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ABSTRACT 

We propose a new vein of feature vectors for robust speech 
recognition that use denoised wavelet Coefficients. Greater 
robustness to unexpected additive noise or spectrum distor- 
tions begins with more robust acoustic features. The use 
of wavelet coefficients is motivated by human acoustic pro- 
cess modelling and by the ability of wavelet coefficients to 
capture important time and frequency features. Wavelet de- 
noising accentuates the most salient information about the 
speech signal and adds robustness. We show encouraging 
results using denoised cosine packet features on small-scale 
experiments with the TIMIT database, its NTIMIT counter- 
part, and low-pass filter distortions. 

1. INTRODUCTION 

Current speech recognition systems perform well when tested 
on data similar to that used for training, however the lack of 
robustness of recognition systems continues to be a serious 
obstacle to practical speech recognition[ I]. 

Speech recognition systems represent the speech wave- 
form as feature vectors. A common set of feature vectors 
are some flavor of cepstral coefficients, such as Me1 filter 
bank cepstral coefficients(MFCC), or LPC cepstral coeffi- 
cients [2]. Acoustic and linguistic models are then used with 
the features to estimate what the speech waveform said. 

Cepstral coefficients are a mature approach to feature 
vectors, but provide limited robustness, as evidenced by the 
difficulty of state-of-the-art systems to adapt to noise and 
distortions. 

We propose a new vein of feature vectors, wavelet coef- 
ficients, to improve speech recognition robustness. Using 
wavelet coefficients is motivated by modelling of human 
acoustic processes and by the relationship oftime-frequency 
coefficients to the Me1 filterbank. Denoising theory and 
practice has shown that wavelet features can be.rohust to 
added noise and distortions. 
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The wavelet coefficients capture time and frequency lo- 
calized information about the speech waveform that is im- 
possible to obtain with a Fourier spectrum. Deooising the 
wavelet coefficients makes robustness part of the system. 
By including more localized time and frequency informa- 
tion, and by using wavelet denoising, we expect to be more 
robust to noise and spectrum distortions than cepstral co- 
efficients. Encouraging results are shown in section 5 on a 
small-scale experiment with the TIMIT andNTIMIT database. 

2. PREVIOUS WORK 

Wavelets and time-frequency methods have been shown to 
be effective signal processing techniques over the last two 
decades for a variety of problems. In particular, wavelets 
have been successfilly applied to denoising tasks and as ro- 
bust features [3]. 

There has been recent interest in using the wavelet trans- 
form in speech recognition. One categoryof such papers, [4, 
5, 61 uses a wavelet transform on the speech signal, com- 
putes the suhband energies, and then uses these subhand en- 
ergies to replace Me1 filterbank suhband energies. This ap- 
proach is slightly different from using the Me1 filtelhank in 
that the suhband divisions induced by the wavelet transform 
are different from those in the Me1 filterbank. The time in- 
formation in the wavelet subbands, however, is lost into the 
subband energies. Sarikaya [S I  uses a wavelet-packet tree 
that is a close approximation of the Mel-frequency division 
using Daubecbies’ 32-tap ortbogonal filters. Our proposal 
differs in that we use the actual wavelet coefficients, and 
not the subband energies. This retains the time information. 
Furthermore, we denoise the wavelet coefficients to focus 
the features on the more salient information and improve 
robustness. 

Another category of prior work in speech recognition 
that uses the wavelet transform is to apply it as an alternative 
to the cepstrum: Me1 filterbank subband energies are com- 
puted, the log is taken, and then an inverse wavelet trans- 
form is performed [7,8,9]. 
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3. WAVELETS AND WAVELET PACKETS 

A wavelet expansion o f a  signal can be viewed as a tree ex- 
pansion of recurrent low-pass and high-pass branches, with 
eachfilterfollowed bydownsamplingbyafactoroftwo [IO]. 

A wavelet transform expands only the low-pass branches 
of the tree, mapping N time samples into N wavelet coef- 
ficients. A wavelet packet transform expands the tree com- 
pletely, mapping N time samples into NEogN wavelet wef- 
ficients. One can choose a wavelet packet tree pruning that 
results in an orthonormal basis of N coefficients that repre- 
sent the signal in snme optimal way, such as the minimum 
entroov reoresentation. 

L 

the desired p r o p k e s  of the fil;erb&. 

4. WAVELETS AND SPEECH 

We propose to use an orthonormal set of the wavelet packet 
decomposition of the original time signal as features. We 
use the actual wavelet packet coefficients and not subband 
energies. In our experiments we used a local cosine packet [I 01 
decomposition because the cosine packets form visually good 
matches to the speech signals and so we expect the cosine 
packet coefficients to represent the underlying information 
well. 

There are several reasons why wavelet coefficients are a 
good approach to represent speech features for robust recog- 
nition. One physical model of the cochlea [I I ]  suggests that 
it acts as a continuous wavelet transform in that different 
portions ofthe membrane respond to different frequency ex- 
citations logarithmically. Secondly, the Me1 filterbank is a 
mature technology because it does work well. The subbands 
in the Me1 filterbank are similar to those in wavelet decom- 
positions in that both increase logarithmically in size as the 
frequency increases. Finally, wavelet (packet) decomposi- 
tions are extremely successful in other scientific areas for 
denoising. 

5. EXPERIMENT 

We performed a small-scale experiment on the downsam- 
pled 8 kHz TIMIT and NTIMIT database, using only data 
from sentence 1 of region 1 (all speakers, mixed genders), 
yielding 1500 training phones and 436 test phones. We 
considered 40 phoneme classes, of which 26 appeared in 
this data set. We compared the adaptively denoised cosine- 
packet coefficients (CP) to standard mel-filterbank cepstral 
coefficients (MFCC). 

The number of data points from each phone class in the 
test set is shown in Fig. I 

Fig. 1. Number of data points from each phone class in the 
test set ._ . 

The prototypical wavelet is the Haar wavelet, given by 
thelow-andhigh-passfilters{l/fi,l/fi} a n d ( l / f i , - l / f i l .  ..,. _l - . .__ . l IL-  : _-_... -. -- ..- ...Ls. 

Different filters (i.e.. wavelets) mav be used deoendine on 
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to control the number of variables and effects. No informa- 
tion was used from outside the window given for a phone, 
thus there was no context-dependency nor were delta cep- 
stral coefficients used. Both systems were trained only on 
the clean TIMIT data. 

The feature vectors of the test phones were classified 
using the I-Nearest Neighbor algorithm (I-NN) with Eu- 
clidean distance. I-NN is not expected to be the optimal 
classification algorithm for phoneme recognition, but I-" 
is suitable for comparing the feature vectors without bias- 
ing the comparison by using a classifier known to work well 
with MFCC feature vectors. The I-" is known to perform 
well over a large class of problems and does not assume an 
underlying model (such as gaussianity) about the data. 

Each phone was taken as a 32 ms (256 samples) time 
window centered around the center of the phone (we used 
the hand-segmented information available with the TIMIT 
database). If a phone was shorter than 32 ms, it was ze- 
ropadded. Then, we filtered each phone's time signal with 
the pre-emphasis filter 1 - .97z-' and multiplied the result 
by a hamming window. 

After that, for the wavelet CP analysis, we computed the 
256 orthonormal cosine packet coefficients for each phone 
(using a basis experimentally optimized for discriminating 
silence). For each phone (training or test), we implemented 
standard wavelet denoising with a hard threshold [3]: we 
sorted the coefficients by magnitude and set to zero all but 
the top m coefficients, where m was a parameter we ex- 
plored. Then we classified the test phones using the training 
phones and I-". 

For the MFCC analysis, after pulling out the centered 
32 ms (256 time samples), zeropadding if necessary, pre- 
emphasis filtering and multiplying by the hamming window, 
we began the MFCC analysis by taking the magnitude ofthe 
fourier transform of each phone's time signal. Then we cal- 
culated the me1 filterbank subband energies and computed 
the cepstrum. The cepstrum coefficients were normalized 
per sentence and then the mean was subtracted. 



. '. .. 

6. RESULTS 

The results for the CP analysis depend on the number of 
coefficients not thresholded to zero. We experimented with 
keeping 80 to 248 coefficients (the rest of the coefficients 
are set to zero, and the classification is always done in the 
original 256 dimensions). In Fig. 2 we show the CP error 
rate as a function of the number of coefficients kept. The 
experimental results are noisy, but suggest a trade-off be- 
tween thresholding out enough noise (keeping fewer coeffi- 
cients) and retaining enough information (keeping more co- 
efficients). Also, the classification was done in the original 
256-D space (denoised coefficients are set to zero) and the 
small size of the training set undoubtedly had a worsening 
effect as the number of coefficients kept was decreased. 

0.5 m L 

I 

Fig. 2. CP error rate shown as a function of the number of 
coefficients not thresholded. Circles are CP error rates on 
NTIMIT data, crosses are CP error rates on TIMlT data 

The best error rate on the NTIMIT data was 57.57% 
wrong when 144 coefficients were kept. The best error rate 
on the TIMIT data was 50% wrong when 184 coefficients 
were kept. Thus, as one would hypothesize, using more 
wavelet coefficients provides more information and is het- 
ter in clean conditions, but more denoising (= fewer coeffi- 
cients) is better for noisy environments. 

Forthe other results in this section, 160 coefficients were 
kept in the denoising step (and the classification was done 
in the original 256 dimensions). 

The MFCC results were 45% wrong on the clean TIMlT 
data and 62.39% wrong on the NTIMIT data. Thus the CP 
feature vectors were not providing as good clean perfor- 
mance but were, as theorized, able to degrade more grace- 
fully in the presence of noise. 

In Fig. 3 we show, for the NTIMIT data set, what per- 
centage of each phone class was estimated correctly by CP 
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Fig. 3. Percentage correct for each phone class on the 
NTIMIT data, dotted line is CP, solid line is MFCC 

and MFCC. Also, in Fig. 4 we plot the most likely class to 
he confused with each true class by MFCC and CP. These 
two figures show that the MFCC and CP methods perform 
differently over the classes and tend to confuse the classes 
differently, implying that the methods are thinking differ- 
ently about the data. 

. / *  1 , o o  : , * ,  1 .  
e 
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Fig. 4. Actual class plotted against the class most often con- 
fused with for the NTlMIT test set, circles represent cosine 
packet analysis and crosses represent MFCC features 

We also experimented with lowpass filtering each test 
signal with a butterworth filter with cut-off frequency of 4 
kHz. The results, shown in Table 1, show that the error in- 
creases less for the CP features than for the MFCC features. 
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Table 1. Table with error rates for full spectrum and low- 
pass filtered speech 

I .  FUTURE WORK 

This paper has proposed the use of wavelet coefficients for 
feature vectors and shown promising robustness results on a 
small experiment. Larger experiments need to-be carefully 
designed to determine if wavelet coefficients can be a prof- 
itable and robust representation. There are also open the- 
oretical and experimental questions of which wavelet and 
which basis are best for speech; best basis algorithms may 
be helpful [12]. 

We expect that a larger training set will have a posi- 
tive effect on the ability to classify using denoised wavelet 
features, as such a high dimensional space was only very 
sparsely populated in our small-scale experiment. 

8. CONCLUSIONS 

Cepstral coefficient feature vectors are a mahue tecbnol- 
ogy that have not been shown to achieve good robustness 
to noise and distortion. In this paper we have provided the- 
oretical and experimental reasons to investigate the use of 
wavelet coefficient feature vectors for robust speech recog- 
nition. 
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