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Completely Lazy Learning
E. K. Garcia, S. Feldman, M. R. Gupta, and S. Srivastava

Abstract—Local classifiers are sometimes called lazy learners because they do not train a classifier until presented with a test sample.
However, such methods are generally not completely lazy, because the neighborhood size k (or other locality parameter) is usually
chosen by cross-validation on the training set, which can require significant preprocessing and risks overfitting. We propose a simple
alternative to cross-validation of the neighborhood size that requires no pre-processing: instead of committing to one neighborhood
size, average the discriminants for multiple neighborhoods. We show that this forms an expected estimated posterior that minimizes
the expected Bregman loss with respect to the uncertainty about the neighborhood choice. We analyze this approach for six standard
and state-of-the-art local classifiers, including discriminative adaptive metric kNN (DANN), a local support vector machine (SVM-KNN),
hyperplane distance nearest-neighbor (HKNN) and a new local Bayesian quadratic discriminant analysis (local BDA). The empirical
effectiveness of this technique vs. cross-validation is confirmed with experiments on seven benchmark datasets, showing that similar
classification performance can be attained without any training.

Index Terms—lazy learning, Bayesian estimation, cross-validation, local learning, quadratic discriminant analysis
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1 INTRODUCTION

LOcal classifiers such as kNN are sometimes called
lazy learners [1] because they wait to see the test

sample before learning a classifier. Achieving compet-
itive error rates on practical problems [2], [3], [4], [5],
Local classifiers can trivially adapt to evolving training
data and are suitable for problems where one cannot
assume that training and test samples are drawn from
the same distribution. For instance, consider the problem
of recommending a webpage to a user given this user’s
feedback about previously visited webpages: there is a
growing training set, the user’s preferences are evolving,
and the training and test data are almost certainly not
drawn iid from some distribution. For such a prob-
lem, classifying a new webpage based only on training
samples similar to the test sample (local learning) is a
compelling choice. Although our focus here will be on
classification, much of this treatment applies analogously
to local regression and other local learning tasks.

Local learning requires a definition of locality that
is usually chosen to be a cross-validated number of
neighbors, as in kNN. Many algorithms exist for find-
ing nearest-neighbors efficiently [6], [7], [8], even for
evolving data [9], uncertain training data [10], or non-
metric spaces [11], [12]. However, training the neighbor-
hood size k for local classifiers requires added system
complexity and costs. For example, given an evolving
database with around one million training samples, con-
tinuously re-cross-validating or re-training the choice of
k is burdensome on the system and will add complexity
and fragility to the codebase.
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The main contribution of this paper is demonstrating
that simply averaging local probabilities/discriminants
over a reasonable set of neighborhoods performs simi-
larly to cross-validating one neighborhood size for local
classifiers but without the costs or complexity of cross-
validation. This is verified for six different local classi-
fiers on seven benchmark datasets. Further, we show
how this can be interpreted as a Bayesian approach
to estimating the neighborhood size, and refer to it
as Bayesian neighborhoods. A secondary contribution is
presenting a local version of the Bayesian quadratic dis-
criminant analysis classifier [13], [14]. As with classical
quadratic discriminant analysis (QDA) [5] the global
version of this classifier has significant model bias that
can be greatly reduced by applying it locally. Com-
bined with the proposed Bayesian neighborhoods, the
local Bayesian quadratic discriminant analysis (local BDA)
proposed herein approximately minimizes expected mis-
classification error with respect to uncertainty in both the
neighborhood and the locally modeled class-conditional
Gaussians and is a state-of-the-art classifier that is also
completely lazy.

First, we review related approaches to finding neigh-
borhoods for local learning. Then in Section 3, we mo-
tivate and define the proposed Bayesian neighborhoods
and discuss computational complexity. In Section 4, we
analyze how Bayesian neighborhoods affect different
categories of local classifiers, and introduce the local
BDA classifier. In Section 5, we present experiments that
compare Bayesian neighborhoods to cross-validation on
benchmark datasets for six standard and state-of-the-art
local classifiers: kNN, a local linear SVM (SVM-KNN)
[2], nearest-hyperplane kNN (HKNN) [15], discriminant
adaptive nearest-neighbor (DANN) [16], local ridge re-
gression classification (local ridge), and local BDA. The
paper concludes in Section 6 with a summary of results
and open questions.
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2 RELATED WORK

Cross-validation is by far the most common way to
choose the neighborhood size for local classifiers. In M -
fold cross-validation [5], the test error is approximated
by the classification error on held-out portions of the
training data. Given a set of potential neighborhood
sizes {k1, k2, . . . , kκ}, the training set is partitioned into
M roughly equal-sized parts and each training sam-
ple is classified using the ki nearest points outside
its own part. For each ki, the resulting error is aver-
aged to produce the sequence of cross-validation errors
{CV (k1), CV (k2), . . . , CV (kκ)}, the minimizer of which
is chosen as the “optimal” neighborhood size. Though
successful in practice, cross-validation suffers from many
drawbacks, including: a) prohibitively long training time
on large datasets, b) the unjustified assumption that there
is a single optimal value of k for the entire feature space,
and c) a lack of a rigorous method for choosing the set of
potential neighborhood sizes. The theory behind cross-
validation assumes that the training and test datasets
are iid which is often unrealistic in practice. For some
applications, such as speech processing, learning from
the web, or trying to predict behavior of an evolving
pathogen, the iid assumption fails because the distribu-
tion of the data evolves over time. Similarly, there may
be significant biases in how the training data is collected
versus the distribution of the test data; for instance the
volunteers who choose to participate in a study may
be statistically different from the larger population for
which the study hopes to make predictions. By not
cross-validating the neighborhood size or other learning
parameters, one avoids overfitting to the training dis-
tribution in such cases. In contrast to cross-validating
one neighborhood size for a learning problem, Bayesian
neighborhoods only makes locally iid assumptions.

There have been previous efforts to define neighbor-
hoods for local learning methods that do not require
cross-validation. For example, a small set of experi-
ments showed that using the relative-neighborhood-
graph neighbors of the test point yields generally lower
error than k nearest neighbors for classification [17].
For local linear interpolation and local linear regression,
significant error reductions have been achieved with the
test point’s natural neighbors and the enclosing kNN
neighbors [18], [19], which attempt to enclose a test
point in the convex hull of its neighbors. Although
such spatially adaptive neighborhoods have worked
well for low-dimensional learning problems, they tend to
be computationally challenging or ill-suited for general
classification problems where the training data is not
sufficiently dense in the sample space [19].

Another set of related methods are kNN committee
classifiers that combine multiple classifiers aiming to
alleviate individual weaknesses [5, ch. 8]. The proposed
Bayesian neighborhoods falls into this category because
it takes an average of the predicted local probabilities
(or local discriminants) weighted by a prior probability

on neighborhood size. Other researchers have proposed
methods that form weighted averages over neighbor-
hoods of kNN classifiers but have focused on learning an
appropriate weight for each neighborhood size. Ghosh
et al. [20] and Paik and Yang [21] have each proposed
weighting schemes that are trained by cross-validation,
and although not explicitly shown, they may be applied
to other local classifiers as well as kNN. However, these
are shown to offer only modest gains in performance
over cross-validating a single fixed classifier while offer-
ing no savings in computation. Like we do in this work,
Holmes and Adams [22] treated the neighborhood size k
as a random variable and assume a prior on k. For their
Bayesian kNN classifier, they assumed a logistic form
for the probability of training sample labels given a k
and the training sample feature vectors, and estimated
the class posterior for a test sample by marginalizing
out uncertainty in k. Their method is completely lazy,
as it does not require training, but it cannot be applied
to arbitrary local classifiers. Furthermore, it is compu-
tationally expensive as it requires Markov chain Monte
Carlo sampling to numerically solve the integral needed
to classify a test sample.

Other prior work in ensemble methods for kNN
have used component classifiers that are not based on
different neighborhoods but are not completely lazy.
Bay [23] took a committee of kNN classifiers where
each acted on a random subset of features. Hall and
Samworth [24] have analyzed bagged nearest neighbor
classifiers (though at least one empirical study suggests
bagging kNN has little effect [25]). Other researchers
built component kNN classifiers on different condensed
subsets of the training samples [26], [27]. Masip and J.
Vitrià [28] considered kNN classifiers on different linear
combinations of features and use boosting to find an
optimal feature set.

3 BAYESIAN NEIGHBORHOODS

In this section, we introduce Bayesian neighborhoods
and show that it minimizes expected misclassification
costs for generative classifiers. This is followed by a
comparison of the computational complexity of this
approach to that of cross-validation.

3.1 Neighborhood Size as a Random Variable
Given the true joint probability distribution of features
and labels pX,Y and a prior distribution over class labels
PY , a test sample x ∈ Rd can be assigned the label
y∗ ∈ {1, 2, . . . , G} that minimizes the expected misclassi-
fication cost (with respect to pX,Y ). Then y∗ solves,

arg min
g∈{1,2,...,G}

G∑
h=1

C(g, h)PY |X(h|x), (1)

where C(g, h) is the cost of labeling a sample as class g
when the true label is class h and we define PY |X(h|x) ,
P (Y = h |X = x). In practice, it is common to substitute
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an estimate of the posterior P̂Y |X(h|x) into (1), where
the estimate depends on the training data sample pairs
(xi, yi), i ∈ {1, 2, . . . , n}, xi ∈ Rd, yi ∈ {1, 2, . . . , G}.

Estimating P̂Y |X(h|x) works best when the training
samples and test samples are drawn iid from the same
distribution. It is less assumptive to suppose that only a
subset of the n training samples are drawn iid from the
same class-conditional distribution as the test sample x,
and we use the k nearest training samples as an intuitive
subset. Let P̂Y |X,K(h|x, k) denote the local posterior
distribution estimated from the k nearest neighbors of x.
Then we treat the neighborhood size as a random vari-
able K and choose the class that minimizes the expected
estimated misclassification costs, where the expectation
is with respect to the random K:

arg min
g∈{1,2,...,G}

EK

[
G∑
h=1

C(g, h)P̂Y |X,K(h|x,K)

]

≡ arg min
g∈{1,2,...,G}

G∑
h=1

C(g, h)EK
[
P̂Y |X,K(h|x,K)

]
. (2)

We refer to this approach as using Bayesian neighbor-
hoods because the estimated posterior distribution in (2)
is the Bayesian estimate that minimizes any expected
Bregman divergence with respect to uncertainty in the
neighborhood size (for more on Bayesian estimation, see
for example [29, ch. 4]). That is, the probability mass
function over classes EK

[
P̂Y |X,K(h|x,K)

]
that appears

in (2) solves

arg min
r∈[0,1]G,

∑G

h=1
r(h)=1

EK

[
L
(
r, P̂Y |X,K(h|x,K)

)]
,

where L is any Bregman divergence (such as squared
`2 distance). This is a special case of the general result
that the expectation minimizes the expected Bregman
divergence [30, Theorem 1], [14].

Treating the neighborhood size K as a random vari-
able requires a prior distribution PK over possible neigh-
borhood sizes, so that the average posterior can be
calculated as a simple weighted average of different local
posteriors:

EK

[
P̂Y |X,K(h|x,K)

]
=
∑
k

PK(k)P̂Y |X,K(h|x, k).

We note that setting the prior PK is similar to the prob-
lem of specifying the set of possible parameter choices
for cross-validation but the impact is subtly different.
In cross-validation, if one offers too many or too-closely
spaced options for k, there is a risk of overfitting to
the training data while with Bayesian neighborhoods,
placing a heavy prior on large values of k risks bias.

In general, for Bayesian estimation, it is well-known
that the choice of prior is extremely important. We
designed a prior PK based on our past experiences of
reasonable neighborhood sizes for cross-validated local
learning methods [3], [19], [31], [32], and on the follow-
ing design goals: First, we desire a simple formula for

PK that could be expected to work well with any local
classifier. Second, we hope to lessen bias by not placing
too much prior probability on large k. Third, we suggest
using only a subset of k for computational efficiency.
Fourth, because of curse-of-dimensionality issues, we be-
lieve the number of nearest-neighbors should generally
be larger if there are more feature dimensions. Fifth, we
enable satisfaction of Stone’s conditions for consistency
[33] by ensuring that the largest k in the support of PK
grows as n→∞, but grows relatively slowly (see Section
4.1 for a further discussion of PK and consistency).

Given these design goals and past experiences
with cross-validated local learning, we propose that
in the absence of other prior knowledge, PK be
a sampled log-uniform prior over the set K =
{21, 22, . . . , 2γ}, such that PK(k) = 1/|K| for k ∈ K
and γ = min(blog2(d log2 n)c, blog2 nc). For example, for
the Vowel dataset with n = 528 training samples and
d = 10 features, k ∈ {2, 4, 8, 16, 32, 64}. Some model-
based local classifiers use k neighbors from each class.
In those cases, let n̄ be the average number of neighbors
per class, and let the prior probability on the gth class’s
neighborhood size kg be PK(kg) = 1/|K| for kg ∈ K and
γ = min(blog2(d log2 n̄)c, blog2 n̄c, ng).

Using this sparse log-uniform prior on the neigh-
borhood, a classification of test samples incurs only
an additional O(log n) cost, where n is the size of the
training set. This is a significant reduction compared
to the added O(n) cost of the completely uniform prior,
and in trial examples we observed little difference in the
classification performance of these two priors.

Many classifiers produce estimates of the likelihood
density p̂X|Y (x|h) for each class h. Given the standard
decision rule ŷ = arg maxh P̂Y |X(h|x) with estimated
prior P̂Y (h), the standard decision rule can be written
in terms of the likelihood: ŷ = arg maxh p̂X|Y (x|h)P̂Y (h)
because pX(x) does not change the decision. However, in
the decision rule given by (2), pX(x) cannot be ignored.
By Bayes’ rule, (2) can be written,

arg min
g∈{1,2,...,G}

G∑
h=1

C(g, h)EK

[
p̂X|Y,K(x|h,K)P̂Y |K(h|K)

p̂X|K(x|K)

]
.

(3)
Throughout this paper, we assume that class priors are
independent of neighborhood size such that P̂Y |K(h) =
P̂Y (h). Furthermore, for classifiers that produce an esti-
mate of the likelihood, we estimate each pX|K(x|k) after
estimating the class likelihoods to ensure its role as a
normalizer such that (3) becomes

arg min
g∈{1,2,...,G}

G∑
h=1

C(g, h)EK

 p̂X|Y,K(x|h,K)∑G
j=1 p̂X|Y,K(x|j,K) P̂Y (j)

P̂Y (h)

 .
(4)

We additionally assume uniform class priors, P̂Y (h) =
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1/G for all h, simplifying (4) to

arg min
g∈{1,2,...,G}

G∑
h=1

C(g, h)EK

[
p̂X|Y,K(x|h,K)∑G
j=1 p̂X|Y,K(x|j,K)

]
. (5)

Note that in the case of unbalanced data, one would
expect increased performance by instead estimating the
class priors P̂Y (h) in (4). However, the choice of how to
estimate this quantity is subjective and we chose instead
to investigate how well one could do with the simplest
(albeit pessimistic) approach.

3.2 Computational Cost
When learning from a dynamic set of data, the cost of
training a classifier is no longer a one-time expense. To
adapt to the evolving statistics of the data, this cost will
be incurred periodically through re-training the classifier.
Thus, one might benefit from a completely lazy approach
that requires no training whatsoever.

Consider a local classifier with Q parameters (other
than neighborhood size). Let Sq be the size of the cross-
validation set for the qth parameter and let S =

∏Q
q=1 Sq

be the total number of parameter configurations that
will be searched using cross-validation. For Bayesian
neighborhoods, let these parameters be fixed to default
values, as we do in the experiments in this paper, so
that the resulting classifiers are completely lazy. Let Ψ
be the cost of evaluating the classifier for a single test
point under a single configuration of its parameters.

For neighborhood size, assume that PK has support
for only κ neighborhood sizes such that

∑
k I(PK(k)6=0) =

κ and that the set of neighborhood sizes considered
by cross-validation also has κ choices; again this is
consistent with our treatment in the experiments.

Given resource constraints, the set of training data can-
not be unbounded. As such, we will restrict our attention
to a steady-state analysis in which new labeled samples
acquired and old labeled samples are discarded at equal
rates, yielding an evolving training set of fixed size n. For
any fixed time interval, assume that the cross-validated
classifier is re-trained R times in this interval. Then,
the evaluation of m test samples in this same interval
will incur a cost of (nRSκ+m)Ψ using cross-validation
and mκΨ using Bayesian neighborhoods. Thus, Bayesian
neighborhoods will be more efficient when nRS > m.
For instance, Bayesian neighborhoods has a computa-
tional advantage when the size of the evolving training
data or the rate of re-training (or both) are larger than
the rate of test evaluations. However, for very high test
throughput, cross-validation may be more efficient.

4 BAYESIAN NEIGBHORHOODS FOR SPECIFIC
LOCAL CLASSIFIERS
In the next subsections we consider the effect of using
Bayesian neighborhoods with a number of standard
and state-of-the-art local classifiers, and propose a local
Bayesian quadratic discriminant analysis (QDA) that is
also motivated by minimizing expected Bregman loss.

4.1 Bayesian Neigbhorhoods and kNN
The posterior distribution estimate of the kNN classifier
is given by

P̂Y |X,K(h|x, k) =
1
k

k∑
j=1

I(yj=h), (6)

where I is the indicator function, and yj is the label of
the jth neighbor of x.

The hth posterior distribution for kNN with Bayesian
neighborhoods is given by,

EK [P̂Y |X,K(h|x,K)]

=
n∑
k=1

PK(k)

1
k

k∑
j=1

I(yj=h)


=

n∑
k=1

PK(k)

 n∑
j=1

(
1
k
I(j≤k)

)
I(yj=h)


=

n∑
j=1

(
n∑
k=1

PK(k)
k

I(j≤k)

)
I(yj=h). (7)

From (7), one sees that kNN with Bayesian neighbor-
hoods is a weighted nearest neighbor classifier that
applies weights that depend on the distance to the
test point. For example, if we take a uniform prior
PK(k) = 1

M for k ∈ {1, 2, . . . ,M}, then the weight for
the (M + 1)th nearest neighbor is wM+1 = 0, wM = 1

M2 ,
wM−1 = 1

M2 + 1
M(M−1) , and so on. This effectively creates

a weighting function (kernel) that adapts to the spread
of the data and decreases with distance (as long as PK
is decreasing faster than linearly in k). This kernel effect
also applies to standard weighted kNN classifiers that
employ a fixed weighting kernel.

The Bayesian neighborhoods kNN classifier is consis-
tent if the prior PK produces a weight vector w on the
training samples that satisfies Stone’s conditions [33].
The conditions can be met by a prior PK that is non-
increasing in k, and that has support on {1, . . . ,M(n)}
such that M(n) → ∞ as n → ∞ but slowly such
that M(n)/n → 0. Lastly, PK must have high enough
entropy that maxj(wj)→ 0 as M(n)→∞. The proposed
sampled log-uniform prior described in Section 2 meets
Stone’s conditions, and thus forms a consistent classifier
when used with kNN.

4.2 Locally Linear Classifiers
Locally linear classifiers fit a hyperplane to the neigh-
boring training samples, then classify the test point
based on the resulting linear discriminant(s). Two state-
of-the-art locally linear classifiers are SVM-KNN [2] and
local ridge regression. The SVM-KNN applies a linear
kernel SVM to the test samples’ k nearest neighbors,
and has a regularization parameter C; both k and C
are recommended to be chosen by cross-validation [2].
Though a classical regression technique, the use of local
linear regression for classification dates back as far as



5

1977 [33]. In our experiments, we use least-squares fits
with a ridge regularization penalty on the hyperplane
slope coefficients and a fixed regularization parameter
κ = 1 [34], [5], ensuring numerical stability.

Let fk,g(x) be a local discriminant for class g learned
from the k nearest neighbors of x. Then for the Bayesian
neighborhood approach we classify based on the ex-
pected discriminants {EK [fK,g(x)]} for g = 1, . . . , G.
Like kNN, using a locally linear classifier with a
Bayesian neighborhood results in the nearer-samples
having a greater contribution. However, because the
contributions can be positive, zero, or negative, the
precise effect of using Bayesian neighborhoods is less
predictable for these methods than for kNN.

4.3 Locally Gaussian Classifiers
A standard approach to classification is to assume that
each class-conditional distribution is Gaussian, fit the
class-conditional distribution to the training data, then
classify a test point by choosing the class whose model
maximizes the posterior probability of the test point
[5]. Depending on whether each class covariance is
estimated separately or not, this is called linear discimi-
nant analysis (Fisher discriminant analysis) or quadratic
discriminant analysis (QDA). However, these classifiers
can perform poorly due to the large model bias of
assuming that the class-conditional is modeled by only
one Gaussian. We contend that modeling each class-
conditional distribution instead as only locally Gaussian
could significantly reduce the model bias.

In the first two subsections, we show that two recent
local classifiers can be interpreted as locally modeling
each class posterior as Gaussian. Then, in Section 4.3.3
we propose to classify by explicitly modeling each local
class-conditional distribution as a Gaussian, and adapt
a recent Bayesian estimation approach to do so, forming
the local BDA classifer.

In each of the three subsections, we consider how
Bayesian neighborhoods affects such locally Gaussian
classifiers, with the distinction from the previous section
that each Gaussian uses the k nearest neighbors from its
class for a total of k ×G neighbors.

4.3.1 Local Nearest Means (Local NM)
The local nearest means classifier calculates the mean
of each class in a neighborhood of the test sample, and
classifies the test sample depending on which local class
mean is nearest [35], [36]. Compared to the standard
nearest-means classifier, local nearest-means drastically
reduces the potentially large bias inherent in modeling
each class as being characterized by its mean feature
vector. Compared to standard kNN, the classification
variance due to outlying samples is reduced. Local
nearest-means can be equivalently expressed as a gen-
erative classifier where each class is locally modeled as
being drawn from a Gaussian distribution with identity
covariance. Experimentally, we found that local nearest

means generally improves on standard k-NN, but can
have a significant model bias problem that keeps it from
being competitive with state-of-the-art local classifiers.

4.3.2 K-local Hyperplane Distance Nearest Neighbor
Algorithm
Vincent and Bengio [15] proposed a local classifier they
termed k-local hyperplane distance nearest neighbor
algorithm (HKNN), which we show is equivalent to a
local Mahalanobis nearest-means classifier, that is, it is
approximately a locally Gaussian model. They motivated
HKNN as classifying a test point x by drawing k nearest
neighbors from each class, projecting x to the linear span
of each set of k points (the affine hull) and choosing
the class with minimal projection distance. Given the
standard assumption that the training samples are in
general position, such a classifier would be indetermi-
nant if kh exceeds the dimensionality of the data for each
h, because each class’s neighbors’ affine hull would span
the entire feature space. They mitigate this problem by
regularizing the projection weights, such that the HKNN
classification rule is to classify x as the class h that has
minimum discriminant dk(x, µh), where

dk(x, µh)2 = min
α∈Rk

‖(x− µh)−Xhα‖22 + λ‖α‖22, (8)

where Xh is a d × k matrix of the k nearest training
samples of class h demeaned by the class mean µh,
and the regularization parameter λ is trained by cross-
validation.

Next, we show that HKNN is equivalent to a local
Mahalanobis-distance nearest-means classifier, which is
the same as a local regularized QDA classifier except
for the class-uncertainty penalty terms:

Proposition 1:
The HKNN class h discriminant (8) can be equivalently
expressed as,

dk(x, µh)2 = (x− µh)T
(
I + λ−1XhXh

T
)−1(x− µh). (9)

The proof is given in the appendix.

From (9), one sees that the HKNN discriminant is
the log-likelihood of x given a Gaussian distribution
with regularized covariance I + λ−1XhX

T
h , just as it

appears in regularized QDA [37]. However, the HKNN
discriminant does not include the Gaussian’s normal-
ization term, which would add an additional factor of
ln |I + λ−1XhXh

T |. In regularized QDA, this normaliza-
tion term penalizes classes that are less predictable in
terms of their preferred feature vectors.

4.3.3 Local Bayesian QDA (Local BDA)
Motivated by the state-of-the-art performance of HKNN
[15] and our idea of modeling class-conditional distri-
butions as locally Gaussian, we propose to explicitly
model the class-conditionals as locally Gaussian and
use a recent data-dependent Bayesian approach [13] to
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TABLE 1
Closed-form likelihood for proposed local BDA classifier.

p̂X|Y,K(x|h, k) = ENh,k
[Nh,k(x)] (10)

=

(
2k

k+1

) d
2 Γ
(

k+d+4
2

) ∣∣∑n

i=1
(xi − x̄h)(xi − x̄h)T I(yi=h) +Bh

∣∣ k+d+3
2

Γ
(

k+4
2

) ∣∣∣∑n

i=1
(xi − x̄h)(xi − x̄h)T I(yi=h) +

k(x−x̄h)(x−x̄h)T

k+1
+Bh

∣∣∣ k+d+4
2

,

estimate the class-conditional distributions from the local
training data. We term the resulting classifier local BDA.

For local BDA, the estimated class-conditional like-
lihood is the expectation over all possible Gaussian
models: p̂X|Y,K(x|h, k) = ENh,k

[Nh,k(x)], where the
Nh,k are independent random Gaussians drawn from
pNh,k|Tx(h,k), and Tx(h, k) are the k training sample pairs
from class h nearest to the test sample x. As in HKNN
and nearest means, applying QDA locally reduces its
model bias. But here we have the added advantage of es-
timating the Gaussians with a data-dependent Bayesian
approach that reduces the estimation variance as well.

Bayesian QDA classifiers were first proposed in the
1960’s [38], [39], but were not found to perform well;
in particular, they were found to have too much bias
[40]. Recently, Srivastava et al. [13] demonstrated that
using a data-dependent prior and the Fisher information
measure leads to a Bayesian QDA classifier they termed
BDA. It was shown to perform as well or better than
other state-of-the-art approaches to QDA, including reg-
ularized QDA [37] and eigenvalue-decomposition dis-
criminant analysis [41]. It has been shown that the mean
Gaussian with respect to the posterior minimizes the
expected functional Bregman risk between the estimated
pdf and the possible Gaussians that could have gener-
ated the training samples [13], [14]. This data-dependent
Bayesian QDA classifier requires cross-validating hy-
perparameters of the inverted Wishart prior: a scale
parameter q and a seed matrix Bh for the hth class for
h = 1, . . . , G. For our local BDA classifier, we fix q and
each Bh without cross-validation. First, we set q = d+ 3,
which makes the prior the standard inverted gamma
distribution if d = 1. Like Srivastava et al. [13], we note
that Bh/q is the maximum of the inverted Wishart prior,
and that by setting Bh/q to be a rough estimate of the
covariance we can form a data-dependent prior that is
tuned to the scale of the data. Specifically, we would
like to use the diagonal of the maximum likelihood
estimate as a rough estimate of the covariance, so that
Bh/q = diag

(
Σ̂ML,h

)
, but for k < d this could leave Bh

ill-posed and uninvertible. To avoid that possibility and
regularize the choice of the maximum of the prior, we
set

Bh = (1− λ)qdiag
(

Σ̂ML,h

)
+ λI,

where λ ∈ [0, 1] and we assume that each feature is
standard-normalized (as is standard) in each dimension

before classification. We contend that the exact choice
of λ should matter little, though preferably be small as
its role is simply to ensure that Bh is well-posed. For
our experiments we chose λ = .05 without preliminary
experiments (so as not to be tempted to overfit the
choice of λ to these particular datasets). After running
the experiments we analyzed whether a different small
choice of λ would have mattered. As we expected, we
found that classification performance was quite robust
to the choice of λ. For example, for the Vowel dataset
and λ ∈ {.0001, .001, .01, .02, .03, . . . , .1}, the classifica-
tion performance on the standard train/test partitions
only ranged from 43.7 to 45.0 when the neighborhood
size was selected by cross-validation, and only ranged
from 33.6% to 34.6% when local BDA was combined
with Bayesian neighborhoods (see Section 4 for complete
experimental details). On the randomized train/test par-
titions, the Vowel classification performance for the same
test range of λ ranged from 5.9% to 6.2% with cross-
validation and from 6.0% to 6.1% with Bayesian neigh-
borhoods.

Following from [13, Theorem 1], the proposed local
BDA classifier estimates the hth local class-conditional
likelihood as given in Table 1, where Γ(·) is the standard
gamma function, and x̄h is the average of the k nearest
training feature vectors from class h.

Combined with the proposed Bayesian neighbor-
hoods, local BDA produces the decision rule:

arg min
g∈{1,2,...,G}

G∑
h=1

C(g, h)EK

[
ENh,K

[Nh,K(x)]∑G
j=1ENj,K

[Nj,K(x)]

]
.

The estimated class-conditional distributions
ENh,k

[Nh,k(x)] given in (10) are not Gaussians, but
in fact the local BDA decision boundary is locally
quadratic:

Proposition 2:
For fixed k, the local BDA decision boundary is
piecewise quadratic. The proof is in the appendix.

4.3.4 Discriminant Adaptive Nearest Neighbors
The discriminant adaptive nearest neighbors (DANN)
method [16] also uses a locally Gaussian assumption.
DANN models each local class likelihood as a Gaussian
with the same covariance matrix. Then, DANN uses the
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Gaussian assumption to imply a local distance metric,
which is then used to find the k nearest neighbors to
the test point x. It is dissimilar to the previous three
algorithms in that the final classifier used is a weighted
kNN classifer. The Gaussian assumption is used merely
to adapt the metric, and not to classify x.

5 EXPERIMENTS AND RESULTS

In the introduction we discussed some potential short-
comings of cross-validation. In this section we provide
experimental results to show that the Bayesian neighbor-
hoods with the proposed log-sampled prior works as
well or better in practice as cross-validation, and does
so without training. Experiments are performed using
seven datasets with standard training/test partitions. Six
of these datasets are from the UCI machine learning
repository (http://www.ics.uci.edu): Vowel, Image Seg-
mentation, Optical Digits, Letter Recognition, Pen Digits
and Isolet. The last is the USPS dataset available from
http://www.kernel-machines.org/data. Details for all of
the datasets are given in Table 2.

First we motivate using Bayesian neighborhoods
rather than cross-validation on a case study of the
Vowel dataset. Then we compare kNN and the proposed
Bayesian neighborhood on six classifiers. The experimen-
tal details are given in Sec. 5.2, followed by results using
standard train/test partitions in Sec. 5.3 and random
train/test partitions in Sec. 5.4.

TABLE 2
Information About the Benchmark datasets

# of # of Total # in Standard
Classes Features Samples Train/Test

Vowel 11 10 990 528/462
Image Seg. 7 19 2,310 210/2,100
Opt. Digits 10 64 5,620 3,823/1,797
Letter Rec. 26 16 20,000 16,000/4,000
Pen Digits 10 16 10,992 7,494/3,498
USPS 10 256 9,298 7,291/2,007
Isolet 26 617 7,797 6,238/1,559

5.1 A Case Study of the Vowel Data Set
In this section we aim to explore the effects of cross-
validation in detail by focusing on the Vowel dataset (see
Table 2). This dataset is of practical interest because the
training and test sets consist of vocalizations generated
by two separate sets of individuals, thus the training and
test samples are not identically distributed.

5.1.1 Classification over k
To demonstrate that classification using one fixed value
for k might be sub-optimal, Fig. 1 shows how 45 ran-
domly chosen test samples from the standard test set
of Vowel are classified using the HKNN classifier for

neighborhood sizes k = 2, 3, . . . , 32. In this figure, white
indicates a correct classification and black indicates an
incorrect classification. One sees that for many test points
the classification is quite sensitive to the choice of k.
There is no range of values for k which produce correct
classifications consistently across the samples (i.e. no
broad white columns); we found that this aspect of Fig.
1 is representative, regardless of the classifier used.

k
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n
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ex

170

180

190

200

210

Fig. 1. Rows are test samples; columns are neighbor-
hood sizes. White indicates a correct classification and
black indicates a misclassification using HKNN

5.1.2 Discrimination over k

Looking a bit closer, we examine the discriminant val-
ues (posteriors for probabilistic classifiers) for two test
samples on a subset of the classifiers investigated. The
test samples were chosen to be representative of easy to
classify and hard to classify test samples, respectively. In
Figures 2 and 3 we plot the eleven class discriminants for
four local classifiers, with the discriminant of the correct
class marked in bold. Note that for a fixed value of k, the
cross-validated classifier chooses the class corresponding
to the largest discriminant. Depending on the classifier,
k either denotes the total number of neighbors (kNN,
SVM-KNN), or the number of neighbors from each class
(local BDA and HKNN).

One can see that the classifiers each have a different
sensitivity to the choice of neighborhood. While one
cannot extrapolate from the two test samples shown
here, we found over a larger set that the most sensitive
classifier was indeed SVM-KNN, as reflected in these
plots. In general, the discriminant values appear to be
a “noisy” function of k, which motivates averaging
over the discriminant values as done with Bayesian
neighborhoods. Note that although in this example the
discriminants are being plotted for a dense range of k
values, in practice, the discriminants are computed only
for a sparse sampling of k. For our experiments there
were never more than 12 values of k for any dataset.
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Fig. 2. Discriminant vs neighborhood size for example test point 284 from Vowel.
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Fig. 3. Discriminant vs neighborhood size for example test point 55 from Vowel.
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5.1.3 Letting cross-validation “cheat”
Next, we performed an experiment using the standard
training/test partitions for the Vowel dataset. Here we
compare the performance of Bayesian neighborhoods
to cross-validation while allowing the cross-validated
classifier to train on the test data. It is important to note
that here each cross-validated classifier chooses the fixed
k that achieves the lowest possible error on the test set
(not possible in practice). The results are shown in Table
3.

TABLE 3
% test error for Vowel using the standard test set

Local SVM-

BDA HKNN KNN DANN Pinv KNN

BN 34.0 40.3 48.1 39.8 42.6 44.2

CV on test 35.9 39.0 48.1 38.5 38.5 37.7

We used the sampled log-uniform prior proposed in
section 3 for the Bayesian neighborhood to generate k ∈
{2,4,8,16,32} neighbors from each class for HKNN and
local BDA, and k ∈ {2,4,8,16,32,64} total neighbors for
kNN, DANN, local ridge, and SVM-KNN. The cross-
validated k were chosen from k ∈ {2,3,. . . , 32} neigh-
bors from each class for HKNN, and local BDA, and k
∈ {2,3,. . . , 64} total neighbors for kNN, DANN, local
ridge, and SVM-KNN. Table 3 shows that the Bayesian
neighborhood for Vowel actually performs better than
the best possible fixed k for local BDA, and kNN, and
only slightly worse for HKNN and DANN. Thus even
when cross-validation is allowed to “cheat” by cross-
validating on the test data, Bayesian neighborhoods can
be competitive.

5.2 Training/Test Experimental Details
We performed experiments comparing cross-validation
and the proposed Bayesian neighborhoods on seven
standard benchmark datasets. Each dataset was used
twice, once with standard train/test partitions for re-
producibility and once with random train/test partitions
to evaluate statistical significance. These datasets were
chosen because all features are real-valued, there are no
missing data, and there are standard training/test parti-
tions. For each standard/random partition, the training
data were normalized to have a mean of 0 and standard
deviation of 1, and the test data were then normalized
by the same values. Features constant over all training
samples were removed.1

For the experiments on random partitions detailed in
Sec. 5.4, the test and training data were combined, and
then ten random splits were made independently and
identically to form ten new randomized 50-50 splits of
training and test. Due to the large size/dimensionality

1. MATLAB code is available at http://idl.ee.washington.edu.

of the USPS and Isolet datasets, they were not included
in the randomized-partition experiments.

All classifier parameters were set by 10-fold cross-
validation and in the case of cross-validation error ties,
the smallest tied-parameter was chosen. The HKNN al-
gorithm requires a regularization parameter λ as well as
a neighborhood size k. For the cross-validation runs, the
HKNN λ was cross-validated as λ ∈ {1, 5, 10, 20, 30, 50}
as recommended by the HKNN authors. To form a com-
pletely lazy learning approach using the Bayesian neigh-
borhood, we fixed the HKNN regularization parameter
to be λ = 1, the minimal amount of regularization
recommended by the HKNN authors (a better approach
would probably be to set λ to be a decreasing function
of k such that more regularization is used with lower k,
but the results show that even the naive non-k-adaptive
choice of λ = 1 works well).

The SVM-KNN algorithm also requires a regular-
ization parameter C in addition to the neighborhood
size k. For the cross-validation runs, the SVM-KNN C
was cross-validated as C ∈ {.001, .01, .1, 1, 10, 100, 1000},
based on standard practice. To form a completely lazy
learning approach using the Bayesian neighborhood, we
fixed the SVM-KNN regularization parameter to be the
default value of C = 1 (as with HKNN, a better approach
would probably be to regularize harder for lower k,
but the results show that even the naive non-k-adaptive
choice of C = 1 works well). 2 For multi-class datasets
we implemented

(
n
2

)
one-against-one classifiers.

In all cases, the support of the prior PK and the set of
choices of k for cross-validation were the same. For kNN,
DANN, SVM-KNN, and local ridge: k ∈ {21, . . . , 2γ}
with γ = min(blog2(d log2 n)c, blog2 nc), where n denotes
the number of training samples available in the cross-
validation (for 10-fold cross-validation, n is 90% of the
total training samples). For HKNN, and local BDA, and
for each class g, we set

γ(g) = min(blog2(d log2 n̄)c, blog2 n̄c, ng),

where n̄ denotes the average number of training samples
for each class available in the cross-validation and ng is
the number of training samples available in the cross-
validation for that class. The prior PK was taken as in
Section 2 to be uniform over the sampled log-uniform
set of possible values for k.

Throughout the experiments, we assume the class
prior probabilities PY are uniform over the set of possi-
ble classes.

5.3 Standard-Partition Benchmark Data Set Results

Table 4 shows the classification errors using the standard
partitions of the benchmark datasets. For each dataset,
the best performance is marked in bold, and for six of the
seven datasets this is achieved with the Bayesian neigh-
borhood method. We note that some of the algorithms

2. SVM was implemented with LIBSVM [42].
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experience a drastic reduction in error with Bayesian
neighborhoods, for example the 34% error achieved with
local BDA on the Vowel dataset is, to the best of our
knowledge, the lowest recorded error for this dataset,
and a 23% improvement over cross-validation. Over
the seven datasets, the local BDA score is only worse
than cross-validation on PenDigits, and by less than
5%. Similarly, local ridge error increases slightly with
Bayesian neighborhoods on Vowel, ImageSeg and USPS,
but decreases by 32% for OptDigits, 33% for LetterRec,
19% for PenDigits, and 32% for Isolet.

The best performances are achieved by Bayesian
neighborhoods for six of the seven datasets, three times
by local BDA and three times by local ridge. Over the
datasets, local BDA performs consistently well and has
the lowest total error with Bayesian neighborhoods, fol-
lowed by cross-validated local BDA. Local ridge, SVM-
KNN, and local HKNN are the next top performers, and
each has total lower error with Bayesian neighborhoods
than with cross-validation. This is surprising because to
make the Bayesian neighborhoods completely lazy, we
used fixed regularization parameters for HKNN (λ = 1)
and SVM-KNN (C = 1) for the results in the column
marked BN (and cross-validated both parameters for the
cross-validation option). Table 6 shows the chosen cross-
validation parameters.

TABLE 6
Cross-validated Parameter Choices Given Standard

Training/Test Partitions

Image Opt Letter Pen
Vowel Seg Digits Rec Digits USPS Isolet

kNN k 2 4 4 4 2 4 16
DANN k 2 2 4 4 2 4 4
Local BDA k 2 8 16 8 32 32 256
HKNN k 8 4 64 8 4 32 256
HKNN λ 1 1 50 1 1 50 50
Local ridge k 8 8 256 8 32 32 128
SVM-KNN k 2 128 128 64 32 256 256
SVM-KNN C 0.001 10 0.1 10 10 0.01 0.1

5.4 Random-Partition Benchmark Data Set Results
Table 5 shows the mean misclassification rate averaged
over the 10 randomized train/test splits. For each dataset
the lowest mean score is in bold, as well as any results
for which the lowest mean score classifier was not
statistically significantly better, according to one-sided
Wilcoxon nonparametric signed rank tests with a signif-
icance value of p = .05. With these iid partitions and av-
eraged over ten randomizations, one sees less dramatic
differences between the cross-validation and Bayesian
neighborhood error rates. Comparing the different local
classifiers, local BDA again performs consistently well
and achieves the lowest total average error for Table
5 with Bayesian neighborhoods. Cross-validated local

BDA and HKNN are the second best performers in terms
of total average error, with SVM-KNN and local ridge
the next top performers.

Table 7 shows for each dataset and classifier whether
the classification results were statistically significantly
better using cross-validation or Bayesian neighborhoods
according to one-sided Wilcoxon nonparametric signed
rank tests with a significance value of p = .05; the
mark − denotes that neither was significantly better
than the other. The results vary by algorithm. Again,
we are surprised that not cross-validating the regulariza-
tion parameters for HKNN and SVM-KNN for Bayesian
neighborhoods seems to have only a small impact.

TABLE 7
Statistically Significantly Better Performance: Bayesian

Neighborhoods vs. Cross-validation

Local Local SVM-
kNN DANN BDA HKNN Ridge KNN

Vowel CV CV - BN - CV
Image Seg. CV - - BN BN CV
Opt. Digits - CV - CV BN -
Letter Rec. BN BN BN CV BN -
Pen Digits CV CV - BN - -

6 CONCLUSIONS AND OPEN QUESTIONS
In this paper, we proposed a simple averaging alterna-
tive to neighborhood selection for local classifiers that
is optimal in the sense that the recovered posterior
minimizes the expected Bregman divergence to the true
posterior distribution. We showed that this Bayesian
neighborhoods approach achieves error rates that are
similar to those given by a cross-validated neighbor-
hood size with six different local classifiers, but without
the pre-processing. For learning problems with large or
evolving training sets, this can offer significant compu-
tational savings. Coupling Bayesian neighborhoods with
the proposed local BDA classifier takes expectations with
respect to both the uncertain posterior and neighborhood
size, and performed strongly across the set of experi-
ments compared to the six other local classifiers. The next
best performance overall is given by another closed-form
classifier, the local ridge classifier.

While not suitable for all applications, lazy learning
is an effective approach for a wide variety of tasks, in
particular those characterized by an evolving training
distribution where frequent re-training is impractical,
and those tasks where the training set is too large to train
global classifiers. More generally, because lazy learning
makes strictly looser assumptions than globally-trained
classifiers about training and test samples being iid,
we hypothesize that effective completely lazy learning
methods can perform better than globally-trained clas-
sifiers for applications where the iid assumption is not
valid, though this remains an open question.
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TABLE 4
% Test Error Given Standard Training/Test Partitions

Vowel ImageSeg OptDigits LetterRec PenDigits USPS Isolet
CV BN CV BN CV BN CV BN CV BN CV BN CV BN

kNN 52.4 48.1 12.9 12.1 3.5 3.5 5.3 5.2 2.7 3.1 5.7 7.6 8.7 6.9
DANN 39.0 39.8 7.5 7.5 4.0 4.3 5.1 4.6 2.8 3.1 8.2 8.1 8.6 8.4
Local BDA 44.2 34.0 6.9 6.3 2.2 1.9 3.0 2.9 2.1 2.2 5.4 5.4 3.3 3.1
HKNN 43.9 40.3 9.4 9.1 2.5 2.9 4.2 4.4 2.3 2.3 4.6 5.9 4.9 3.7
Local ridge 40.9 42.6 8.2 8.4 2.5 1.7 4.2 2.8 2.1 1.7 5.4 6.2 7.4 5.0
SVM-KNN 49.4 44.2 7.9 9.7 2.3 2.2 3.9 3.4 2.1 2.1 4.7 4.6 3.7 3.1
Bold: Best result on the dataset.

TABLE 5
% Test Error Averaged Over 10 Random Training/Test Partitions

Vowel ImageSeg OptDigits LetterRec PenDigits
CV BN CV BN CV BN CV BN CV BN

kNN 12.2 13.4 6.1 6.8 2.9 3.0 7.6 6.9 0.9 1.4
DANN 8.5 9.3 4.3 4.2 2.3 2.6 6.7 6.3 1.2 1.5
Local BDA 5.9 6.0 4.0 3.8 1.4 1.3 4.1 4.0 0.6 0.6
HKNN 5.1 4.3 5.1 4.2 1.5 1.7 5.0 5.4 0.6 0.4
Local ridge 7.3 6.5 4.6 4.1 1.8 1.4 5.8 3.8 0.5 0.5
SVM-KNN 6.2 8.2 3.8 4.6 1.3 1.4 4.9 4.9 0.6 0.6
Bold: Best mean result for each dataset, and results that are not statistically
significantly worse.

Although we used a sampled log-uniform prior PK
that we believe is a reasonable choice given no other
information, prior probabilities can have a strong effect
on Bayesian estimation, and how to choose an optimal
or effective data-dependent prior over the neighborhood
sizes is an open question.

APPENDIX

Proof of Proposition 1:
For notational simplicity, we denote Xh and µh by X and
µ in this proof. The α which solves the minimization in
(8) has the closed-form solution,

α = (XTX + λI)−1XT (x− µ).

With this α, the HKNN discriminant becomes,

d(x, µ)2 = ‖(x− µ)−X(XTX + λI)−1XT (x− µ)‖22
+λ‖(XTX + λI)−1XT (x− µ)‖22

= ‖(I −X(XTX + λI)−1XT )(x− µ)‖22
+λ‖(XTX + λI)−1XT (x− µ)‖22

(a)
= ‖λ(λI +XXT )−1(x− µ)‖22

+λ‖XT (λI +XXT )−1(x− µ)‖22
= λ(x− µ)T (λI +XXT )−1

(λI +XXT )(λI +XXT )−1(x− µ)

= λ(x− µ)T
(
λI +XXT

)−1
(x− µ),

where (a) follows by the matrix identities
I − A(I + BA)−1B = (I + AB)−1 and
(I +AB)−1A = A(I +BA)−1[43].

Proof of Proposition 2:
The decision boundary between class 1 and 2 is defined
by the set of x such that EN1,k

[N1,k(x)] = EN2,k
[N2,k(x)].

From (10), without loss of generality the decision bound-
ary between class 1 and 2 is,

[1 +
k

k + 1
(x− x̄1)TD−1

1 (x− x̄1)]
k+d+4

2

= γdb[1 +
k

k + 1
(x− x̄2)TD−1

2 (x− x̄2)]
k+d+4

2 , (11)

where Dh,k = Bh,k +
k∑
i=1

(xi − x̄h)(xi − x̄h)T I(yi=h),

and γdb is a constant that depends on the training sam-
ples and the number of training samples, but does not
depend on the test sample x. Because the exponentiated
terms must always be real and positive, raising both
sides of (11) to the power 2/(k+d+4), gives the following
quadratic decision boundary:(

1 +
k

k + 1
(x− x̄1)TD−1

1 (x− x̄1)
)

= γ̃db

(
1 +

k

k + 1
(x− x̄2)TD−1

2 (x− x̄2)
)
,

where γ̃db = γ
2

k+d+4
db .
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