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to Printer Color Management
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Abstract—Local learning methods, such as local linear regres-
sion and nearest neighbor classifiers, base estimates on nearby
training samples, neighbors. Usually, the number of neighbors
used in estimation is fixed to be a global “optimal” value, chosen
by cross validation. This paper proposes adapting the number of
neighbors used for estimation to the local geometry of the data,
without need for cross validation. The term enclosing neighbor-
hood is introduced to describe a set of neighbors whose convex
hull contains the test point when possible. It is proven that en-
closing neighborhoods yield bounded estimation variance under
some assumptions. Three such enclosing neighborhood definitions
are presented: natural neighbors, natural neighbors inclusive,
and enclosing k-NN. The effectiveness of these neighborhood
definitions with local linear regression is tested for estimating
lookup tables for color management. Significant improvements in
error metrics are shown, indicating that enclosing neighborhoods
may be a promising adaptive neighborhood definition for other
local learning tasks as well, depending on the density of training
samples.

Index Terms—Color, color image processing, color manage-
ment, convex hull, linear regression, natural neighbors, robust
regression.

LOCAL learning, which includes nearest neighbor (NN)
classifiers, linear interpolation, and local linear regression,

has been shown to be an effective approach for many learning
tasks [1]–[5], including color management [6]. Rather than fit-
ting a complicated model to the entire set of observations, local
learning fits a simple model to only a small subset of observa-
tions in a neighborhood local to each test point. An open issue
in local learning is how to define an appropriate neighborhood
to use for each test point. In this paper, we consider neighbor-
hoods for local linear regression that automatically adapt to the
geometry of the data, thus requiring no cross validation. The
neighborhoods investigated, which we term enclosing neighbor-
hoods, enclose a test point in the convex hull of the neighbor-
hood when possible. We prove that if a test point is in the convex
hull of the neighborhood, then the variance of the local linear
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regression estimate is bounded by the variance of the measure-
ment noise.

We apply our proposed adaptive local linear regression to
printer color management. Color management refers to the task
of controlling color reproduction across devices. Many com-
mercial industries require accurate color, for example, for the
production of catalogs and the reproduction of artwork. In addi-
tion, the rising ubiquity of cheap color printers and the growing
sources of digital images has recently led to increased consumer
demand for accurate color reproduction.

Given a CIELAB color that one would like to reproduce, the
color management problem is to determine what RGB color one
must send the printer to minimize the error between the desired
CIELAB color and the CIELAB color that is actually printed.
When applied to printers, color management poses a particularly
challenging problem. The output of a printer is a nonlinear func-
tion that depends on a variety of nontrivial factors, including
printer hardware, the halftoning method, the ink or toner, paper
type, humidity, and temperature [6]–[8]. We take the empirical
characterization approach: regression on sample printed color
patches that characterize the printer.

Other researchers have shown that local linear regression is
a useful regression method for printer color management, pro-
ducing the smallest reproduction errors when compared
to other regression techniques, including neural nets, polyno-
mial regression, and tetrahedral inversion [6, Section 5.10.5.1].
In that previous work, the local linear regression was performed
over neighborhoods of NN, a heuristic known to pro-
duce good results [9].

This paper begins with a review of local linear regression in
Section I. Then, neighborhoods for local learning are discussed
in Section II, including our proposed adaptive neighborhood
definitions. The color management problem and experimental
setup are discussed in Section III and results are presented in
Section IV. We consider the size of the different neighborhoods
in Section V, both theoretically and experimentally. The paper
concludes with a discussion about neighborhood definitions for
learning.

I. LOCAL LINEAR REGRESSION

Linear regression is widely used in statistical estimation. The
benefits of a linear model are its simplicity and ease of use,
while its major drawback is its high model bias: if the underlying
function is not well approximated by an affine function, then
linear regression produces poor results. Local linear regression
exploits the fact that, over a small enough subset of the domain,
any sufficiently nice function can be well approximated by an
affine function.
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Suppose that, for an unknown function , we
are given a set of inputs , where
and outputs , where . The goal is
to estimate the output for an arbitrary test point . To
form this estimate, local linear regression fits the least-squares
hyperplane to a local neighborhood of the test point,

, where

(1)

The number of neighbors in plays a significant role in the
estimation result. Neighborhoods that include too many training
points can result in regressions that oversmooth. Conversely,
neighborhoods with too few points can result in regressions with
incorrectly steep extrapolations. One approach to reducing the
estimation variance incurred by small neighborhoods is to regu-
larize the regression, for example by using ridge regression [5],
[10]. Ridge regression forms a hyperplane fit as in (1), but the
coefficients instead minimize a penalized least-squares cri-
teria that discourages fits with steep slopes. Explicitly

(2)

where the parameter controls the trade-off between min-
imizing the error and penalizing the magnitude of the coef-
ficients. Larger results in lower estimation variance, but
higher estimation bias. Although we found no literature using
regularized local linear regression for color management, its
success for other applications motivated its inclusion in our
experiments.

II. ENCLOSING NEIGHBORHOODS

For any local learning problem, the user must define what
is to be considered local to a test point. Two standard methods
each specify a fixed constant: either in the form of the number
of neighbors , or the bandwidth of a symmetric distance-de-
caying kernel. For kernels such as the Gaussian, the term “neigh-
borhood” is not quite as appropriate, since all training samples
receive some weight. However, a smaller bandwidth does corre-
spond to a more compact weighting of nearby training samples.
Commonly, the neighborhood size or the kernel bandwidth is
chosen by cross validation over training samples [5]. For many
applications, including the printer color management problem
considered in this paper, cross validation can be impractical.
Consider that even if some data were set aside for cross vali-
dation, patches would have to be printed and measured for each
possible value of . This makes cross validation over more than
a few specific values of highly impractical. Instead, it will be
useful to define a neighborhood that locally adapts to the data,
without need for cross validation.

Prior work in adaptive neighborhoods for k-NN has largely
focused on locally adjusting the distance metric [11]–[20]. The
rationale behind these adaptive metrics is that many feature
spaces are not isotropic and the discriminability provided by
each feature dimension is not constant throughout the space.
However, we do not consider such adaptive metric techniques
appropriate for the color management problem because the

feature space is the CIELAB colorspace, which was painstak-
ingly designed to be approximately perceptually uniform with
three feature dimensions that are approximately perceptually
orthogonal.

Other approaches to defining neighborhoods have been based
on relationships between training points. In the symmetric k-NN
rule, a neighborhood is defined by the test sample’s k-NN plus
those training samples for which the test sample is a k-NN
[21]. Zhang et al. [22] called for an “intelligent selection of
instances” for local regression. They proposed a method called

-surrounding neighbor ( -SN) with the ideal of selecting a
preset number of training points that are close to the test
point, but that are also “well-distributed” around the test point.
Their -SN algorithm selects NNs in pairs: first, the NN
not yet in the neighborhood is selected, then the next NN that
is farther from than it is from the test point is added to the
neighborhood. Although this technique locally adapts to the
spatial distribution of the training samples, it does not offer
a method for adaptively choosing the neighborhood size .
Another spatially based approach uses the Gabriel neighbors of
the test point as the neighborhood [23], [24, p. 90].

We present three neighborhood definitions that automatically
specify based on the geometry of the training samples and
show how these neighborhoods provide a robust estimate in
the presence of noise. Because each of the three neighborhood
definitions attempt to “enclose” the test point in the convex
hull of the neighborhood, we introduce the term enclosing
neighborhood to refer to such neighborhoods. Given a set of
training points and test point , a neighborhood is an
enclosing neighborhood if and only if when

. Here, the convex hull of a set
with elements is defined as ,

. The intuition behind regression on an enclosing
neighborhood is that interpolation provides a more robust es-
timate than extrapolation. This intuition is formalized in the
following theorem.

Theorem 1: Consider a test point and a neighborhood
of training points where . Suppose

and each are drawn independently and identically from a
sufficiently nice distribution, such that all points are in general
position with probability one. Let and

, where , and let each
component of the additive noise vector

be independent and identically distributed according to
a distribution with finite mean and finite variance . Given the
measurements , consider the linear estimate

, where solve

(3)

Then, if , the estimation variance is bounded by

The proof is given in Appendix A. Note that if
for training set , then the enclosing neighborhood cannot
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Fig. 1. (a) Natural neighbors neighborhood� is marked with solid circles.
For reference, the Voronoi diagram of this set is dashed. (c) Natural neighbors
inclusive neighborhood � is marked with solid circles; notice that � �
� . The shaded area indicates the inclusion radius ��� ��� �

� � �. (c) Enclosing k-NN neighborhood � is marked with solid circles.

satisfy , and there is no bound on the estimation
variance. In the limit of the number of training samples ,

[3, Theorem 3, p. 776]. However, the
curse of dimensionality dictates that for a training set with
finite elements and a test point drawn iid in dimensions,
the probability that decreases as increases [5],
[25]. This suggests that enclosing neighborhoods are best-suited
for regression when the number of training samples is high
relative to the number of feature dimensions , such as in the
color management problem.

Next, we describe three examples of enclosing neighbor-
hoods.

A. Natural Neighbors

Natural neighbors are an example of an enclosing neigh-
borhood [26], [27]. The natural neighbors are defined by the
Voronoi tessellation of the training set and test point .
Given , the natural neighbors of are defined to be those
training points whose Voronoi cells are adjacent to the cell
containing . An example of the natural neighbors is shown in
the left diagram of Fig. 1.

The local coordinates property of the natural neighbors [26]
can be used to prove that the natural neighbors form an enclosing
neighborhood when . Though commonly used
for 3-D interpolation with a specific generalized linear interpo-
lation formula called natural neighbors interpolation, Theorem
1 suggests that natural neighbors may be useful for local linear
regression, as well. We were unable to find previous examples
where the natural neighbors was used as a neighborhood defi-
nition for local regression or NN classification. One issue with
natural neighbors for general learning tasks is the complexity of
computing the Voronoi tessellation of points in dimensions
is when and when [28].

B. Natural Neighbors Inclusive

The natural neighbors may include a far training sample ,
but exclude a nearer sample . We propose a variant, natural
neighbors inclusive, which consists of the natural neighbors and
all training points within the distance to the furthest natural
neighbor, . That is, given the set of nat-
ural neighbors , the inclusive natural neighbors of are

(4)

Fig. 2. Standard color management system: Desired CIELAB color is trans-
formed to an appropriate RGB color that when input to a printer results in a
printed patch with approximately the desired CIELAB color.

This is equivalent to choosing the smallest k-NN neighborhood
that includes the natural neighbors.

An example of the natural neighbors inclusive neighborhood
is shown in the middle diagram of Fig. 1.

C. Enclosing k-NN Neighborhood

The linear model in local linear regression may oversmooth
if the neighbors are far from the test point . To reduce this risk,
we propose the neighborhood of the k-NNs with the smallest
such that , where denotes the k-NNs
of . Note that no such exists if . Therefore, it is
helpful to define the concept of a distance to enclosure. Given a
test point and a neighborhood , the distance to enclosure is

(5)

Note that if .
Using this definition, the enclosing k-NN neighborhood of

is given by where

If , this is the smallest such that
, while if this is the smallest

such that is as close as possible to the convex hull of .
An example of an enclosing k-NN neighborhood is given in

the right diagram of Fig. 1. An algorithm for computing the
enclosing k-NN is given in Appendix B.

III. COLOR MANAGEMENT

Our implementation of printer color management follows
the standard calibration and characterization approach [6,
Section 5]. The architecture is divided into calibration and
characterization tables in part to reduce the work needed to
maintain the color reproduction accuracy, which may drift
due to changes in the ink, substrate, temperature, etc. This
empirical approach is based on measuring the way the de-
vice transforms device-dependent input colors (i.e., RGB) to
printed device-independent colors (i.e., CIELAB). First,
color patches are printed and measured to form the training
data , where are the measured CIELAB
values and are the corresponding
RGB values input to the printer. These training pairs are used
to learn the LUTs that form the color management system.
The final system is shown in Fig. 2: the 3-D LUT implements
inverse device characterization which is followed by calibra-
tion by parallel 1-D LUTs that linearize each RGB channel
independently.
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A. Building the LUTs

The three 1-D LUTs enact gray-balance calibration, lin-
earizing each RGB channel independently. This enforces that
input neutral RGB color values with will
print gray patches (as measured in CIELAB). That is, if one
inputs the RGB colors for , the
1-D LUTs will output the RGB values that, when printed,
correspond approximately to uniformly-spaced neutral gray
steps in CIELAB space. Specifically, for a given neighborhood
and regression method, the 918 sample Chromix RGB color
chart is printed and measured to form the training pairs.
Next, the axis of the CIELAB space is sampled with 256
evenly-spaced values
to form incremental shades of gray. For each , a
neighborhood is constructed and three regressions on

, , and fit locally
linear functions for . Finally, the 1-D
LUTs are constructed with the inputs and outputs

, where correspond to the three
1-D LUTs.

The effect of the 1-D LUTs on the training data must be taken
into account before the 3-D LUT can be estimated. The training
set is adjusted to find that, when input to the 1-D LUTs, re-
produces the original . These adjusted training sample pairs

are then used to estimate the 3-D LUT (Note: In our
process, all the LUTs are estimated from one printed test chart,
as is done in many commercial ICC profile building services.
More accurate results are possible by printing a second test chart
once the 1-D LUTs have been estimated, where the second test
chart is sent through the 1-D LUTs before being sent to the
printer).

The 3-D LUT has regularly spaced gridpoints .
For the 3-D LUTs in our experiment, we used a
grid that spans the CIELab color space with and

. Previous studies have shown that a finer
sampling than this does not yield a noticeable improvement in
accuracy [6]. For each , its neighborhood is
determined, and regression on , ,
and fits the locally linear functions
for .

Once estimated, the LUTs can be stored in an ICC profile.
This is a standardized color management format, developed
by the International Color Consortium (ICC). Input CIELAB
colors that are not a gridpoint of the 3-D LUT are interpolated.
The interpolation technique is not specified in the standard; our
experiments used trilinear interpolation [29], a 3-D version
of the common bilinear interpolation. This interpolation tech-
nique is computationally fast, and optimal in that it weights
the neighboring grid points as evenly as possible while still
solving the linear interpolation equations by choosing the
maximum entropy solution to the linear interpolation equations
[3, Theorem 2, p. 776].

B. Experimental Setup

The different regression methods were tested on three
printers: an Epson Stylus Photo 2200 (ink jet) with Epson
Matte Heavyweight Paper and Epson inks, an Epson Stylus

Photo R300 (ink jet) with Epson Matte Heavyweight Paper
and third-party ink from Premium Imaging, and a Ricoh Aficio
1232C (laser engine) with generic laser copy paper. Color
measurements of the printed patches were done with a Gretag-
Macbeth Spectrolino spectrophotometer at a 2 observer angle
with D50 illumination.

In our experiments, the calibration and characterization LUTs
are estimated using local linear regression and local ridge re-
gression over the enclosing neighborhood methods described in
Section II and a baseline neighborhood of 15 NNs, which is a
heuristic known to produce good results for this application [9].
All neighborhoods are computed by Euclidean distance in the
CIELAB colorspace and the regression is made well posed by
adding NNs if necessary to ensure a minimum of four neigh-
bors. As analyzed in Section V, the enclosing k-NN neighbor-
hood is expected to have roughly seven neighbors, where the
word “roughly” is used to capture the fact that the assumptions
of Theorem 2 (see Section V-A) do not hold in practice. The
expected small size of enclosing k-NN neighborhoods led us to
also implement a variation of the enclosing k-NN neighborhood
which uses a minimum of neighbors: this is achieved by
adding NNs to the enclosing k-NN neighborhood if there are
fewer than 15. Note that this variant is also an enclosing neigh-
borhood, but ensures smoother regressions than the enclosing
k-NN neighborhood.

The ridge parameter in (2) was fixed at for all the
experiments. This parameter value was chosen based on a small
preliminary experiment, which suggested that values of from

to would produce similar results. Note that the
effect of the regularization parameter is highly nonlinear, and
that steeper slopes (higher values of ) are more strongly af-
fected by the regularization. It is common wisdom that a small
amount of regularization can be very helpful in reducing esti-
mation variance, but larger amounts of regularization can cause
unwanted bias, resulting in oversmoothing.

To compare the color management systems created by each
neighborhood and regression method, 729 RGB test color
values were drawn randomly and uniformly from the RGB
colorspace, printed on each printer, and measured in CIELAB.
These measured CIELAB values formed the test samples.
This process guaranteed that the CIELAB test samples were
in the gamut for each printer, but each printer had a slightly
different set of CIELAB test samples. The test samples were
then input as the “Desired CIELAB” values to test the accuracy
of each estimated LUT, as shown in Fig. 2. Each estimated LUT
produced estimated RGB values that, when sent to the printer,
would ideally yield the test sample CIELAB values. The dif-
ferent estimated RGB values were sent to the printer, printed,
measured in CIELAB, and the error was computed with
respect to the test sample CIELAB values. The error
metric is one standard way to measure color management error
[6].

IV. RESULTS

Tables I–III show the average error and 95th percentile
error for the three printers for each neighborhood definition,
and each regression method. In addition, we discuss in this sec-
tion which differences are statistically significantly different as
judged at the .05 significance level by Student’s matched-pair
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TABLE I
�� ERRORS FROM THE RICOH AFICIO 1232C

TABLE II
�� ERRORS FROM THE EPSON PHOTO STYLUS 2200

t-test. These three metrics (average, 95th percentile, and sta-
tistical significance) summarize different aspects of the results,
and are complementary in that good performance with respect
to one of the three metrics does not necessarily imply good per-
formance with respect to the other two metrics. The baseline is
the neighbors with local linear regression. Small errors
may not be noticeable; though noticeability varies throughout
the color space and between people, errors under are
generally not noticeable.

The Ricoh laser printer is the least linear of the three printers,
likely due to the printing instabilities that are common with
high-speed laser printers. For the Ricoh, all of the enclosing
neighborhoods have lower average error and lower 95th per-
centile error than the baseline of 15 neighbors and linear
regression. Further, all of the methods were statistically sig-
nificantly better than the 15 neighbors baseline, except for
enclosing k-NN (linear), which was not statistically signifi-
cantly different. Changing to ridge regression for 15 neighbors

eliminates over 10% of the 95th percentile error. Thus, the
adaptive methods and the regularized regression make a clear
difference for nonlinear color transformations.

For the Ricoh laser printer, the lowest average error and
lowest 95th percentile error are produced by enclosing k-NN
minimum 15 (ridge): the 95th percentile error is reduced by
21% over 15 neighbors (ridge), and the total error reduction is
31% over the baseline of 15 neighbors (linear). Enclosing k-NN
minimum 15 (ridge) is statistically significantly better than all
other methods for this printer. These results suggest that highly
nonlinear color transforms can be effectively modeled by local
regression using a lower bound on the number of neighbors
(to keep estimation variance low) but allowing possibly more
neighbors depending on their spatial distribution.

On the Epson 2200 all of the enclosing neighborhoods have
lower average and 95th percentile error than the baseline of 15
neighbors (linear). However, only enclosing k-NN (ridge), en-
closing k-NN minimum 15 (ridge), or natural neighbors (ridge)
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TABLE III
�� ERRORS FROM THE EPSON PHOTO STYLUS R300

were statistically significantly better (the other methods were
not statistically significantly different). The natural neighbors
(ridge) is statistically significantly better than all of the other
methods except for enclosing k-NN (linear and ridge), which are
not statistically significantly different. Enclosing k-NN (ridge)
is statistically significantly better than all of the other methods
except for natural neighbors (ridge). These results are consistent
with the Ricoh results in that enclosing neighborhoods coupled
with ridge regression provide significant benefit.

The Epson R300 inkjet fits the locally linear model well, as
evident in the low errors across the board and the small average
and 95th percentile error differences between methods. Here,
few methods are statistically significantly different, but the nat-
ural neighbors inclusive is statistically significantly worse than
the other neighborhood methods, including the baseline. We hy-
pothesize that because the natural neighbors inclusive creates in
some instances very large neighborhoods, this increase in error
may be caused by the bias of oversmoothing.

We have presented and discussed our results in terms of the
error because it is considered a more accurate error func-

tion for color management than (Euclidean distance in
CIELAB) [6]. In (1) and (2), we minimize the Euclidean error
in CIELAB, because this leads to a tractable objective, whereas
minimizing error does not. The errors were also
calculated and compared to the errors. The results were
very similar in terms of the rankings of the regression methods
and the statistically significant differences.

In summary, the experiments show that using an enclosing
neighborhood is an effective alternative to using a fixed neigh-
borhood size. In particular, enclosing k-NN minimum 15 (ridge)
achieved the lowest average and 95th percentile error rates for
the most nonlinear printer (the laser printer), and was either
the best or a top performer throughout. Also, ridge regression
showed consistent performance gains over linear regression, es-
pecially with smaller neighborhoods. Importantly. the overall
low error rates on the inkjet printers suggest that the locally
linear model fits sufficiently well on these printers, resulting in
less room for improvement over the baseline method.

V. SIZES OF ENCLOSING NEIGHBORHOODS

Enclosing neighborhoods adapt the size of the neighborhood
to the local spatial distribution of the training and test sample. In
this section, we consider the key question, “How many neigh-
bors are in the neighborhood?” We consider analytic and experi-
mental answers to this question, and how the neighborhood size
will relate to the estimation bias and variance.

A. Analytic Size of Neighborhoods

Asymptotically, the expected number of natural neighbors
is equal to the expected number of edges of a Delaunay tri-
angulation [27]. A common stochastic spatial model for an-
alyzing Delaunay triangulations is the Poisson point process,
which assumes that points are drawn randomly and uniformly
such that the average density is points per volume . Given
the Poisson point process model, the expected number of natural
neighbors is known for low dimensions: six neighbors for two
dimensions, neighbors for three dimen-
sions, and neighbors for four dimensions [27].

The following theorem establishes the expected number of
neighbors in the enclosing k-NN neighborhood if the training
samples are sampled from a uniform distribution over a hyper-
sphere about the test sample.

Theorem 2 (Asymptotic Size of Enclosing k-NN): Suppose
training samples are uniformly sampled from a distribution that
is symmetric around a test sample in . Then, asymptotically
as , the expected number of neighbors in the enclosing
k-NN neighborhood is .

The proof is given in Appendix C.
For both the natural neighbors and enclosing k-NN, these an-

alytic results model the training samples as symmetrically dis-
tributed about the test point. This is a good model for the general
asymptotic case where the number of training samples ,
because if the true distribution of the training samples is smooth
then the random sampling of training samples local to the test
sample will appear as though drawn from a uniform distribution.
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Fig. 3. Histograms show the frequency of each neighborhood size when esti-
mating the gridpoints of the 3-D LUT for the Ricoh Aficio 1232C.

B. Experimental Size of Neighborhoods

The analytic neighborhood size results suggest that the nat-
ural neighbors is a larger neighborhood on average than the
enclosing k-NN neighborhood, which we found to be true ex-
perimentally. Representative empirical histograms of the neigh-
borhood sizes are shown in Fig. 3. They show the distribution of
the neighborhood sizes for the color management of the Ricoh
printer from 918 training samples.

By design, the enclosing k-NN is the smallest possible k-NN
neighborhood that encloses the test point, which should keep es-
timation bias relatively low because the neighbors are relatively
local. The natural neighbors tend to form larger neighborhoods
than enclosing k-NN, and a particular natural neighbor could be
close or far from the test sample. Thus, it is hard to judge how
local the natural neighbors are. The natural neighbors inclusive
has relatively large neighborhoods, which suggests that some
of the natural neighbors must in fact be quite far from the test
sample. The large size of the natural neighbors means that the
estimated transforms will be fairly linear across the entire col-
orspace, which can oversmooth the estimation.

One cause of large neighborhood sizes is when a test point is
outside the convex hull of the entire training set. As discussed
in Section I, the set of training samples may not span the full
colorspace, resulting in exactly this situation. An illustration of
how such cases affect the enclosing neighborhood sizes is pro-
vided in Fig. 4. Here, the enclosing k-NN neighborhood is .
From the Voronoi diagram, one can read that the natural neigh-
bors of are . The largest of the neighbor-
hoods in this case is the natural neighbors inclusive, composed
of .

When training and test samples are drawn iid in high-dimen-
sional feature spaces, the test samples tend to be on the boundary
of the training set, an effect known as Bellman’s curse of dimen-
sionality [5], [25]. We hypothesize that this effect for high-di-
mensional feature spaces would cause an abundance of large
neighborhoods for the natural neighbors methods.

The inclusion of possibly far-away points to “enclose” the test
point may result in increased bias. Based on the neighborhood
size histograms and our analysis of the different neighborhoods,
enclosing k-NN should incur the lowest bias. On the other hand,
we expect natural neighbors inclusive to have the largest positive
effect on variance because a larger neighborhood tends to lead to
lower estimation variance for regression problems, though this
matter is not so straightforward for classification.

Fig. 4. Voronoi diagram of a situation where the test point � lies outside the
convex hull of the training samples.

VI. DISCUSSION

We have proposed the idea of using an enclosing neighbor-
hood for local learning and theoretically motivated it for local
linear regression. Such automatically adaptively-sized neigh-
borhoods can be useful in applications where it is difficult to
cross validate a neighborhood size, and in particular we have
shown that using enclosing neighborhoods can significantly re-
duce color management errors. Local learning can have less bias
than more global estimation methods, but local estimates can be
high-variance [5]. Enclosing neighborhoods limit the estimation
variance when the underlying function does have a (noisy) linear
trend. Ridge regression is another approach to controlling esti-
mation variance, but does so by penalizing the regression coef-
ficients, which increases bias. In contrast, we hypothesize that
the effect of an enclosing neighborhood on bias may be either
positive or negative, depending on the actual geometry of the
data. It remains an open question how the estimation bias and
variance differ between enclosing neighborhoods and the stan-
dard k-NN, which uses a fixed, but cross validated, for all test
samples.

The definition of the neighborhood for local learning is
important, whether for local regression, or for local classifi-
cation. We conjecture that using enclosing neighborhoods for
other local learning tasks may lead to improved performance,
particularly for densely sampled feature spaces.

APPENDIX A
PROOF OF THEOREM 1

Proof: Form the -dimensional vectors
and . Let , and re-index the training
samples so that for . Let denote the

matrix whose th column is . Further, let
, let be the vector with th component

, and let be the vector with th component .
The least-squares regression coefficients which solve (3) are
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Note that . Let denote the
identity matrix. Then the covariance matrix of the regression
coefficients is

The variance of the estimate is

(6)

The proof is finished by showing that if
is an enclosing neighborhood.

Assume is an enclosing neighborhood. Then by definition
it must be that , and that there exists some weight
vector such that (which includes the constraint that

) and . The training and test samples are as-
sumed to be drawn iid from a sufficiently nice distribution over
the -dimensional feature space such that the training and test
samples are in general position with probability one; that is, the
enclosing neighbors and test sample do not lie in a degenerate
subspace, and, thus, it must be that the matrix is full rank.
Then the Moore–Penrose pseudo-inverse of is well defined
as the vector , and is the min-
imum norm solution to such that for any

that satisfies [30].
Then

(7)
Because for each , it must be that

. Combining these facts with the property that
because it is a sum of squared elements, the following holds:

Then from (7) it must also be that , which
coupled with (6) completes the proof.

APPENDIX B
METHOD FOR CALCULATING THE ENCLOSING

k-NN NEIGHBORHOOD

1) Define an that is the threshold for how small the distance
to enclosure must be before considering the neighborhood
to effectively enclose the test point in its convex hull. Gen-
erally, should be small, but how small may depend on the
relative scale of the data. For the CIELAB space, where a
just noticeable difference is roughly , we set .

2) Re-order the set of training samples for
by distance from the test point so that is the th NN
to .

3) Add to the set .
4) Define the indicator function , where if

lies in the same half-space as with respect to the hy-
perplane that passes through and is normal to the vector
connecting to , and otherwise.

5) Add to the set the training point nearest to in the
half-space, that is

6) If the distance to enclosure , then stop iter-
ating, and the set of all training samples closer than to

form the enclosing k-NN neighborhood.
7) Project onto the convex hull of , and denote this point

. Re-define the indicator function if lies in
the same half-space as with respect to the hyperplane that
passes through and is normal to the vector connecting
to , and otherwise. If for all training
samples, then stop iterating, and the set of all training sam-
ples that are closer than the farthest member of form the
enclosing k-NN neighborhood.

8) Repeat steps 5)–7) until a stopping criteria is met.

APPENDIX C
PROOF OF THEOREM 2

To prove the theorem, the following lemma will be used.
Lemma: Given , let denote the convex

hull of the rows of . If and only if the origin
, then the origin is in the convex hull of some positive

scaling of the , i.e., , where is a
positive definite diagonal matrix.

Proof of Lemma: Suppose . By definition,
there exists a weight vector such that , , and

. If is scaled by the positive definite diagonal ma-
trix , then it must be shown that there exists a set of weights
with the properties that , , and .
Denote the normalization scalar , then it can be
seen that one such weight vector that satisfies these conditions is

and we conclude that . Next,
suppose that , then it must be shown that scaling

by any positive definite diagonal matrix does not form a
convex hull that contains the origin. The proof is by contradic-
tion: assume that but . The first
part of this proof could be applied, scaling by , which
would lead to the conclusion that , thus forming
a contradiction.

Now we begin the body of the proof of Theorem 2. Without
loss of generality, assume the test point is the origin .
Let be the random matrix with rows drawn
independently and identically from a symmetric distribution in

. Rearrange the rows of so that they are sorted such that
for all . As established in the

lemma, without a loss of generality with respect to the event
, scale all rows such that for all .
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Then if and only if and the row vectors
are not all contained in some hemisphere [31]. Let indicate
the event that vectors lie on the same hemisphere, and will
denote the complement of . Wendel [32] showed that for
points chosen uniformly on a hypersphere in

(8)

Let be the event that: the first ordered points enclose the
origin, but the first ordered points do not enclose the origin.
The probability of the event is

(9)

Because one or zero points cannot complete a convex hull
around the origin, and . Combining
(8) and (9), and using the recurrence relation of the binomial
coefficient

(10)

for all

where the last line follows because for all [33, p.
154]. Then

To simplify, change variables to

where the second to last line follows from (10). Expand the
recurrence

The first and third terms in this equation converge to zero as
, leaving

Using the identity [33, p. 155], and the summation [33,
p. 199]

with , establishes the result: .
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