Given that the proposition restricts the consideration to weights w that yield fixed distortion D0, the weights that solve
(16) with R(w) = wT w minimize the estimation variance. The proof of the second case follows similarly, where
Nj = aT ~Nj , such that E[Nj ] = 0 and E[NjN

T
j ] = σ2aT a.

Proof of Proposition 2
For scalar features, minimizing the first-order error given by (5) does not depend on F , and solving (17) minimizes
(5).

Proof of Proposition 3
By assumption there exists some set of positive normalized weights a such that

∑
j∈E ajXj = X and

∑
j∈E aj = 1

so that zero first-order error is feasible, and because of the constraint in (17), any constrained regularized linear
interpolation weights must achieve this minimum.

Proof of Proposition 4
Let H(w) = −∑

j∈J wj ln wj , let u be the uniform weight vector. By construction, the LIME weights w∗ minimize
objective (16) with R(w) = H(w), thus

‖
∑

j

w∗j Xj −X‖2F − λH(w∗) ≤ ‖
∑

j

ujXj −X‖2F − λH(u).

Uniform weights over a discrete set of events uniquely maximize entropy, thus it must be that H(u)−H(w∗) ≥ 0, so
that the the first-order errors satisfy

‖
∑

j

w∗j Xj −X‖2F ≤ ‖
∑

j

ujXj −X‖2F .
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with equality if and only if the LIME weights are uniform. If d = 1, then the above proof works with D = ‖X̃‖2.
The proof for the LIMV weights follows similarly, using the fact that u uniquely minimizes variance out of all pos-
itive normalized weight vectors. The proof for the LIMRE weights follows similarly, using the fact that v uniquely
minimizes the relative entropy with respect to itself out of all positive normalized weight vectors.

Proof of Proposition 5
Assuming the training samples lie at the vertices of a unit hypercube, the cLIME weights have a product form [23,
Theorem 2],

w∗j (x) =
d∏

m=1

|1− xi[m]− x[m]|.

The weights do not depend on shifts; shift the training and test samples so that x1 lies at the origin, and then w∗1 =∏d
m=1(1− x[m]), since it was assumed that x ∈ [0, 1]d. Expanding the product and re-writing in terms of gi(x), one

arrives at w1(x) =
∑2d

i bi1gi(x), where {bi1} are scalar coefficients that do not depend on x. Similarly, the other

weights can be expanded and expressed as wj(x) =
∑2d

i bijgi(x). Then

f(x) =
2d∑

j=1

wjf(xj) =
2d∑

j=1

2d∑

i=1

bijgi(x)f(xj) =
2d∑

i=1




2d∑

j=1

bijf(xj)


 gi(x).

Let ai =
∑2d

j=1 bijf(xj) to complete the proof.

Proof of Proposition 6
Under the proposition’s assumptions, [23] Theorem 3 establishes that with probability one the test point X lies in the
convex hull of its k nearest neighbors. Applying Proposition 3 completes the proof.
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