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ABSTRACT

For many sensing modalities such as sonar, received signals
may be corrupted by multipath that degrades performance in
classification. An approach to jointly deconvolve and classify
such signals is proposed, in which training data is used to in-
crease the overall system performance. Specifically, a filter is
estimated that minimizes the distortion between the received
signal and a set of training signals, then the received signal
is assigned to the class that corresponds to the training signal
whose estimated filter is most sparse. Simulations compare
the new method with blind deconvolution using
Cabrelli’s algorithm followed by a correlation-based nearest
neighbor classifier. Results indicate that joint deconvolution
and classification performs similarly to blind deconvolution
in the presence of severe noise, and outperforms blind decon-
volution at low and moderate noise levels.

Index Terms— deconvolution, multipath channels, sonar
signal processing, sonar target recognition, pattern classifica-
tion

1. INTRODUCTION

Consider the problem of automatically classifying signals that
have experienced unknown multipath distortion. This is a
common problem in sonar, and arises in other sensing modal-
ities such as ultrasound, THz, and radar. One solution is to
classify based on features designed to be invariant to mul-
tipath. Another solution is to perform blind deconvolution
and then classify on the recovered signal. We propose a third
solution, joint deconvolution and classification, and demon-
strate that it can be a more effective system-optimized ap-
proach than blind deconvolution.

Assume there exists a set of training signals {xi} for i =
1, . . . , M , and a corresponding classification label yi for each
signal. A received signal z(t) is known to be contaminated
with multipath and additive noise,

z(t) = h(t) ? c(t) + w(t),
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where c(t) is the unknown “clean” direct path signal of in-
terest, h(t) is the impulse response of a linear time-invariant
(LTI) filter corresponding to the multipath effect, and w(t) is
additive noise. The problem is to classify z(t) as ŷ.

One approach to classifying in the presence of multipath
is to extract classification features from the training and re-
ceived signals that are (ideally) invariant to multipath distor-
tion. Shin et al. consider a number of time-frequency features
for clutter rejection [1]. Strausberger et al. compare differ-
ent distance measures for 1-nearest-neighbor classification of
radar signals passed through Rician channels [2]. Other work
in this area includes [3].

A second category of solutions is to perform blind de-
convolution of each received signal to attempt to remove the
multipath distortion, then pass the cleaned signal to a classi-
fier (which may then extract pertinent classification features).
There are many examples of trying to remove the multipath
by blind deconvolution in order to classify [3–11]. Roan et al.
report good experimental results with blind deconvolution for
an acoustic PVC pipe filter [11]. Also, Broadhead and Pflug
report excellent correlation scores for blindly deconvolved
signals distorted by multipath [5]. They show that Cabrelli’s
method [12] outperforms Wiggins’ deconvolution [10] in the
presence of additive Gaussian white noise. However, classifi-
cation is not considered in [5].

In the following section, a new approach is proposed that
avoids blind deconvolution by using training signals to jointly
characterize the multipath channel and classify the received
signal.

2. JOINT DECONVOLUTION AND
CLASSIFICATION

When considered jointly with multipath distortion, a new ap-
proach to nearest-neighbor classification is to ask: could the
received signal z(t) be from the same class as training signal
xi(t), but appear different due to some multipath distortion
h(t)? A straightforward nearest-neighbor formulation of this
question is to classify z as the class ŷ = yi∗ where

i∗ = arg min
i=1,...,M

D
(
z(t)− xi(t) ? ĥi(t)

)
, (1)



where the ĥi(t) are constrained to be multipath filters and D is
an appropriate distance measure such as the L2 norm. Solving
(1) requires a strict definition of what constitutes a multipath
filter, and then the minimization must be solved.

A related, but simpler way to implement this idea is to
solve (1) in two steps: relax the multipath constraints when
estimating ĥi(t) for i = 1, . . . , M , then choose i∗ such that
ĥi∗(t) is most like a multipath filter. To do this, we first esti-
mate ĥi(t) for each of the training signals:

Ĥi(w) =
Z(w)
Xi(w)

, (2)

where capital letters denote the Fourier transform of the corre-
sponding time-domain signals. Assuming a perfect deconvo-
lution is possible, the distortion between z(t) and each xi(t)?
ĥi(t) is zero, so that it is not possible to apply a nearest-
neighbor classifier using the estimated ĥi(t) as per (1). How-
ever, given the assumption that the received signal underwent
multipath, we can classify based on which estimated decon-
volution filter best fits a multipath criterion. That is, classify
z(t) as ŷ = yi∗ where

i∗ = arg max
i=1,...,M

F (ĥi(t)), (3)

and F is a functional that evaluates how well the input argu-
ment represents a multipath filter.

This opens the question of what is an appropriate func-
tional F . A similar problem of evaluating how well a filter
represents a multipath filter occurs in blind deconvolution.
Blind deconvolution of multipath for sonar and geophysical
sensing have previously modeled multipath filtering as a few
paths of non-frequency-selective reflections, so that a multi-
path filter is well-represented by a few time-shifted and scaled
impulses. Given this model it is common to use the sparseness
of ĥ(t) as criteria for a multipath filter. Metrics for quantify-
ing sparseness are specified by Wiggins [10], Cabrelli [12],
Broadhead [5], and others.

3. EXPERIMENTS

We evaluate joint deconvolution and classification as speci-
fied in (2) and (3) by comparing its performance with blind
deconvolution using Cabrelli’s method [12] followed by clas-
sification. In Experiment 1, we compare the ability to classify
received multipath signals using standard statistical learning
assumptions of independent and identically distributed train-
ing and testing signals. In Experiment 2, we build on the
work by Broadhead and Pflug [5] by comparing the classifi-
cation results of signals corrupted by multipath and additive
white noise.

Both simulations are two-class problems and all signals
are discrete-time sequences. For consistency, sparsity of an
estimated filter ĥi is evaluated using the D-norm criterion

specified by Cabrelli’s blind deconvolution [12]. Thus (3) be-
comes

i∗ = arg max
i=1,...,M

‖ĥi‖∞
‖ĥi‖2

For simplicity, the length of each ĥi is fixed to the true length
of the multipath distortion so that the D-norm does not favor
shorter impulse responses. In our experiments, we remove the
mean of the estimated filter prior to computing the D-norm.
In both approaches, a straight inverse in the Fourier domain is
used for any deconvolution operations.

3.1. Experiment 1

Experiment 1 uses two sonar signals xa and xb, shown in Fig.
1, that were randomly selected echoes from different clutter
collected with an impulsive-source active sonar system. Both
signals have been normalized such that their standard devia-
tion is unity. Training signals xi are generated independently
and identically by first randomly choosing class one or class
two with equal probability. If xi is chosen to be from class
one, then xi = xa +wi, where wi is drawn from a zero-mean
Gaussian distribution with standard deviation σ. Similarly, if
xi is selected to be from class two, then xi = xb + wi. Thus,
signals in class one are perturbed versions of xa, and signals
in class two are perturbed versions of xb, where the extent of
perturbation is described by σ.
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Fig. 1. Clutter signals used to generate training and testing
data for class one (above) and class two (below) in Experi-
ment 1.

Test signals cj for j = 1, . . . , N are generated indepen-
dently and identically with the same distribution as the train-
ing signals, so that cj = xa + wj or cj = xb + wj , where wj

is drawn from a zero-mean Gaussian distribution with stan-
dard deviation σ. Then, each test signal cj is passed through



a randomly generated multi-pass filter,

hj =
K∑

k=1

αkδ(t− τk)

where τk are chosen at random uniformly over the interval
[0, 400], and the corresponding magnitudes of αk decrease
exponentially with t. To allow for direct path and multipath
interference, the sign of α1 is positive, while the signs of the
remaining α2, . . . , αK are chosen randomly. In our simula-
tions, we choose K randomly as an integer in the interval
[1, 6]. The resulting test signal zj = hj ? cj is then passed to
the two methods for classification.

Nearest-neighbor classification using correlation to define
nearness is performed after the blind deconvolution. First, we
estimate a pre-filtered signal ĉj for each zj using Cabrelli’s
method, and compare ĉj to each training sequence xi for i =
1, . . . , M . The classification label ŷ for ĉj is chosen to be
yi∗ where i∗ maximizes the max normalized correlation (also
used as a metric by Broadhead and Pflug [5]),

i∗ = arg max
i=1,...,M

max |xi ⊗ ĉj |
‖xi‖‖ĉj‖ ,

where ⊗ denotes correlation.
The simulation was run with M = 10 training sequences

and N = 100 testing signals for σ ranging over the interval
[0, 1.5]. The performance comparison of the two methods is
shown in Fig. 2. Joint deconvolution and classification per-
forms well through perturbations of σ = 1, but drops to the
performance of blind deconvolution as large perturbations in
the signals render the classes more ambiguous.
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Fig. 2. Percentage of correct classification as a function of σ
for the joint deconvolution/classification and blind deconvo-
lution methods compared in Experiment 1.

3.2. Experiment 2

A second experiment uses the same training signals and ex-
perimental architecture as the blind deconvolution experiment
in [5] to test the sesntivity to additive noise, but is augmented
with an additional classification step. In this setup, we simu-
late the classification of structured signals xg and xs in Fig. 3

after they have been corrupted by a random multipath filter hj

and additive noise w′j such that z = xg ? hj + w′j , if the test
signal is drawn randomly from class one, or z = xs ?hj +w′j
if drawn from class two, and w′j is drawn from a zero-mean
Gaussian distribution with varying standard deviation, as to
adjust the signal to noise ratio (SNR) of z.
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Fig. 3. Structured signals used to generate training and test-
ing data for class one (above) and class two (below) in Exper-
iment 2.

As done in [5], we employ a simple bandpass filter prior
to classification since it is reasonable that in practice, some
knowledge of the frequency characteristics would be avail-
able. For blind deconvolution, the filter is applied to the es-
timated signal ĉj retrieved from Cabrelli’s method. For joint
deconvolution and classification, it is applied to the test signal
zj prior to application of (2).

We classify N = 1000 test signals for each SNR level
ranging from 0 to 30 dB, as shown in Fig. 4. Performance
of the two algorithms at very low SNR is comparable (perfor-
mance for both methods below 0 dB is around 50%), whereas
joint deconvolution and classification outperforms blind de-
convolution for moderate and high SNR levels.
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Fig. 4. Percentage of correct classification as a function of
SNR for the joint deconvolution/classification and blind de-
convolution methods compared in Experiment 2.



4. DISCUSSION AND OPEN QUESTIONS

We have proposed joint deconvolution and classification as a
system-optimized alternative to blind deconvolution followed
by classification. As a benchmark for performance, we em-
ployed Cabrelli’s method [12] for blind deconvolution, fol-
lowed by classification based on normalized correlation as re-
ported in [5]. Results indicate that joint deconvolution and
classification is comparable to blind deconvolution at very
low SNR, and outperforms blind deconvolution at moderate
and high SNR. Improvement in classification performance is
a result of the system-optimized approach of the joint method.

Since blind deconvolution requires a matrix inversion for
each test signal, its computational complexity increases expo-
nentially with the length n of the test signal (Levinson recur-
sion is O(n2)). This is an additional expense over the joint
method since the computation complexity of classification in
the two methods is similar. Using our MATLAB implemen-
tation for Experiment 2, the blind deconvolution and classifi-
cation was four orders of magnitude slower than joint decon-
volution and classification. This included naive optimizations
in matrix inversion during blind convolution, such as incor-
porating Levinson recursion in a compiled MEX function for
inverting the Toeplitz matrix [12].

While we have demonstrated one implementation of joint
deconvolution and classification, there may be other such
system-optimized approaches to this problem. For example,
a viable approach would be to estimate a filter for each pair-
ing of test and training signals, but to constrain the choice
of the estimated filter ĥi(t) to represent the expected mul-
tipath (rather than choose the most sparse of the estimated
filters, as we did). This problem could be reduced to param-
eter estimation on a multipath filter model, such as ĥ(t) =∑K

k=1 αkδ(t − τk), for which the parameters αk, τk, and K
are unknown. Another variation on the problem is to consider
a different distortion function D(·) in (1) to measure close-
ness of z(t) and xi(t) ? ĥi(t). For example, it can be argued
that normalized correlation may be a better measure for signal
similarity in the presence of additive white noise.

In this paper the signal samples were used as features for
nearest neighbor classification, but in many tasks there are
known features that more readily differentiate the classes. For
such cases, it is an open question how to jointly remove mul-
tipath distortion and classify. Also, we have focused on the
case of multipath as a common type of distortion. The pro-
posed technique might work well for general LTI smoothing
if a suitable metric can be found to replace F in (3) for eval-
uating the particular ”smooth” criteria. Lastly, in some appli-
cations, multipath distortion is time-varying over the signal
duration. For that case, joint signal retrieval and classification
methods require further investigation.
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