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Abstract – The problem of fusing indefinite similarity in-
formation and positive semidefinite similarity information
together for classification is considered. The proposed so-
lution jointly (i) learns a spectrum modification to make the
indefinite similarity positive semidefinite, (ii) learns a conic
combination of multiple given positive semidefinite kernels,
and (iii) learns the parameters of a discriminative classifier.
We show that the proposed fusion method can be formulated
as a convex optimization problem. This work extends pre-
vious work in multiple kernel learning. Though applicable
to other kernel methods, the focus is on the support vector
machine. Experiments with four real data sets show that the
proposed method is consistently among the best performers.

Keywords: Similarity, indefinite kernel, multiple kernel
learning, support vector machine, kernel methods, convex
optimization.

1 Introduction
In some applications, there may be multiple possible de-

scriptions of the similarities between data samples. In this
paper, we consider fusing such multiple similarities for clas-
sification. An example of multiple similarity descriptions
arises in the problem of protein classification in computa-
tional biology [1, 2]. Pairwise similarities between pro-
teins can be based on protein-protein interactions, genetic
interactions, co-participation in a protein complex, Smith-
Waterman sequence matching algorithm [3], and other fac-
tors. In general, fusing multiple similarities with regard to a
particular classification task can provide a task-specific view
of the relations between samples, and the performance may
be better than with any single description.

A special case is when each similarity satisfies the math-
ematical properties of a kernel. In that case, one can treat
each similarity as a kernel, and fuse the similarities using
multiple kernel learning (MKL), in which a linear combi-
nation of multiple kernels and the parameters of a discrimi-
native classifier acting on the kernel combination are jointly
learned [4]. MKL can be used to fuse heterogeneous de-
scriptions of data samples in the form of multiple kernels.
For the above example of protein function prediction, it has
been shown that a classifier trained on a conic combination
of all the given similarities yielded better classification re-

sults than the same classifier trained on any single type of
similarities [1, 2].

However, similarities can be indefinite and thus fail to
satisfy the properties of a kernel. Learning based on such
indefinite similarities arises in many fields such as compu-
tational biology, computer vision, information retrieval, and
natural language processing. In order to apply kernel meth-
ods with indefinite similarities, researchers have considered
several ways to approximate an indefinite similarity matrix
by a positive semidefinite (PSD) matrix, but the best approx-
imation method depends on the particular problem [5].

In this paper, we investigate fusing an indefinite similarity
with multiple kernels to produce a classifier with good gen-
eralization. Including indefinite similarities in the frame-
work of kernel fusion provides a more comprehensive pic-
ture of the relations between data samples and extends the
concept of MKL. We propose a method that jointly (i) learns
the spectrum modification on the similarity matrix to make it
PSD, (ii) learns the optimal conic combination of the modi-
fied similarity matrix and the given multiple kernel matrices,
and (iii) learns the parameters of a discriminative classifier
acting on this conic combination of PSD matrices. We for-
mulate the proposed fusion method as a convex optimization
problem. For this paper, we focus on the support vector ma-
chine (SVM) classifier, though the ideas presented can be
generalized to other kernel methods.

The rest of the paper is organized as follows. We first re-
view the prior art in adapting kernel methods for similarity-
based classification and the literature for MKL in Section 2.
Then, in Section 3 we propose a method to jointly fuse a
given indefinite similarity with multiple kernels and learn a
classifier with good generalization. Experimental results on
four real data sets are reported in Section 4. We conclude in
Section 5 with a discussion of extensions of this work and
some open questions.

2 Background and Related Work
Let Ω denote the sample space, xi ∈ Ω, i = 1, . . . , n,

denote the n training samples, and yi, i = 1, . . . , n, their
corresponding class labels. For the classification problem
considered in this paper, we take as given an n × n indefi-
nite matrix S of pairwise similarities between the n training
samples, m kernel matricesK1, . . . ,Km each of size n×n,



and an n × 1 vector y with ith element yi. Note that we
do not assume the samples {xi}ni=1 are given – only their
pairwise relationships and their class labels y.

For notational simplicity, we only consider binary classi-
fication such that yi ∈ {±1}, i = 1, . . . , n. For a test sam-
ple x ∈ Ω, we take as given an n × 1 vector s of pairwise
similarities between x and each of the n training samples,
and also m vectors k1, . . . , km each of size n × 1, whose
ith element is the value of the corresponding kernel func-
tion on the test sample and the ith training sample, that is,
Kj(xi, x), j = 1, . . . ,m. The problem is to train a classifier
based on K1, . . . ,Km, S and y, and estimate the class label
ŷ for x based on k1, . . . , km, and s.

We first review the approaches to applying kernel meth-
ods to indefinite similarities in Section 2.1 (see [5] for a
detailed discussion). Then in Section 2.2, we give a brief
review of MKL.

2.1 Modify Similarities into Kernels
To use kernel methods with indefinite similarities, one

can simply replace the kernel matrix K with the similar-
ity matrix S, and ignore the fact that S is indefinite. How-
ever, because the indefinite matrix S is not a kernel matrix, it
does not actually correspond to a reproducing kernel Hilbert
space (RKHS), and thus one loses the underlying theoreti-
cal support and past empirical support for such kernel meth-
ods. In practice, the associated optimization problems may
become nonconvex, for example, recall the SVM dual prob-
lem:

maximize
α

1Tα− 1
2
αT diag(y)K diag(y)α

subject to yTα = 0, 0 ≤ α ≤ C1,
(1)

with variable α ∈ Rn, where 1 is a column vector of ones,
and ≤ denotes component-wise inequality for vectors. The
above SVM dual (1) is no longer convex if one replaces K
by S.

To retain the full theoretical and practical benefits of ker-
nel methods, one can derive a surrogate kernel matrix K
from S, ideally adapting the modification to be effective
for the learning problem at hand [5]. Previous approaches
have considered different spectrum modifications to make
S PSD, including clipping, flipping, and shifting any neg-
ative eigenvalues. First, S is made symmetric by taking
1
2 (S + ST ) if not already so, then S has eigenvalue de-
composition S = UΛUT , where U is an orthogonal ma-
trix and Λ is a diagonal matrix of real eigenvalues, that is,
Λ = diag(λ1, . . . , λn). Spectrum clip makes S PSD by
clipping all the negative eigenvalues to zero:

Sclip = U diag (max(λ1, 0), . . . ,max(λn, 0))UT .

Spectrum clip is mathematically satisfying in that Sclip is
the nearest PSD matrix to S in terms of the Frobenius
norm [6]:

Sclip = arg min
K�0
‖K − S‖F ,

where � denotes the generalized inequality with respect to
the PSD cone for square matrices.1 Spectrum flip makes S
PSD by flipping the sign of the negative eigenvalues:

Sflip = U diag (|λ1|, . . . , |λn|)UT ,

which is equivalent to replacing the original eigenvalues of
S with its singular values. Spectrum shift makes S PSD
by shifting the whole spectrum by the minimum amount
needed to make it PSD:

Sshift = U (Λ + |min(λmin(S), 0)| I)UT ,

where λmin(S) is the minimum eigenvalue of S, and I is
the identity matrix. Spectrum shift only enhances the self-
similarities and does not change the similarity between any
two different samples.

Rather than modifying the spectrum, a recent paper pro-
posed to learn a K close to S within an extended SVM
framework by solving [7]:

maximize
α

min
K�0

(
g(α,K) + ρ‖K − S‖2F

)
subject to yTα = 0, 0 ≤ α ≤ C1,

(2)

where g(α,K) , 1Tα− 1
2α

T diag(y)K diag(y)α; the vari-
ables are α ∈ Rn and K ∈ Rn×n, and C > 0 and ρ > 0 are
the hyperparameters. The problem in (2) is a soft-penalty
variant of maximizing the minimum of the objective func-
tion of (1) among the PSD matrices close to S.

2.2 Multiple Kernel Learning
MKL enables kernel methods to learn how to combine

kernels with different parameters or kernels from different
sources for a particular learning problem.

Given m kernel matrices K1, . . . ,Km, consider the setK
of the PSD matrices that are linear combinations of these m
kernel matrices with a fixed trace τ , that is,

K =

{
K � 0

∣∣∣∣∣K =
m∑
i=1

wiKi, tr(K) = τ

}
.

Let ψ(K) be the optimal value of the SVM dual problem
in (1) for a specific K. Lanckriet et al. proposed to learn an
optimal linear combination of K1, . . . ,Km by solving [4]:

minimize
K

ψ(K)

subject to K ∈ K.
(3)

They showed that the problem described by (3) is convex
in K and formulated it as a semidefinite program (SDP).
By restricting the linear combination

∑
i wiKi to be a conic

combination such that wi ≥ 0, i = 1, . . . ,m, they further

1For K ∈ Rn×n, K � 0 means that K is PSD and thus implies that
K is symmetric.



simplified the problem to the following quadratically con-
strained quadratic program (QCQP):

maximize
α,t

1Tα− 1
2
τt

subject to yTα = 0, 0 ≤ α ≤ C1,

αT diag(y)Ki diag(y)α ≤ tr(Ki)t
for i = 1, . . . ,m,

(4)

with variables α ∈ Rn and t ∈ R. To make (4) look more
like (1), one can re-express (4) by moving the m quadratic
inequality constraints into the objective so that the problem
becomes to maximize over α the following objective

1Tα− 1
2

max
i

(
τ

tr(Ki)
αT diag(y)Ki diag(y)α

)
, (5)

with the same constraints as in (1). Although the function
in (5) is concave, it is not differentiable, and thus the sequen-
tial minimal optimization (SMO) algorithm [8] (an efficient
algorithm used to solve (1) for large-scale problems) cannot
be applied. Bach et al. showed that (4) is in fact the dual of
the following primal problem [9]:

minimize
{fi}m

i=1,b,ξ

1
2

(
m∑
i=1

νi‖fi‖Hi

)2

+ C1T ξ

subject to yj

(
m∑
i=1

fi(xj) + b

)
≥ 1− ξj , j = 1, . . . , n,

ξ ≥ 0,

where νi =
√

tr(Ki)/τ , and Hi denotes the RKHS asso-
ciated with Ki, which is the hypothesis space for fi, where
fi, by the representer theorem [10] takes the form

fi(x) =
n∑
j=1

cijKi(xj , x).

By adding additional regularization terms to the primal, they
derived a dual with a smooth objective and proposed an
SMO-like algorithm to solve it efficiently [9].

Recently, two fast algorithms designed for large-scale
MKL problems have been proposed in [11] and [12] for a
slightly different case where K is replaced by the convex
combination of K1, . . . ,Km, that is,

K′ =

{
K =

m∑
i=1

wiKi

∣∣∣∣∣ 1Tw = 1, w ≥ 0

}
.

3 Proposed Method for Fusing Indef-
inite and Positive Semidefinite Sim-
ilarities

We address the theoretical motivation for the proposed
method in Section 3.1. In Section 3.2, we propose to use

linear transformation to find a surrogate kernel matrix for
the indefinite similarity matrix S. Section 3.3 details the
proposed method to fuse an indefinite similarity with multi-
ple kernels for classification, including how to formulate it
as a convex optimization problem.

3.1 Theoretical Motivation
The m given kernel matrices K1, . . . ,Km already have

associated RKHS’s H1, . . . ,Hm. For the given indefinite
similarity matrix S, we would like to find a surrogate kernel
matrixK0 corresponding to an RKHS denoted byH0. Then
we can define a new RKHS H as the direct sum of Hi, i =
0, . . . ,m, that is,

H =
m⊕
i=0

Hi,

whose associated inner product is defined for some wi ≥ 0,
i = 0, . . . ,m, as

〈a, b〉H =
m∑
i=0

wi〈ai, bi〉Hi

for any a, b ∈ H, where ai and bi are the unique components
of a and b inHi, respectively. The goal is to learn a classifier
inH that can generalize better than one trained in any single
Hi, i = 0, . . . ,m. To achieve this goal, we need to find
an effective H0 and equip the inner product of H with an
optimal set of weights wi, i = 0, . . . ,m.

3.2 Learning the Spectrum Modification
Next we discuss how to effectively find a surrogate kernel

matrixK0 for S. As noted in [5], both spectrum clip and flip
can be represented by a linear transformation on S, that is,
the modified similarity matrix S̃ can be obtained by letting
S̃ = AS, where A = U diag(a)UT (recall S = UΛUT ).
For spectrum clip,

aclip =
[
I{λ1≥0} . . . I{λn≥0}

]T
,

where I{·} is the indicator function, and for spectrum flip,

aflip =
[
sgn(λ1) . . . sgn(λn)

]T
.

We propose to let the surrogate kernel matrix K0 be a linear
transformation of S such that

K0 = AS = U diag(a)UTS = U diag(a)ΛUT ,

where the spectrum modification vector a is a variable that
is learned from the training data, as detailed in the following
subsection.

Expressing the modification of S as a linear transforma-
tion helps achieve a consistent treatment of training and test
samples [5]. Since the classifier is trained with K0 instead
of S, to estimate the class label for a test sample x, we would



like to apply the trained classifier on a modification of s, de-
noted by an n× 1 vector k0 that is derived from s in a con-
sistent way as K0 from S. To this end, we propose to apply
the same linear transformation A on s such that k0 = As.
This method for modifying the test similarities is consistent
in the sense that if any training sample is taken as a test sam-
ple, its similarities will be modified in the same way during
training and test, in line with the spirit of empirical risk min-
imization.

3.3 Fusing Similarities and Kernels Using
Convex Optimization

The proposed method for fusing an indefinite similarity
with multiple kernels extends the primal form of the SVM:

minimize
c,b,ξ

1
n
1T ξ + ηcTKc

subject to diag(y)(Kc+ b1) ≥ 1− ξ, ξ ≥ 0,
(6)

with variables c ∈ Rn, b ∈ R and ξ ∈ Rn, and regular-
ization parameter η > 0. We favor framing our proposed
method in terms of the primal form of the SVM given by (6)
because of its clear interpretation as empirical risk mini-
mization with regularization.

We propose to minimize the empirical risk with regular-
ization simultaneously over the spectrum modification vec-
tor a ∈ Rn, the kernel conic combination weights w ∈ Rm,
and the original SVM variables. To begin with, let

κ(a,w) = K0 +
m∑
i=1

wiKi = U diag(a)ΛUT +
m∑
i=1

wiKi.

Then we extend the SVM primal (6) to:

minimize
c,b,ξ,a,w

1
n
1T ξ + ηcTκ(a,w)c+ γh(a)

subject to diag(y) (κ(a,w)c+ b1) ≥ 1− ξ,
ξ ≥ 0, Λa ≥ 0, w ≥ 0,
m∑
i=1

wi tr(Ki) ≤ τ,

(7)

where the regularizer h(a) is a convex function of a with
regularization parameter γ, and τ is a constant. Besides the
empirical risk term, we have two regularizers in the objec-
tive of (7). The first regularizer cTκ(a,w)c increases the
smoothness of the decision function in H, and the second
regularizer h(a) focuses the search area for a. For example,
one can choose h(a) = ‖a−aclip‖2 to make a behave more
like spectrum clip, or h(a) = ‖a − aflip‖2 to make a be-
have more like spectrum flip. The trace constraint is a linear
inequality constraint on w, which prevents w from growing
unbounded. This also guarantees that the inner product in
H is bounded, which is crucial to proving a generalization
bound [5, Theorem 1].

It is not trivial to compute the solution to (7). We show
that (7) can in fact be formulated as a convex optimization
problem. First, let

c̃ = UT c,

and

κ̃(a,w) = diag(a)Λ +
m∑
i=1

wiU
TKiU,

then we can rewrite (7) as

minimize
c̃,b,ξ,a,w

1
n
1T ξ + ηc̃T κ̃(a,w)c̃+ γh(a)

subject to diag(y) (Uκ̃(a,w)c̃+ b1) ≥ 1− ξ,
ξ ≥ 0, Λa ≥ 0, w ≥ 0,
m∑
i=1

wi tr(Ki) ≤ τ.

(8)

Next let
z = κ̃(a,w)c̃,

and notice that

c̃T κ̃(a,w)c̃ = zT (κ̃(a,w))† z (9)

due to the fact that κ̃(a,w) (κ̃(a,w))† κ̃(a,w) = κ̃(a,w),
where (κ̃(a,w))† is the Moore-Penrose pseudoinverse of
κ̃(a,w). Next, we use the following lemma to finish the
derivation.

Lemma 1. Let A ∈ Rn×n, b ∈ Rn and c ∈ R. Then[
A b
bT c

]
� 0

if and only if A � 0, b is in the range (column space) of
A, and c − bTA†b ≥ 0, where A† is the Moore-Penrose
pseudoinverse of A.

Lemma 1 follows directly from [13, p. 44, Theorem 1.20],
which states a basic property of the generalized Schur com-
plement.

Lastly, by introducing slack variables u and v, and apply-
ing Lemma 1 with (9), we can express (8) as

minimize
z,b,ξ,a,w,u,v

1
n
1T ξ + ηu+ γv

subject to diag(y)(Uz + b1) ≥ 1− ξ, ξ ≥ 0,

Λa ≥ 0, w ≥ 0,
m∑
i=1

wi tr(Ki) ≤ τ,[
κ̃(a,w) z
zT u

]
� 0, h(a) ≤ v,

(10)

with variables z ∈ Rn, b ∈ R, ξ ∈ Rn, a ∈ Rn, w ∈
Rm, u ∈ R and v ∈ R. One can recognize that (10) is a
convex optimization problem since it has a linear objective,
a set of affine constraints, a linear matrix inequality (LMI)



constraint, and a convex inequality constraint depending on
h(a). For regularizers like ‖a− aclip‖2 or ‖a− aflip‖2, the
last constraint becomes a second-order cone constraint, and
the problem in (10) becomes a convex conic program, which
can be efficiently solved by a general-purpose convex conic
optimizer such as SeDuMi [14] and SDPT3 [15].

Let z?, b?, a? and w? denote the optimal solution to (10);
the resulting linear transformation on S is

A = U diag(a?)UT ,

and we can recover the optimal c? by

c? = U (κ̃(a?, w?))† z?.

For a test sample x, given its similarities s, k1, . . . , km, we
classify x as

ŷ = sgn

(
(c?)T

(
U diag(a?)UT s+

m∑
i=1

w?i ki

)
+ b?

)
.

4 Experiments
In this section, we compare the proposed SVM for data

fusion with SVMs that use a surrogate kernel for the indef-
inite similarity formed by spectrum clip, flip or shift, and
with SVMs trained individually on one of the given kernel
matrices.

4.1 Data Sets
Four real data sets2 were used for experiments. We ran

one experiment each with the Amazon, Aural Sonar, and
Protein data sets, and two experiments with the Yeast data
set, as detailed below. Figure 1 shows the similarity and
kernel matrices for all the samples for each data set. The
eigenvalue spectra of the indefinite similarity matrices are
shown in Figure 2.

The Amazon data set consists of 96 fiction and nonfiction
books by 23 different authors, including some authors who
write both fiction and nonfiction. The problem is to correctly
classify each book based on its similarities to the books in
the training set as one of the 36 nonfiction books or one of
the 60 fiction books. The similarity between book A and
book B is 1

2 (P (A,B) + P (B,A)), where P (A,B) is the
percentage of customers who bought book A after viewing
book B, as reported by amazon.com. We created the first
two kernels by treating the similarities as features. Let S∗j
denote the jth column of the similarity matrix S. Kernel 1
is a linear kernel on similarity features such that

K1(xi, xj) = (S∗i)
T
S∗j .

Kernel 2 is a Gaussian radial basis function (RBF) kernel on
similarity features such that

K2(xi, xj) = exp
(
−β‖S∗i − S∗j‖22

)
,

2These data sets are available at
http://idl.ee.washington.edu/similaritylearning/.

with β = 0.1. One can observe from Figure 1 that the orig-
inal similarity matrix of this data set is very sparse. We
created a third kernel by treating S as the adjacency matrix
of a graph and generated a diffusion kernel [16, 17] using
the normalized graph Laplacian with parameter σ2 = 20.

The Aural Sonar data set was developed to investigate the
human ability to distinguish different types of sonar signals
by ear [18]. Test subjects listened to pairs of sonar returns
from a broadband active sonar system and rated the similar-
ity of each pair on a scale of 1 to 5. Each pairwise similarity
is the sum of the similarity score of two humans for that pair,
producing similarities with integer values in the range 2 to
10. The problem is to classify among the total 100 samples
the 50 target-of-interest signals from the 50 clutter signals.
We created three kernels. The first one is a linear kernel
on similarity features, and the second and third are Gaus-
sian RBF kernels on similarity features with β = 0.01 and
β = 0.1, respectively.

The Protein data set has sequence-alignment similarities
for 226 proteins from 9 classes [19]. Here we treat the prob-
lem as classifying the two most confusable classes, each of
which has 72 samples. Again, we created three kernels. The
first one is a linear kernel on similarity features, and the sec-
ond and third are Gaussian RBF kernels on similarity fea-
tures with β = 0.1 and β = 0.05, respectively.

The Yeast data set is taken from [1], where the problem
is to predict the functions of yeast proteins. The original
data set contains 3588 samples and each sample is a yeast
protein sequence. There are 13 classes and some samples
belong to several classes due to their multiple functions. To
simplify the problem, we choose a subset of 200 samples
by selecting the first 100 samples that exclusively belong
to class 7 and the first 100 samples that exclusively belong
to class 12. The similarity here is the Smith-Waterman E-
value. We created three kernels out of the similarity. One is
a linear kernel on similarity features and the other two are
Gaussian RBF kernels3 on similarity features with β = 0.01
and β = 0.001, respectively. We added a fourth kernel by
using the Pfam kernel in [1], which measures the similari-
ties between these yeast proteins in a different way than the
Smith-Waterman algorithm. We ran two sets of experiments
on this data set. One was to fuse the Smith-Waterman simi-
larity and the three kernels created out of it, and the other
was to fuse the Smith-Waterman similarity and the Pfam
kernel.

4.2 Experimental Setup
We normalized all the similarity and kernel matrices to

the range of [0, 1]. For each data set, we randomly parti-
tioned the data 20 times into 20% test and 80% training. For
each of the 20 partitions, the parameters of the classifiers
were selected by a 10-fold cross-validation on the training
set.

3Since the two Gaussian RBF kernels look highly similar to each other,
only one of them is shown in Figure 1.
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Figure 1: Similarity and kernel matrices of the four data sets. Black corresponds to maximum similarity and white to zero.
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Figure 2: Eigenvalue spectra of the similarity matrices of the four data sets.



For the proposed method, we choose the regularizer of
the spectrum modification vector a to be

h(a) = ‖a− aclip‖2,

so (10) becomes a convex conic program and we solve
it by the semidefinite-quadratic-linear program solver
SDPT3 [15]. For all the other SVMs used for comparison,
we use the traditional C-SVM, whose dual problem is given
in (1).

The regularization parameters η and γ for the proposed
method, and the hyperparameter C for C-SVM were cross-
validated from the following sets:

η ∈
{

10−4, 10−3, 10−2, 10−1, 1
}
,

γ ∈
{

10−3, 10−2, 10−1, 1, 10, 102, 103
}
,

C ∈
{

10−3, 10−2, 10−1, 1, 10, 102, 103
}
.

4.3 Results
The test errors averaged over the 20 randomized

test/training partitions are shown in Table 1. For each data
set, the lowest average error is boldfaced. Also boldfaced
are the results that are not statistically significantly worse
than the lowest one based on a one-sided Wilcoxon signed-
rank test at the 5% significance level.4 The results show that
the proposed method achieves the lowest average error in
three out of the five experiments, and unlike any of the other
methods, in all the experiments the proposed method is ei-
ther the best or not statistically significantly different from
the best. Interestingly, one can see from the last column of
Table 1 that even when the average error of the SVM using
the Pfam kernel alone is twice as high as that of the SVM us-
ing spectrum clip on the Smith-Waterman similarity, fusing
these two descriptions can in fact improve the classification
performance.

We illustrate the fused similarity κ(a?, w?) learned by
the proposed method for the Amazon and Yeast (Smith-
Waterman and Pfam fusion) data sets in Figure 3, where
for each data set we trained the proposed SVM on all the
samples using the parameters selected most frequently over
the 20 random partitions. For the Amazon data set, the intr-
aclass similarities have been enhanced, as seen by the more
obvious block-diagonal structure. For the Smith-Waterman
and Pfam fusion, the fused kernel matrix appears to be a
less noisy version of the original indefinite similarity matrix
shown in Figure 1 with some scattered contributions from
the Pfam kernel.

4A statistical significance test decides whether a classifier performs con-
sistently better or worse than another classifier, and the result may differ
from that indicated by the average performance. For example, the results
on the Aural Sonar data set show that the SVM with spectrum flip is statis-
tically significantly worse than the proposed method but the SVM trained
on kernel 1 is not, although the average error of the former is less than that
of the latter.

5 Discussion and Conclusions
For learning from heterogeneous data, we considered the

problem of fusing an indefinite similarity with multiple ker-
nels for classification. The work in this paper extends previ-
ous research in MKL. The proposed method is based on em-
pirical risk minimization with regularization, and provides a
unified framework to find a surrogate kernel for the indef-
inite similarity, an optimal set of weights to combine the
multiple kernels, and the parameters of the classifier. Ex-
perimental evidence suggests that the proposed method can
be effective in fusing information and providing a holistic
view of the data samples. We consider it worthwhile to in-
vestigate regularizers of the spectrum modification vector
other than the one used in this paper to possibly find a more
effective surrogate kernel for the indefinite similarity.

We formulated the proposed method as a convex op-
timization problem, which can be efficiently solved by a
general-purpose convex conic optimizer. As future work,
we would like to find fast algorithms to solve the problem
in (10) more efficiently so that for large-scale problems the
proposed SVM with similarity fusion can be trained within
reasonable time. A possible starting point is to exploit the
special structure of the LMI constraint in (10).

The proposed framework can be extended to fusing mul-
tiple indefinite similarities by using multiple spectrum mod-
ification vectors. However, to introduce weights to these
indefinite similarities yet still keep the problem convex re-
mains an open question.
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[15] R. H. Tütüncü, K. C. Toh, and M. J. Todd, “Solving
semidefinite-quadratic-linear programs using SDPT3,”
Math. Programming, vol. 95, no. 2, pp. 189–217, Feb.
2003.

[16] R. I. Kondor and J. Lafferty, “Diffusion kernels on
graphs and other discrete structures,” in Proc. Intl.
Conf. Mach. Learning, 2002.

[17] A. J. Smola and R. Kondor, “Kernels and regulariza-
tion on graphs,” in Proc. Ann. Conf. Learning Theory,
2003.

[18] S. Philips, J. Pitton, and L. Atlas, “Perceptual feature
identification for active sonar echoes,” in Proc. IEEE
OCEANS Conf., 2006.

[19] T. Hoffmann and J. M. Buhmann, “Pairwise data clus-
tering by deterministic annealing,” IEEE Trans. Pat-
tern Anal. and Mach. Intel., vol. 19, no. 1, pp. 1–14,
Jan. 1997.


