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Optimized Regression for Efficient
Function Evaluation
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Abstract—In many applications of regression, one is concerned
with the efficiency of the estimated function in addition to
the accuracy of the regression. For efficiency, it is common
to represent the estimated function as a rectangular lattice of
values—a lookup table (LUT)—that can be linearly interpolated
for any needed value. Typically, a LUT is constructed from
data with a two-step process that first fits a function to the
data, then evaluates that fitted function at the nodes of the
lattice. We present an approach, termed lattice regression, that
directly optimizes the values of the lattice nodes to minimize
the post-interpolation training error. Additionally, we propose
a second-order difference regularizer to promote smoothness.
We demonstrate the effectiveness of this approach on two
image processing tasks that require both accurate regression
and efficient function evaluations: inverse device characterization
for color management and omnidirectional super-resolution for
visual homing.

Index Terms— Color, image fusion, image registration.

I. INTRODUCTION

HE ACCURACY of a regression technique is typically
Tof primary importance. In high-throughput applications,
the computation required for evaluating the fitted function
becomes important as well. Gamut mapping of video, color
transformations of printed images, and perspective renderings
of panoramic images are all applications where a function must
be estimated accurately and quickly evaluated for millions
of pixels. However, most regression methods do not produce
estimated functions that are optimized for fast implementation.
For example, kernel-based methods, such as Gaussian process
regression and support vector regression require kernel
computations between each test sample and a (possibly
large) subset of training examples, whereas local smoothing
techniques, such as weighted nearest neighbors or local linear
regression require a search for the nearest neighbors.

In this paper, we focus on problems in which one is given
a training set of n sample input—output pairs, and asked to
produce a function that is both faithful to these samples
and efficient to evaluate. Consider the common two-step
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solution [1]: 1) estimate an intermediate function from the
given n sample pairs using a regression method that is
as accurate as possible and 2) for efficiency, evaluate the
intermediate function at the nodes of a regular lattice and store
those values. Then, given a new input x that lies within the
domain of the lattice, the estimated function f(x) is evaluated
by interpolating x from its surrounding lattice nodes. For a
given x, solving for its interpolation weights is trivial on
a well-designed rectangular lattice using bit operations [2].
Also, interpolating the lattice is independent of the size of
the original training set: each function evaluation requires
linearly interpolating the 2¢ surrounding lattice nodes for a
d-dimensional function. However, this exponential scaling
with respect to dimension makes the lattice-interpolation
approach best-suited for low-dimensional applications.
This approach is used ubiquitously in color management
(typically 3—-4-D) where real-time performance often requires
millions of evaluations every second, it is standardized by the
international color consortium (ICC) with a file format called
an ICC profile [3], and the lattice is referred to as a lookup
table (LUT).

However, the above approach for estimating the lattice
outputs is suboptimal in terms of accuracy because the effect
of interpolation is not considered when estimating the inter-
mediate function. Most regression methods use the training
data to choose parameters that minimize the training set error
(empirical risk), but in this situation, the empirical risk does
not take into account the interpolation step. In this paper,
we investigate lattice regression, a solution that produces a
lattice that minimizes the interpolation error on the training
samples while enforcing regularity of the estimated function.
The key to this estimation is that any interpolation operation
that reduces to a linear combination of lattice node outputs
can be inverted to solve for the node outputs that minimize
the squared error of the training data.

We begin in Section II with an explanation of lattice
regression, including a discussion of different regularization
strategies to ensure a unique and smooth regression. Then
in Section III, we relate lattice regression to other regres-
sion approaches, detailing how it belongs to the family
of spline methods as well as structural risk minimization
methods. We illustrate the value of lattice regression with
two image processing applications where fast-to-evaluate
regression is essential: color management of printers in
Section IV, and super-resolution of omnidirectional images in
Section V. It is already standard for efficiency to interpolate
a lattice for color management, and we show that lattice
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Fig. 1. 3 x 3 lattice with test point x = [1.8, 1417,

regression yields statistically significant higher accuracy than
the state of the art due to its optimization of the interpolation
step. For omnidirectional super-resolution from unregistered
images, we show that the fast evaluation time of lattice
regression (for a lattice on the sphere) makes it more feasible
to search a large space of possible solutions, and that results in
super-resolved images that are both more accurate and more
useful for visual homing than the state of the art.

Preliminary versions of this paper have been published
as conference papers and in a thesis [4]-[7]. This paper
differs from those preliminary publications in that we present
a simpler regularizer, a deeper discussion of related work,
all-new and more exhaustive experiments, and the new
application to super-resolution.

II. LATTICE REGRESSION

In this paper, we use the term lattice to refer to any set of
m nodes {a; € R%} j=1:m that can be linearly transformed to
a d-dimensional rectangular grid. It is not necessary to have
a regular spacing between the nodes of this grid, but for ease
of exposition, we will restrict our attention to such regular
lattices. Further, without loss of generality, we will assume that
the domain has undergone an affine transformation placing one
corner of the lattice at the origin with unit spacing between
nodes, producing a lattice as illustrated in Fig. 1. For every
lattice node a;, let b; € R be the corresponding lattice output.

Given a set of n inputs {x; € D}i—1,, where D C RY, and
corresponding n outputs {y; € R};=1.,, a common approach to
regression is to estimate a function f : D — R within a “well-
behaved” class of functions F such that >/, £(f (x;), yi) is
minimized for some loss function € : R x R — R. In lattice
regression, we restrict the class of functions F to be the set
of functions that can be implemented by linearly interpolating
a rectangular lattice. For a fixed set of lattice nodes {a;};=1.m
and a given linear interpolation method, any function in this
class is fully defined by a set of lattice outputs {b;};=1.,, and
the task of lattice regression is to solve for the {b;};—1., that
minimize the empirical risk (i.e., interpolation error for the
training samples) > ", £( f(xi), yi) subject to regularization
on the smoothness of f . In the following sections, we describe
this empirical risk and introduce a “smoothness” functional
that can be used as effective regularization.
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A. Lattice Regression Empirical Risk

The lattice regression empirical risk term solves for lattice
outputs {b;};j=1.x that accurately interpolate the training data,
using a pre-specified form of linear interpolation. To linearly
interpolate the point x;, a set of linear interpolation weights
{wij}j=1.m are computed that satisfy the following equations:

m m

Zwijaj = Xj, Zu}ij =1. (1)
j=1 j=1

Note that the equations in (1) are, in general, underdetermined
and there are many strategies for choosing a unique solution,
each corresponds to a particular form of linear interpolation.
For example, in three dimensions, possible solutions include
trilinear, pyramidal, and tetrahedral interpolation [8]. For all of
these popular linear interpolation techniques, w;; # 0 only for
those a; that are vertices of the cell containing x;. In our exper-
iments, we use d-linear interpolation (i.e., bilinear, trilinear,
etc.), details for computing these linear interpolation weights
are given in the Appendix. The d-linear interpolation variant
is arguably the most popular variant of linear interpolation,
can be implemented efficiently, and is the maximum entropy
solution to (1) [9, Th. 10].

Given the linear interpolation weights {w;;}, the output
corresponding to x; is calculated as §; = > jwijbj. Thus,
the m x 1 vector of output lattice values b that minimizes the
post-interpolation error on the training data is given by

n

i=1

A . N 2
b = arg min P — Vi
gbeR’” - (yl yt)
i=1
2
n m
= arg min wiibj ) =i |- 2
gbew (; ij j) Yi (2)

Let y = [yl,...,yn]T, and let W e [0, 17" denote
the matrix with ith-jth element w;;j, where W is deter-
mined uniquely by the inputs {x;};=1., and the lattice nodes
{aj}i=1.m. Interpolating the lattice for the training inputs
{xi}i=1:n yields the estimated output values y = Wb. Thus,
the empirical risk objective (2) can be written as

b = are min |9 — y||? = are min |Wb — y|3. 3
g mun ly —yll3 g mun l yli3 (3)

The solution to (3) is (W/W)"!WTy, unless (3) is
underdetermined and, unfortunately, this is often the case.
For example, (3) is underdetermined if there are no training
samples in any of the lattice cells bordering some lattice
node a; because there will be no constraints on the
corresponding b;. In this case, WTW will not be invertible,
and (3) will have an infinite set of minimizers. To avoid
this problem and to reduce noise and over-fitting, we add a
regularizer, as discussed in the next section.

In related work, researchers in geospatial analysis [10] and
in digital color management [11] have proposed solutions to
learning lattices that iteratively post-process an initial lattice
solution to reduce the interpolation error. For efficiency, we use
a fixed regular grid of knots (a lattice). However, one could
instead optimize the node output values of an irregular grid,



4130

(b)

Fig. 2. Examples of the functions estimated by lattice regression (after
interpolation of the lattice nodes). The blue dots are the training points, and are
the same in both figures. (a) Graph Laplacian regularizer. (b) Graph Hessian
regularizer. The graph Hessian does not penalize linear extrapolations, while
the graph Laplacian does.

though this requires introducing an appropriate scaling factor
for each cell of the lattice to normalize for differing cell
volumes. A number of researchers have tackled the related
problem of choosing good grid knot locations for use with
linear interpolation [12]-[17].

B. Lattice Regression Regularizer

We add a regularizer to (3) to ensure a unique solution
and to promote smoothness, which reduces over-fitting to the
possibly noisy training data. But how exactly should one
measure the “smoothness” of a function that is to be inter-
polated from a lattice? The answer to this question is likely to
be highly application-dependent and thus the best regularizer
may also be application-dependent. One generic choice for a
regularizer on a graph such as a lattice, is the graph Laplacian
regularizer [18], [19], a first-order measure of smoothness in
the sense that it penalizes squared-differences in output values
for adjacent lattice nodes. However, our preferred generic
choice is a second-order difference regularizer we call a graph
Hessian. We compare and contrast these choices below, and
illustrate their differences in Fig. 2.

1) Graph Laplacian Regularizer: A lattice can be repre-
sented as a graph with edges connecting adjacent nodes in
the lattice. A standard approach to enforcing smoothness on
the nodes of a graph is to minimize the graph Laplacian [18],
[19]. The un-normalized Laplacian regularization penalizes the
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sum of the squared differences between the lattice values at
adjacent vertices

adjacent a;,a;

bTK b = (bi — b))~ “4)

The Laplacian matrix Ky, is
K; = diag(1’A) — A

where 1 is the m x 1 all-ones vector, A is the graph adjacency
matrix, and diag(17A) is a diagonal matrix with 17 A on the
diagonal.

Solving for a lattice that minimizes the empirical risk (2)
and also minimizes the Laplacian given by (4) forces the
values chosen for adjacent nodes in the lattice to be close,
and is expressed as

b = arg min [|[Wb — y|3 + 6" Kb (5)
beRm
where the regularization parameter 4 > 0 tradesoff the two
goals.
The optimization (5) has a closed-form solution

b=W'W+1K.,)"'WTy. (6)

Because WTW is positive semidefinite and Ky is positive
definite, the inverse in (6) is always well-defined for 4 > 0.
Further, because both W and K; are sparse, the matrix
inversion in (6) can be computed efficiently by sparse
Cholesky factorization (for instance the 1divide command
in MATLAB).

2) Graph Hessian Regularizer: We argue that the graph
Laplacian regularizer is suboptimal for many applications
(including color management [5]) because it penalizes linear
trends. To avoid penalizing the estimation of linear functions,
we prefer to regularize by penalizing the second-order differ-
ence in each dimension of the lattice, summed over the d
dimensions

> 3

((bn — bi) — (bi — bj))2

=1 ap,ai,a;j
adjacent in
dimension k
d
2
=D > (ba—2bi+0b;)" =b"Kuyb  (7)
k=1 an.a;,a;
adjacent in
dimension k

where Ky is an m x m matrix. Unfortunately, this Ky is not
positive definite — the smallest two eigenvalues are zero. In
order to use it as a regularizer, we form a positive definite
matrix by adding a touch of identity: Ky = Ky + 107°L
This small correction adds a touch of bias, and acts like a
ridge regularizer in that it slightly penalizes ) ; bl.z. We refer
to bTKyb as the graph Hessian regularizer.
Using the graph Hessian regularizer, the lattice nodes that
minimize the empirical risk (2) are given by
b= arg min Wb — ylI3 + 26TKyb (8)
€ m

where the regularization parameter 4 > 0 tradesoff the two
goals of training-accuracy and smoothness. The problem (8)
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has a closed-form solution

bh=W'W+Kg) 'Wly )

which, again, can be efficiently computed via sparse Cholesky
factorization due to the sparse nature of W and K H.

In some cases, different regularization may be needed in
different parts of the LUT. For example, in color management
it can be the case that certain parts of the colorspace are known
to exhibit high curvature, whereas other parts are fairly linear.
Cell-specific regularization can be implemented by modifying
the Ky matrix so that a separate weight is applied to each
term of the summation in (7).

3) Alternative Regularizers: Regularization may be applied
with aims other than functional smoothness. For instance,
one may start with an existing LUT toward which the
lattice regression estimate may be regularized. In the color
management of printers, one often needs to update an existing
LUT to compensate for expected data drift or a rough estimate
of the LUT may be given from fitting a model, such as the
Yule-Nielsen Neugebauer [20]. Alternatively, a regression
function with few free parameters could be first fit to the
data, and then one may bias lattice regression toward this.
For details on how to include such a regularizer, see the prior
work on global bias [7, Sec. 2.3].

C. Sensitivity to Noise

Suppose the ith training sample output y; is corrupted by
independent identically distributed (i.i.d.) additive zero-mean
noise ¢ such that ¥; = y; + ¢, where E[¢;] = 0 and
var(e;) = o2 fori = 1, ..., n. Then the lattice regression LUT
constructed from {Y;}i—1., will be {aj,lgj(e)}jzl:m, where
l;(é) = (WTW+ 1K) 'WT (y +¢€) from (9). Let the weight
vector v € [0, 1]2‘1Xl specify the linear interpolation weights
for some test sample x for this lattice. Then due to the linearity
of expectation, the lattice regression estimate Y (¢) of the
function value for x is unbiased by the noise

E. [Y] =0T (WIW + 1K)~ 'WTy.

In applications like color management where the LUT is
learned to invert a black box model, such as a printer, the
training sample inputs x; are actually the outputs of the black
box model and thus may be noisy. Additive noise on x; affects
the linear interpolation weight matrix W in two nonlinear
ways: 1) the linear interpolation weights multiply the noise
in each dimension as per (17) and 2) noise on the x; can
change which lattice cell it affects, nonlinearly changing the
weight matrix W as per (18). The same effect occurs if there
is additive noise on a test sample x.

III. RELATED REGRESSION METHODS

Lattice regression belongs to two major families of regres-
sion methods: structural risk minimization and splines. It is
a structural risk minimization method because (8) selects a
function (by choosing the lattice node values {b;};=1., that
are to be linearly interpolated) that tradesoff minimization of
an empirical risk term with a regularizer. In the rest of this
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section, we focus on lattice regression’s relationship to other
spline methods.

A. Splines

The word spline is used to mean various related things, here,
we use one common definition that a spline is a piecewise
polynomial function. Lattice regression does in fact produce
piecewise polynomial functions because linear interpolation is
applied in each cell of the lattice and, when applied to the
vertices of any parallelotope, linear interpolation produces a
polynomial function [21, Th. 11]. For example, in 3-D d-linear
interpolation produces a piecewise function of the form

f(x) = co+ cix[1]+ c2x[2] + c3x[11x[2] + cax[3]
+ csx[11x[3] + cex[2]x[3] + c7x[1]x[2]x[3]

where x[k] is the kth component of the test sample k, and
cj > 0 for all j except in degenerate cases.

A more convenient representation is in terms of basis
functions, also a common formulation for other types
of splines [22]. In this perspective, a spline is a linear
combination of some piecewise-polynomial basis function
k : RY x RY - R, repeated and centered at each knot (i.e.,
lattice node), such that

f(x) = ijk(x,aj)
j=1

where b; is the weight given to the jth basis function centered
at the knot (lattice node) a;. For 1-D lattice regression (see
Appendix for details)

frr() =D bj(1 —|x —ajl)4
j=1

where ()+ = max(-,0) and the basis function is
k;; = (I — |x — aj|)+. This is also known as the linear
b-spline basis function.

We compare the linear interpolation basis k;- with the cubic
interpolation basis k. [23], and cubic b-spline basis ks [22].
These basis functions can be expanded to d-dimensions via
the tensor product of multiple 1-D bases, constructed as

d
k4 (x, x"y = [ k(xlm], x'm]).

m=1

(10)

Linear b-splines are not a common basis function for
splines, in large part because they do not belong to the class
of splines called smoothing splines. A smoothing spline is a
piecewise-polynomial function that arises as the solution to
the following structural risk minimization problem:

n
arg min ) (y; — g(x;))* +/1/Vg(x)T11TVg(x)dx (11)
8€9a) =
where 1 is the vector of all ones, and Gyq,} is a pre-defined set
of piecewise-polynomial functions whose pieces are delineated
by the knot locations {a;} [22]. An important special case
of (11) is when a knot is placed at each training point, this
is called a natural spline and Gy, is the set of all functions
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that are differentiable and have an absolutely continuous first
derivative. Although, natural splines are arguably the most
commonly used instantiation of splines, we do not focus on
them here because—for efficiency—we place knots at the
lattice nodes, independent of the training data.

When the knots are fixed in a rectangular lattice, the solution
to (11) is known as a tensor spline and there exists a matrix
K, completely determined from the spline basis k and the knot
locations {a;}, such that (11) can be equivalently stated as

n

arg min E
15—

(yi — bTky, ) + AT Kb (12)

where ky, = (k(a1,x)), ka2, x;), . ..,k(a,,l,xi))T [22].
See [22] for details on how to construct the regularization
matrix K for an arbitrary twice-differentiable basis function k.

Because K depends on the second partial derivative of g,
it cannot be defined for the linear b-spline basis function
used by lattice regression. Thus, for lattice regression, we
use the discrete Hessian matrix given in (7) in place of K.
In Section III-B, we compare lattice regression to smoothing
tensor splines using the cubic interpolation basis k. and the
cubic tensor b-spline basis k.

To summarize the above discussion, the proposed lattice
regression is a spline method that: 1) uses a fixed rectangular
grid of knots independent of the training samples; 2) uses
a d-linear interpolation function; and 3) uses a discrete
regularizer (for example, the proposed graph Hessian).

B. Comparison With Higher Order Basis Functions

Lattice regression provides fast test evaluations by applying
d-linear interpolation to a regular lattice of knots in d dimen-
sions, such that only 27 lattice values are needed to calculate
the output for each test point. In this section, we consider the
alternative approach of using a higher order interpolation, such
as the cubic interpolation basis or spline basis to evaluate a
lattice learned with the corresponding higher order basis func-
tion and its second-derivative smoothing spline regularizer.
The larger support of these basis functions requires 47 lattice
points to calculate an estimated function value, resulting in
significantly longer test times than d-linear interpolation.

Further, the arithmetic of linear interpolation is amenable to
simple operations, such as bit-shifting, on fixed-point inputs
and can be implemented very efficiently in dedicated hard-
ware [2], [3]. This is particularly beneficial in applications,
such as printer color management where dedicated hardware
is used to perform test evaluations. In contrast, these low-
level speed-ups are not possible for the computation of cubic
interpolation and spline weights.

In general, the accuracy differences between the different
interpolation functions will depend on the true function
being approximated, with smoother functions being better
approximated with the higher order basis functions. We illus-
trate the accuracy differences with the following simulation.
The domain was constrained to [0, 1]3, and the function
to be approximated was the Gaussian mixture f(x) =
Z}il px; ui, aiz) where p is a Gaussian pdf with mean pu; ~

U([—.5,1.5]%) and variance aiz = 1. In all experiments, a
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training sample of size n was drawn i.i.d. with X; ~ U ([0, 1]3)
and ¥; = f(X;) fori = 1,...,n. Regularly-spaced 3-D
lattices with m x m x m knots were constructed with m €
{9, 17, 33} so that the number of cells in each dimension of
the lattice is a power of two for efficient implementation. The
root mean square error between the true function f and the
estimated f (interpolated from the lattice) was then computed
for each method at 10000 uniformly drawn locations
in [0, 1]3. Based on a preliminary study of performance for
different choices of the regularization parameter 4 (see [4] for
more experimental details and results), we fixed 1 = 107°
for all the experiments shown here.

The results in Fig. 3 show that using higher order
interpolation functions may not provide an accuracy advantage
for their higher computational cost. Specifically, with few
training samples and many lattice nodes, lattice regression
performs almost identically to the higher order basis functions.

IV. APPLICATION TO COLOR MANAGEMENT

Due to the physics involved in the printing process, printers
exhibit the most nonlinear and unpredictable color mappings
among all digital imaging devices [1]. For printers, the empir-
ical approach to inverse device characterization begins with
printing a page of color patches for a set of input values
that span the gamut (the range of displayable colors) of
the device. These patches are subsequently measured with
a spectrophotometer under standard illumination conditions
and recorded as output values in a device-independent color
space. For many printers, it is possible to specify the input
as CMYK, but we restrict ourselves to RGB inputs and treat
the conversion and printing as a single black-box model, this
emulates a typical consumer printing environment. For the
device-independent output space, we use the typical choice
of CIELAB, which is an approximately perceptually uniform
colorspace. From these training pairs of (RGB, CIELAB)
values, one estimates the inverse mapping f : CIELAB —
RGB that specifies what RGB input to send to the printer
in order to reproduce a desired CIELAB color. Estimating
f is challenging for a number of reasons [1]: 1) f is often
highly nonlinear; 2) although it can be expected to be smooth
over regions of the colorspace, it is affected by changes in
the underlying printing mechanisms—for example, undercolor
removal—that can introduce discontinuities; and 3) device
instabilities and measurement error introduce noise into the
training data.

Fig. 4 shows a typical color-managed system. The estimated
inverse mapping is implemented with a 3-D LUT with nodes
{aj} C CIELAB that are regularly spaced in each dimension.
This is followed by an array of 1-D LUTs used for calibration:
the R, G, and B channels are independently corrected to a
linear neutral response. Once estimated, the entire set of LUTs
can be stored in an ICC profile, a standardized color manage-
ment format, developed by the ICC. Input CIELAB colors that
are not a node of the 3-D LUT are interpolated and, although
interpolation technique is not specified in the standard, the
most commonly used method is trilinear interpolation [24].

The standard solution to estimating the inverse mapping f
is a two-step process. First, one applies regression to estimate
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Fig. 3. Illustration of the comparative accuracy of lattice regression with

higher order interpolations for estimating a d = 3 dimensional Gaussian
mixture. Shown are RMS test error for k =10 000 uniformly drawn locations
in [0, 1]3 for varying lattice sizes m and training sample sizes n. (a) m = 93
lattice nodes, (b) m = 173 lattice nodes, and (¢) m = 333 lattice nodes.

an intermediate function that fits the observed training data.
Once estimated, this intermediate function is evaluated at
the nodes of the lattice LUT and discarded. We compare
lattice regression to this standard approach applied with three
state-of-the-art regression techniques. The first two, shown
previously to work well for color management, are local ridge
regression [25] and local Tikhonov regression [26]; they are
variations on local linear regression that differ only in the
regularization applied. For these, we use an enclosing k-NN
neighborhood [4], [25] to automatically choose a set of local
training points that enclose the test point in a convex hull,
eliminating the need to cross-validate a neighborhood size for
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Fig. 4. Color-managed printer system. For evaluation, errors are measured

between (L, a, b) and (i, a, [;) for a given device characterization.

the local regressions. We also compare to Gaussian process
regression [27] (also known as kriging), which is a popular
kernel-based regression technique that has been successful in
diverse low-dimensional problems, such as geospatial interpo-
lation and inverse dynamic control in robotics.

A. Experimental Details

Experiments were run with an HP Photosmart D7260 ink
jet printer and a Brother HL-4040CDN laser printer. Training
samples were created by printing the standard 918 sample
Gretag MacBeth TC9.18 RGB target. CIELAB values for
the printed color patches were measured with an X-Rite
iSis spectrophotometer using D50 illuminant at a 2° observer
angle and UV filter. As shown in Fig. 4 and as is standard
practice for this application, the data for each printer was
first gray-balanced using 1-D calibration LUTs for each color
channel (see [1] for details). The same 1-D LUTs were
shared among the techniques applied in order to reduce the
number of confounding variables in the experiments. These
1-D LUTs were estimated using local Tikhonov-regularized
regression with enclosing k-NN neighborhood [25], [26] and
the regularization parameter 4 = 1. The 17 x 17 x 17 nodes of
each 3-D LUT formed a regular lattice spanning L € [0, 100],
a € [—100, 100], and b € [—100, 100].

For each printer, RGB values were drawn uniformly,
printed, and measured, forming an independent set of RGB —
CIELAB pairs. This set provided three uses in our exper-
iments. The first role is as a test set, since the resulting
CIELAB values are guaranteed to be within the gamut of each
printer, we used this set to assess the color accuracy of the
constructed LUTs. That is, Lhe\ CIELAB values were processed
by each LUT producing RGB which were then printed, the
subsequently measured CIELAB values were compared to the
original CIELAB values. To compare, we used the A Ezpo0
metric which is standard in color management and is a
perceptually-corrected Euclidean distance in CIELAB. The
second role is to characterize the innate variability in the
printing/measuring process. This was done as follows: 1) we
printed and measured the 918 random RGB color patches
(without modification) five times for each printer; 2) we
computed the mean Lab value for each patch over the five
prints; and 3) we computed the average A Ejoop difference,
across all 918 x 5 printed patches, between the measured
Lab value and the corresponding mean Lab value. The third
role of this set of random RGB values was in choosing the
regularization parameter for each method. The value of 4 for
each algorithm was chosen to produce a LUT that minimized
> IRGB; — RGB;||; for the test CIELAB values. Table I
shows for each method the parameter settings tested and the
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TABLE I
REGULARIZATION PARAMETER CHOICES

2 2 !
Brother HP choices

Local ridge 10 1 {1073, ...,10%)
regression

Local Tikhonov 100 10 {1072, ..., 10%)
regression

Lattice regression 105 1075 || {1078, ..., 10%}

TABLE I

A E2000 PERFORMANCE ON HP PHOTOSMART D7260 INKJET PRINTER
Mean # Errors > 2 A Eyp00
Lattice regression 0.98 58
Local ridge 1.43 181
Local Tikhonov 1.30 143
GPR 1.67 282
TABLE III

A E9pp0 PERFORMANCE ON BROTHER HL-4040CDN LASER PRINTER

Mean # Errors > 2 A Eppp0
Lattice regression 1.79 317
Local ridge 1.83 341
Local Tikhonov 1.82 335
GPR 2.16 417

chosen parameters for each printer. Parameters for Gaussian
process regression were chosen using the maximum likelihood
method detailed in [27].

Tables II and III show the performance on the 918 test
samples in terms of A Ezggo error.! To put the results in
perspective, the innate A Epgpo variability (described above)
for the inkjet and laser printer, respectively, was 0.46 and
0.52. For further perspective, note that a A Ejpoo error of
1—2 is generally considered a “just noticeable difference.” On
both printers, lattice regression achieves the smallest number
of colors above this threshold. On the inkjet printer, lattice
regression provides a 24% mean-error improvement over the
next-best performer, local Tikhonov regression. On the laser
printer, lattice regression gives only a small 1% mean-error
improvement, but for both printers a Wilcoxon one-sided
signed rank test indicated that lattice regression performs
consistently better than the other methods.> We hypothesize
that the difference on the laser printer is smaller because these
results are close to the limit of how well one could control
this laser printer.

lUsing AE1994 or AE1976 instead of A Eppop results in the same pairwise
ranking of algorithms under the Wilcoxon signed rank test.

2The Wilcoxon signed rank test is a nonparametric significance test of the
difference in error between competing algorithms, it allows one to determine
if the median of this difference distribution is nonzero, thus addressing the
consistency by which one algorithm outperforms another. This significance
test is more appropriate than the Student’s f-test, as we do not expect the
difference in error to be normally distributed.
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Fig. 5. Lattice regression test error for different choices of regularization
parameter A.

To assess the sensitivity of the proposed lattice regression
to the regularization parameter A, we printed and measured
the test patches for a range of parameter settings. The result
of this analysis is presented in Fig. 5, which shows the mean
A Eypo0 error on the test patches. On both printers, the mean
error is robust to the value of the parameter A within one order
of magnitude of the optimal value. One sees that for the HP,
our cross-validation of the regularization parameter 4 did not
quite produce the optimal A in terms of the printed A Ez00
error, which would have been achieved by 1074,

V. APPLICATION TO OMNIDIRECTIONAL
SUPER-RESOLUTION

We next illustrate the usefulness of the fast-evaluation
time of lattice regression, by showing how it can be used
to significantly improve the state of the art for the super-
resolution of unregistered omnidirectional images. Omnidirec-
tional cameras have been shown to be useful for autonomous
robots, particularly for visual homing and motion-estimation
tasks [28]-[30]. However, even medium-resolution omnidi-
rectional sensors are expensive, so effective super-resolution
is desirable. The state of the art in omnidirectional super-
resolution is arguably Arican and Frossard’s spherical Fourier
transform (SFT) method [31]—-[33]. We will show that by using
lattice regression, we can outperform this SFT super-resolution
in terms of peak signal-to-noise-ratio (PSNR), scalability, and
visual homing performance.

Until recently, most of the efforts on image super-resolution
assumed the images were perfectly registered, both for planar
image super-resolution [34], [35], and omnidirectional
super-resolution [36], [37]. More recent planar image super-
resolution algorithms simultaneously register and reconstruct
[38], [39]. For unregistered omnidirectional images, Arican
and Frossard [31]-[33] extended the method of He et al. [38]
to formulate a nonlinear least-squares optimization problem
which is solved with the Levenberg—Marquardt algorithm.
As in this previous work, we formulate the problem as finding
the registration parameters that reconstruct a high-resolution
image that best matches the given unregistered images.
However, this is a nonconvex optimization problem, and in
practice has many local minima. The key to our improved
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TABLE IV
NOTATION
Symbols  Description
Z True spherical function
N Number of given images
Z; ith given image
A A set of indices
i€ The set of indices of all images except the ith
M2 Number of pixels in each given image
L? Number of pixels in super-resolved image
V4 Estimated spherical function
0,¢ Spherical coordinate angles
Q Domain of Euler angles
gi Euler angles for ith image Z;
R(g) Rotation matrix corresponding to Euler angles g
Gy Reference grid: M regular samples of 6 and ¢
GS8i Gy rotated by g; [see (14)]

performance is that we better search this optimization space
by using a global optimization strategy, and we search the
space more efficiently by using lattice regression to quickly
evaluate each candidate output. We refer to this approach
as super-resolution of omnidirectional images by lattice
regression (SOLaR).

In the next section, we overview the SOLaR approach.
Then, in Section V-B, we describe how we parameterize image
registration on the sphere. In Section V-C, we describe how
we greedily globally optimize (13). Next, in Section V-D, we
explain how we apply lattice regression to a spherical grid to
form the estimates of the high-resolution image needed in the
global optimization. In Section V-E, we describe our experi-
mental setup, and in the remaining sections discuss the results.

A. Overview of SOLaR

The notation used in this section is summarized in Table IV.
We take as given N omnidirectional images {Z;},i =
1,..., N, each defined on a regular spherical grid with M?
sampling nodes, but with unknown registration. We assume
that there exists a real-valued function Z defined over the
unit sphere, and we treat each of the N given images
Z1,7Zy,...,ZN as samplings of Z. The objective is to form
an estimate Z of Z , and then evaluate 7 for the desired higher
resolution regular spherical grid with L? sampling nodes.
While the super-resolution problem assumes L > M, SOLaR
can also be used to solve the general resampling problem for
arbitrary L and M.

We  propose  estimating  registration  parameters
g = {&1,8,...,&n} that minimize the total leave-one-
out reconstruction error for the N given images. That is, we
would like to solve for

N
8= argminz |zi — Z(gi 1gio) |
gEQN

(13)

i=1
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where ¢ = {g1,82,...,8N} parameterizes the relative
rotations of the N images, || - | is the Frobenius norm, and
7 (gi |gjc) is the estimated function evaluated on the spherical
grid G8 where 7 is estimated from the complement set i€ of
all images except the ith image, with rotations given by g;c
(this notation is explained in further detail in Section V-B).

To make solving the global optimization problem (13)
feasible, we use a greedy global optimizer to efficiently search
over the image registrations g, and a sphere-adapted version
of lattice regression to quickly evaluate each estimated image
Z(gilgic)-

B. Spherical Registration Using Euler Angles

We use Euler angles to describe the relative registrations of
the given images. Denote the Euler angles for the ith image as
gi = (a;, Bi,7i) € Q, where Q = [—7, ) x [0, 7] x [—7, 7).
Euler angles parameterize a 3 x 3 rotation matrix R in terms of
rotations about z-axis, y-axis, and then again about the z-axis

R(gi) = Rz(a;) Ry(Bi) Rz(y:)

where Rz(«;) is the rotation matrix that defines rotation about
the z-axis by angle «;.

Points on the unit sphere can be described by spherical
coordinates (r, 8, ¢), where r = 1 is the radius, 8 € [0, 7]
is the co-latitude angle, and ¢ € [—=z,n) is the longitude
angle, and thus each image Z; can be described by a M x M
matrix of pixel values corresponding to a regular sampling of
the coordinates 8 and ¢. Specifically, we take as a reference
grid the regular spherical grid Go with M? total samples made
up of M regularly spaced samples in € and M regularly spaced
samples in ¢

2
Go = [(ej,qsk) = (376G +1/2) 57 G M/2>)]

for j,k=0,1,2,M — 1.

Note that G can be described as a matrix with (j, k)th entry
given by the pair (0;, ¢x).

Let the function 7 convert spherical coordinates (r, 8, ¢)
to Cartesian coordinates, and let 7~! convert Cartesian coor-
dinates to spherical coordinates so that t='(z(r, 0, ¢)) =
(r, 8, ¢). Then rotating the reference grid Go by a rotation
parameterized by Euler angles g; produces a new set of M x M
spherical angle coordinates that we denote G8/, where

Gg":{r_l(R(g,-)r(l,G,qﬁ)) for all (0, §) € Go}. (14)

We treat the ith given image Z; as being a sampling of the
underlying function Z on an unknown grid G¥&, that is, Z; =
Z(G8). Given an index set Z C {1 : N}, let the corresponding
indexed set of given images be denoted Z7 = {Z;};c7, and let
g7 = {gi}ieT be their corresponding set of rotations. We use
Z€ to denote the complement set of indices, {1 : N}\Z. Last,
let Z(gi |g7) denote the M x M matrix formed by evaluating
the estimated function Z on the grid G8/, where 7 has been
estimated from the set of given images Z7 with estimated
rotations given by G8Z.
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C. SOLaR’s Greedy Global Optimization

The registration cost function given in (13) has many local
minima and, given N images, it requires searching the 3(N—1)
dimensional space of relative Euler angles to perform super-
resolution. Here, we present an efficient (and approximate)
greedy method.

Initialize: Set the iteration counter + = 0 and initialize the
training set with the first image: Z; = {1} with registration
21 = (0,0, 0). Further, initialize the vector of reconstruction
errors € = (0,0,...,0) € RV*! and error threshold €* = 0.

While ZE # @.

Add Images: Images are registered to the training set and
immediately added when the reconstruction error is below the
threshold €*. Let 7 be a random permutation of the indices
in ZF and set t =1.

Fori=mny,m,..., 7 Find the registration g; that best
matches Z; to its estimate from g7,

gi =argmin |Z; — Z(gi 182) | (1)

gi€Q
and update ¢ = |Z; — AG |§z[)”F. If ¢ < €*, then add
image i to the training set Z; 1 = Z, | J i, and update €* = ¢;
andt =t + 1.

Ensure an Image was Added: If no image meets the
threshold €*, then the training set remains unchanged.
To ensure progression of the algorithm in this case, the
image with the lowest reconstruction error is added. Let i* =
argmine;, if + = ¢, then add image i* to the training set

ieZf
Tirv1 =TI, |Ji*, and update €* = ¢ and r =1 + 1.

Swap: To mitigate poor registrations that are likely to occur
at the early rounds of the algorithm, we allow the worst-
registered image a chance to be re-registered while ensuring
that the algorithm still completes in N — 1 iterations. Compare
the image in Z; with the largest reconstruction error imax =

arg max €; to the image in I,C with the smallest reconstruction
ieZ;

error imin = argmine;. If € . < €., then swap Z; .
ieZf
and Z;, in and out of the training set, respectively, by

setting Z;41 = (Zi+1\imax) U imin, and update €* = ¢;,;, and
t=t+1.

To perform the global optimization in (15) for each i € ZC,
we used the meta-heuristic global optimizer fully-informed
particle swarm (FIPS) [40], which is a variant of the popular
particle swarm optimizer (PSO) [41]. PSO begins with a
number of random guesses (we use the number of search
dimensions squared) called birds. At each iteration, the opti-
mizer moves each bird to a new point in the domain, where
each bird is moved in part toward the best location it has ever
seen, in part toward the best location any of the birds has ever
seen, and its movement has an inertial term that encourages
exploration. FIPS imposes further connections between the
birds movements, we used the connecting ring neighborhood
variant [40].

Note that the greedy registration algorithm described above
always finishes after N — 1 iterations. Each time new images
are added to the training set Z;, the function 7 must be
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re-estimated, so that lattice regression must be trained at most
N times, and often fewer than N times because more than
one image can be added to the training set at once in the add-
image step. In addition, if each global optimization for (15)
is allowed V guesses, then there will be O(VM?N?) total
evaluations of the estimated function Z, and so evaluating 7
must be fast. To that end, we use lattice regression adapted
for the sphere, as described next.

To improve results, the greedy registration algorithm can be
run multiple times, initializing each run with a subset of the
currently registered images and their estimated registrations. In
our experiments we perform two runs of the above algorithm,
where on the second run we set the initial training image set
Zo to be the set of images with reconstruction error lower
than the median error, this heuristic improved the resulting
registration in most cases. The inclusion of the swap step
is also a heuristic that reduces the propensity of this greedy
approach to be trapped in poor local minima, by swapping out
images that were initially poorly registered.

D. Lattice Regression on the Sphere

We apply lattice regression to a regular co-latitude/longitude
lattice on the sphere, where each grid node a; € [0, 7] x
[—7, 7). We use my lattice nodes over the co-latitude angle
range [0, 7], and my samples over the longitude angle range
[—7, ), for a total of m = my x my lattice nodes. In our
experiments, the lattices are all regularly-spaced in terms of 6
and ¢.

This spherical lattice differs from the standard rectangular
grid only in that it wraps around so that the longitude angle
node for —z and 7 are the same node, which simply changes
the specification of the graph Hessian regularizer for this node
and its neighbors. However, it is important to note that the
use of an equiangular grid implies that the geodesic spacing
of nodes will vary over the surface of the sphere. Accord-
ingly, one could easily modulate the strength of the Hessian
regularizer by dividing by the geodesic distance between
adjacent lattice nodes, which would ensure a more consistent
regularization in terms of geodesic smoothness. However, for
simplicity, we opted not to make this adjustment here.

E. Super-Resolution Results

We compare SOLaR and SFT in terms of visual quality,
super-resolution PSNR, computational time, and performance
on visual homing using the super-resolved images. In the
experiments, the low-resolution images, as well as the super-
resolved image, span the entire surface of the sphere. However,
if one was to use low-resolution images that did not span
the entire surface of the sphere, the SOLaR method can still
be applied to produce a super-resolved image over the entire
sphere. In either case, if there are cells within the high-
resolution lattice that do not contain data, lattice regression
will produce a smooth gradient that is affected by the nearest
cells that do contain data.

1) Super-Resolution from Real Low-Resolution Images:
First, we illustrate SOLaR and SFT for super-resolving
thirty-seven 64 x 64 images captured by a commercial camera
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Fig. 6. (a) 256 x 256 SFT super-resolved image and (b) 256 x 256 SOLaR
super-resolved image.

with unknown orientations. Most commercial omnidirectional
cameras do not capture the scene on a full sphere as the
view is obstructed by physical mounts. In this case, the
captured 64 x 64 images were reduced to 15 x 64 images
after removing occluded parts, and these images were given
as input to SOLaR and SFT. The resulting 256 x 256 super-
resolved images are shown in Fig. 6(a) and (b). Although no
ground truth is available for the high-resolution image, the
SOLaR super-resolution is generally sharper than the SFT
super-resolution.

2) Super-Resolution  Performance Versus Number of
Low-Resolution  Images and  Differing  Registration
Uncertainty: Next, we present experimental results for
two real omnidirectional images from a public domain
image database [42], and for a synthetically generated
omnidirectional image, which was used previously in
evaluating the SFT method [31], [33]. For these experiments,
low-resolution images were generated by down-sampling the
original image in the SFT domain (as done in [31]-[33]). The
low-resolution images were sampled on uniformly random
rotations of the reference grid Go. The super-resolution
algorithms are given the low-resolution images and their
grids with a random registration error drawn uniformly from
[—w°, w°] in latitude and longitude independently, and the
maximum registration error y is given to the super-resolution
method.
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Fig. 7. Reconstruction PSNR of a 128 x 128 image versus the number of
low-resolution 16 x 16 images with the registration uncertainty of 10° and 90°.
Results were averaged over all three test images.

Fig. 7 shows the results for super-resolving a 128 x 128
image from a varying number of 16 x 16 images. The proposed
SOLaR method performs roughly 10 dB better on average
than the benchmark SFT method. The solid lines compare
the methods when the registration is known within 10°. The
dashed lines compare the methods when the registration is
completely unknown (that is, there is 90° registration uncer-
tainty). The reported PSNR was averaged over ten different
super-resolutions estimated from different realizations of the
random image registrations uniformly drawn from the stated
uncertainty range. The error bars do not overlap, showing that
these differences are statistically significant.

3) Scalability and Computational Requirements: Table V
compares the runtime for the SOLaR and SFT super-resolution
methods. All the experiments reported in this paper were
run on an Intel quad-core 3.20-GHz machine with 12 GB of
memory. SFT [32] takes significantly longer, and scales poorly
with respect to the reconstructed image size. The computation
of the fast spherical transform requires O(B2(log(B))?) opera-
tions, where B is typically chosen to correspond with the size
of the high-resolution image that needs to be reconstructed.
Furthermore, this operation needs to be repeated several times
at each iteration of the gradient descent approach [33]. Due
to this polynomial increase in computation time and memory
constraints, we were not able to use SFT to reconstruct images
larger than 128 x 128.

4) Effect on Visual Homing: Mobile robots capture images
of their surroundings in order to visually home in on a target
or return to a home location. omnidirectional cameras are
better than conventional cameras for visual homing because
they can capture the complete field of view. However, high-
resolution omnidirectional cameras are expensive and the
performance of visual homing has been shown to deteriorate
at lower resolutions [29]. In this section, we compare the
super-resolution methods in terms of a standard visual homing
metric.

We report experimental results on the Bielefeld panoramic
image database [43], which comprises omnidirectional images
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TABLE V
RUNTIME-PER-SUPER-RESOLVED-IMAGE IN MINUTES FOR SOLAR AND
SFT [32] FOR RECONSTRUCTING A 128 x 128 IMAGE FROM 16 x 16
IMAGES, AND A 256 x 256 IMAGE FROM 64 x 64 IMAGE.

THE REGISTRATION UNCERTAINTY WAS 10°

10 20 40 60 80
images | images | images | images | images
(1285§T128) 1341 | 2488 | 4082 | 4936 | 7085
(28 x 1y | 00T | 038 | 057 | aan s
(25201;211;56) 016 | 043 117 | 253 | se4
TABLE VI

MEAN RATE OF RETURN TO HOME COMPARISON USING 128 x 128
IMAGES SUPER-RESOLVED FROM 16 x 16 SIZED IMAGES

15° reg. uncertainty 90° reg. uncertainty
# Images
SFT SOLaR SFT SOLaR
2 0.12 0.10 0.03 0.09
5 0.22 0.42 0.04 0.38
10 0.50 0.78 0.07 0.66
20 0.85 0.91 0.09 0.79

captured by the ImagingSource DFK 4303 camera and a
large wide-view hyperbolic mirror mounted on an ActivMedia
Pioneer 3-DX robot [29]. The database consists of 170 omnidi-
rectional images captured at 17 x 10 regularly-spaced locations
on the floor (see Fig. 4 in [29]).

Two recent methods for visual homing with omnidirectional
images are a differential visual-homing technique based on
analyzing the optical flow [29], and an iterative approach
based on local matched-filtering [44], [45]. The matched-
filtering method performed better at the low signal-to-noise-
ratios typical of low-cost imaging devices [44], [45], which
is the scenario considered here, so we used it for these
experiments.

The experimental setup is the following. The mobile robot
is initialized randomly at a grid point, and given the “target”
omnidirectional image at the unknown home location. Each
time the robot moves to a new location it is given the
omnidirectional images captured at that location and its imme-
diately neighboring locations, which it correlates with the
target image of its home location. The robot then moves to the
location at which the scene has maximum correlation with the
scene at the home location. Homing is considered successful
if the robot reaches the home location in no more than 27
steps (because in 27 steps it could traverse the entire width
and length of the room).

A standard metric for visual homing is the mean return
ratio, which is the fraction of times the robot successfully
locates home within 27 steps, averaged over uniformly-
randomly chosen home locations and uniformly randomly
chosen initial-placements of the robot.

Visual homing results are shown in Table VI for different
numbers of low-resolution images and for two levels
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of registration uncertainty. Given a single 16 x 16 image,
the visual homing return ratio is 0.05. Even with only
two images and no information about their registration,
SOLaR is able to double the return ratio to 0.09. In
the best case considered, 20 such low-resolution images
with registration known up to 15° were stitched together
to produce a 91% chance of homing - on par with
having originally captured a true 128 x 128 image. Even
with no information about the relative registrations of the
20 images, SOLaR achieved a return ratio of 0.79. In
general, the SFT method does not super-resolve adequately
in the completely-unregistered case, whereas SOLaR provides
useful gains. With the better-registered 15° uncertainty
images, SOLaR can achieve higher return ratios with fewer
images.

VI. CONCLUSION

Linearly interpolating a lattice of stored function values is
a standard approach for the fast evaluation of a function. In
this paper, we have shown that lattice values that minimize a
regularized post-interpolation training error can be determined
in closed-form. To ensure a unique and smooth solution, we
proposed using a graph Hessian regularizer of second-order
differences, but note that different applications may profit
from more tailored regularizers. Large performance gains over
the state of the art were shown for two applications, color
management and omnidirectional super-resolution.

APPENDIX
SPECIFYING THE WEIGHT MATRIX W

Without loss of generality, assume that the domain has
undergone an affine transformation such that the lattice sits
at the origin with nodes at integer coordinates in Ri. Further,
let the d-dimensional vector /i = [7iy, 2, ..., Mq]7 denote
the number of nodes in each dimension (thus m = szl my).

Interpolating a test point x € D requires the ability to index
the nodes of the cell in which it is contained. To that end,
define the function c;(x) : R? — N that returns the index of
the jth vertex (j = 1,...,29) of the lattice cell that contains
x. The function c¢;(x) can be computed as follows:

d k—1
cj) =1+ (Lx[kl] +a,~[/<])(1_[nak) (16)
k=1 i=0

where mo = 1, x[k] is the kth element of the vector x,
and «; is a vector whose components form the d-bit binary
expression of j. For example, in Fig. 1, we have

ci(x) =1+ (1.8]+0)(1)+(|1.4] +0)(3) =5

) =1+ (18] + D)+ (11.4]+0)(3) =6

ca(x) =1+ (1.8]+0)()+ ([1.4]+1)(3) =8

ca(x) =1+ (18] + DD+ (1.4]+DH(B) =9
which are indeed the indices of the four lattice nodes
surrounding x.

Let w;(x) be the weight associated with the jth vertex
ac;(vy (for j =1,...,2%) of the lattice cell that contains x.
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For d-linear interpolation, let A(x) = x — |x] with |[-]
performed component-wise. Then w(x) can be computed as

w0 =T (scom)™ (1= sone) "

(7)

Note that the exponent acts like a selector of either the
A(x)[k] or (1 — A(x)[k]) term, automatically selecting
whichever of the two is positive.

Let W(x) be the 1 x m sparse vector with kth element

wjx), if k=cjx), for j=1,...,2¢

W(x)[k] =
()[k] 0, otherwise.

(18)

For the m x 1 matrix of lattice outputs b, the function value at
x is interpolated as W (x) - b. Likewise, given the matrix of n
training vectors X = [x1,...,x,], let W be the n x m matrix
W= [Wi),..., W]
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