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Abstract

This tutorial on functional derivatives focuses on Fréchet derivatives, a subtopic of functional analysis and of the
calculus of variations. The reader is assumed to have experience with real analysis. Definitions and properties are
discussed, and examples with functional Bregman divergence illustrate how to work with the Fréchet derivative.

1 Functional Derivatives Generalize the Vector Gradient
Consider a function f defined over vectors such that f : Rd → R. The gradient∇f = { ∂f∂x1

, ∂f∂x2
, . . . , ∂f∂xd

} describes
the instantaneous vector direction in which the function changes the most. The gradient ∇f(x0) at x0 ∈ Rd tells you
that if you are starting at x0 which direction would lead to the greatest instantaneous change in f . The inner product
(dot product) ∇f(x0)T y for y ∈ Rd gives the directional derivative (how much f instantaneously changes) of f at
x0 in the direction defined by the vector y. One generalization of a gradient is the Jacobian, which is the matrix of
derivatives for a function that map vectors to vectors (f : Rd → Rm).

In this tutorial we consider the generalization of the gradient to functions that map functions to scalars; such
functions are called functionals. For example let a functional φ be defined over over the convex set of functions,

G = {g : Rd → R s. t.
∫
x

g(x)dx = 1, and g(x) ≥ 0 for all x}. (1)

An example functional defined on this set is the entropy: φ : G → R where φ(g) = −
∫
x
g(x) ln g(x)dx for g ∈ G.

In this tutorial we will consider functional derivatives, which are analogs of vector gradients. We will focus on
the Fréchet derivative, which can be used to answer questions like, “What function g will maximize φ(g)?” First
we will introduce the Fréchet derivative, then discuss higher-order derivatives and some basic properties, and note
optimality conditions useful for optimizing functionals. This material will require a familiarity with measure theory
that can be found in any standard measure theory text or garnered from the informal measure theory tutorial by
Gupta [1]. In Section 3 we illustrate the functional derivative with the definition and properties of the functional
Bregman divergence [2]. Readers may find it useful to prove these properties for themselves as an exercise.

2 Fréchet Derivative
Let

(
Rd,Ω, ν

)
be a measure space, where ν is a Borel measure, d is a positive integer, and define the set of functions

A = {a ∈ Lp(ν) subject to a : Rd → R} where 1 ≤ p ≤ ∞. The functional ψ : Lp(ν)→ R is linear and continuous
if

1. ψ[ωa1 + a2] = ωψ[a1] + ψ[a2] for any a1, a2 ∈ Lp(ν) and any real number ω

2. there is a constant C such that |ψ[a]| ≤ C‖a‖ for all a ∈ Lp(ν).
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Let φ be a real functional over the normed space Lp(ν) such that φ maps functions that are Lp integrable with
respect to ν to the real line: φ : Lp(ν) → R. The bounded linear functional δφ[f ; ·] is the Fréchet derivative of φ at
f ∈ Lp(ν) if

φ[f + a]− φ[f ] = 4φ[f ; a] = δφ[f ; a] + ε[f, a] ‖a‖Lp(ν) (2)

for all a ∈ Lp(ν), with ε[f, a] → 0 as ‖a‖Lp(ν) → 0. Intuitively, what we are doing is perturbing the input function
f by another function a, then shrinking the perturbing function a to zero in terms or its Lp norm, and considering the
difference φ[f + a]− φ[a] in this limit.

Note this functional derivative is linear: δφ[f ; a1 + ωa2] = δφ[f ; a1] + ωδφ[f ; a2].
When the second variation δ2φ and the third variation δ3φ exist, they are described by

4φ[f ; a] = δφ[f ; a] +
1
2
δ2φ[f ; a, a] + ε[f, a] ‖a‖2Lp(ν) (3)

= δφ[f ; a] +
1
2
δ2φ[f ; a, a] +

1
6
δ3φ[f ; a, a, a] + ε[f, a] ‖a‖3Lp(ν) ,

where ε[f, a] → 0 as ‖a‖Lp(ν) → 0. The term δ2φ[f ; a, b] is bilinear with respect to arguments a and b, and
δ3φ[f ; a, b, c] is trilinear with respect to a, b, and c.

2.1 Fréchet Derivatives and Sequences of Functions
Consider sequences of functions {an}, {fn} ⊂ Lp(ν), where an → a, fn → f , and a, f ∈ Lp(ν). If φ ∈
C3(Lp(ν); R) and δφ[f ; a], δ2φ[f ; a, a], and δ3[f ; a, a, a] are defined as above, then

δφ[fn; an]→ δφ[f ; a], δ2φ[fn; an, an]→ δ2φ[f ; a, a], and δ3φ[fn; an, an, an]→ δ3φ[f ; a, a, a].

2.2 Strongly Positive is Analog to Positive Definite
The quadratic functional δ2φ[f ; a, a] defined on normed linear spaceLp(ν) is strongly positive if there exists a constant
k > 0 such that δ2φ[f ; a, a] ≥ k ‖a‖2Lp(ν) for all a ∈ A. In a finite-dimensional space, strong positivity of a quadratic
form is equivalent to the quadratic form being positive definite.

From (3),

φ[f + a] = φ[f ] + δφ[f ; a] +
1
2
δ2φ[f ; a, a] + o(‖a‖2),

φ[f ] = φ[f + a]− δφ[f + a; a] +
1
2
δ2φ[f + a; a, a] + o(‖a‖2),

where o(‖a‖2) denotes a function that goes to zero as ‖a‖ goes to zero, even if it is divided by ‖a‖2. Adding the above
two equations and canceling the φ’s yields

0 = δφ[f ; a]− δφ[f + a; a] +
1
2
δ2φ[f ; a, a] +

1
2
δ2φ[f + a; a, a] + o(‖a‖2),

which is equivalent to

δφ[f + a; a]− δφ[f ; a] = δ2φ[f ; a, a] + o(‖a‖2), (4)

because ∣∣δ2φ[f + a; a, a]− δ2φ[f ; a, a]
∣∣ ≤ ‖δ2φ[f + a; ·, ·]− δ2φ[f ; ·, ·]‖‖a‖2,

and we assumed φ ∈ C2, so δ2φ[f+a; a, a]−δ2φ[f ; a, a] is of order o(‖a‖2). This shows that the variation of the first
variation of φ is the second variation of φ. A procedure like the above can be used to prove that analogous statements
hold for higher variations if they exist.
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2.3 Functional Optimality Conditions

Consider a functional J and the problem of finding the function f̂ such that J [f̂ ] achieves a local minimum of J .
For J [f ] to have an extremum (minimum) at f̂ , it is necessary that

δJ [f ; a] = 0 and δ2J [f ; a, a] ≥ 0,

for f = f̂ and for all admissible functions a ∈ A. A sufficient condition for f̂ to be a minimum is that the first
variation δJ [f ; a] must vanish for f = f̂ , and its second variation δ2J [f ; a, a] must be strongly positive for f = f̂ .

2.4 Other Functional Derivatives
The Fréchet derivative is a common functional derivative, but other functional derivatives have been defined for various
purposes. Another common one is the Gâteaux derivative, which instead of considering any perturbing function a in
(2), only considers perturbing functions in a particular direction.

3 Illustrating the Fréchet Derivative: Functional Bregman Divergence
We illustrate working with the Fréchet derivative by introducing a class of distortions between any two functions called
the functional Bregman divergences, giving an example for squared error, and then proving a number of properties.

First, we review the vector case. Bregman divergences were first defined for vectors [3], and are a class of distor-
tions that includes squared error, relative entropy, and many other dissimilarities common in engineering and statis-
tics [4]. Given any strictly convex and twice differentiable function φ̃ : Rn → R, you can define a Bregman divergence
over vectors x, y ∈ Rn that are admissible inputs to φ:

dφ̃(x, y) = φ̃(x)− φ̃(y)−∇φ̃(y)T (x− y). (5)

By re-arranging the terms of (5), one sees that the Bregman divergence dφ̃ is the tail of the Taylor series expansion of
φ around y:

φ̃(x) = φ̃(y) +∇φ̃(y)T (x− y) + dφ̃(x, y). (6)

The Bregman divergences have the useful property that the mean of a set has the minimum mean Bregman divergence
to all the points in the set [4].

Recently, we generalized Bregman divergence to a functional Bregman divergence [5] in order to show that the
mean of a set of functions minimizes the mean Bregman divergence to the set of functions; see [2] for full details. The
functional Bregman divergence is a straightforward analog to the vector case. Let φ : Lp(ν)→ R be a strictly convex,
twice-continuously Fréchet-differentiable functional. The Bregman divergence dφ : A × A → [0,∞) is defined for
all f, g ∈ A as

dφ[f, g] = φ[f ]− φ[g]− δφ[g; f − g], (7)

where δφ[g; f − g] is the Fréchet derivative of φ at g in the direction of f − g.

3.1 Squared Error Example
Let’s consider how a particular choice of φ turns (7) into the total squared error between two functions. Let φ[g] =∫
g2dν, where φ : L2(ν)→ R, and let g, f, a ∈ L2(ν). Then

φ[g + a]− φ[g] =
∫

(g + a)2dν −
∫
g2dν = 2

∫
gadν +

∫
a2dν.

Because ∫
a2dν

‖a‖L2(ν)
=
‖a‖2L2(ν)

‖a‖L2(ν)
= ‖a‖L2(ν) → 0

as a→ 0 in L2(ν), it holds that

δφ[g; a] = 2
∫
gadν,

UWEETR-2008-0001 3



which is a continuous linear functional in a. Then, by definition of the second Fréchet derivative,

δ2φ[g; b, a] = δφ[g + b; a]− δφ[g; a]

= 2
∫

(g + b)adν − 2
∫
gadν

= 2
∫
badν.

Thus δ2φ[g; b, a] is a quadratic form, where δ2φ is actually independent of g and strongly positive since

δ2φ[g; a, a] = 2
∫
a2dν = 2‖a‖2L2(ν)

for all a ∈ L2(ν), which implies that φ is strictly convex and

dφ[f, g] =
∫
f2dν −

∫
g2dν − 2

∫
g(f − g)dν

=
∫

(f − g)2dν

= ‖f − g‖2L2(ν).

3.2 Properties of Functional Bregman Divergence
Next we establish some properties of the functional Bregman divergence. We have listed these in order of easiest to
prove to hardest in case the reader would like to use proving the properties as exercises.

Linearity
The functional Bregman divergence is linear with respect to φ.

Proof:

d(c1φ1+c2φ2)[f, g] = (c1φ1 +c2φ2)[f ]−(c1φ1 +c2φ2)[g]−δ(c1φ1 +c2φ2)[g; f−g] = c1dφ1 [f, g]+c2dφ2 [f, g]. (8)

Convexity
The Bregman divergence dφ[f, g] is always convex with respect to f .

Proof: Consider

4dφ[f, g; a] = dφ[f + a, g]− dφ[f, g]
= φ[f + a]− φ[f ]− δφ[g; f − g + a] + δφ[g; f − g].

Using linearity in the third term,

4dφ[f, g; a]
= φ[f + a]− φ[f ]− δφ[g; f − g]− δφ[g; a] + δφ[g; f − g],
= φ[f + a]− φ[f ]− δφ[g; a],
(a)
= δφ[f ; a] +

1
2
δ2φ[f ; a, a] + ε[f, a] ‖a‖2L(ν) − δφ[g; a]

⇒ δ2dφ[f, g; a, a] =
1
2
δ2φ[f ; a, a] > 0,

where (a) and the conclusion follows from (3).

Linear Separation
The set of functions f ∈ A that are equidistant from two functions g1, g2 ∈ A in terms of functional Bregman diver-
gence form a hyperplane.
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Proof: Fix two non-equal functions g1, g2 ∈ A, and consider the set of all functions in A that are equidistant in
terms of functional Bregman divergence from g1 and g2:

dφ[f, g1] = dφ[f, g2]
⇒ −φ[g1]− δφ[g1; f − g1] = −φ[g2]− δφ[g2; f − g2]
⇒ −δφ[g1; f − g1] = φ[g1]− φ[g2]− δφ[g2; f − g2].

Using linearity the above relationship can be equivalently expressed as

−δφ[g1; f ] + δφ[g1; g1] = φ[g1]− φ[g2]− δφ[g2; f ] +
δφ[g2; g2],

δφ[g2; f ]− δφ[g1; f ] = φ[g1]− φ[g2]− δφ[g1; g1] +
δφ[g2; g2].

Lf = c,

where L is the bounded linear functional defined by Lf = δφ[g2; f ] − δφ[g1; f ], and c is the constant corresponding
to the right-hand side. In other words, f has to be in the set {a ∈ A : La = c}, where c is a constant. This set is a
hyperplane.

Generalized Pythagorean Inequality For any f, g, h ∈ A,

dφ[f, h] = dφ[f, g] + dφ[g, h] + δφ[g; f − g]− δφ[h; f − g].

Proof:

dφ[f, g] + dφ[g, h]
= φ[f ]− φ[h]− δφ[g; f − g]− δφ[h; g − h]
= φ[f ]− φ[h]− δφ[h; f − h] + δφ[h; f − h]
−δφ[g; f − g]− δφ[h; g − h]

= dφ[f, h] + δφ[h; f − g]− δφ[g; f − g],

where the last line follows from the definition of the functional Bregman divergence and the linearity of the fourth and
last terms.

Equivalence Classes
Partition the set of strictly convex, differentiable functions {φ} on A into classes with respect to functional Bregman
divergence, so that φ1 and φ2 belong to the same class if dφ1 [f, g] = dφ2 [f, g] for all f, g ∈ A. For brevity we will
denote dφ1 [f, g] simply by dφ1 . Let φ1 ∼ φ2 denote that φ1 and φ2 belong to the same class, then ∼ is an equivalence
relation because it satisfies the properties of reflexivity (because dφ1 = dφ1 ), symmetry (because if dφ1 = dφ2 , then
dφ2 = dφ1 ), and transitivity (because if dφ1 = dφ2 and dφ2 = dφ3 , then dφ1 = dφ3 ).

Further, if φ1 ∼ φ2, then they differ only by an affine transformation.

Proof: It only remains to be shown that if φ1 ∼ φ2, then they differ only by an affine transformation. Note that by
assumption, φ1[f ] −φ1[g] −δφ1[g; f − g] = φ2[f ]−φ2[g] −δφ2[g; f − g], and fix g so φ1[g] and φ2[g] are constants.
By the linearity property, δφ[g; f − g] = δφ[g; f ]− δφ[g; g], and because g is fixed, this equals δφ[g; f ] + c0 where c0
is a scalar constant. Then φ2[f ] = φ1[f ] + (δφ2[g; f ]− δφ1[g; f ]) + c1, where c1 is a constant. Thus,

φ2[f ] = φ1[f ] +Af + c1,

where A = δφ2[g; ·]− δφ1[g; ·], and thus A : A → R is a linear operator that does not depend on f .

Dual Divergence
Given a pair (g, φ) where g ∈ Lp(ν) and φ is a strictly convex twice-continuously Fréchet-differentiable functional,
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then the function-functional pair (G,ψ) is the Legendre transform of (g, φ) [6], if

φ[g] = −ψ[G] +
∫
g(x)G(x)dν(x), (9)

δφ[g; a] =
∫
G(x)a(x)dν(x), (10)

where ψ is a strictly convex twice-continuously Fréchet-differentiable functional, and G ∈ Lq(ν), where 1
p + 1

q = 1.
Given Legendre transformation pairs f, g ∈ Lp(ν) and F,G ∈ Lq(ν),

dφ[f, g] = dψ[G,F ].

Proof: The proof begins by substituting (9) and (10) into (7):

dφ[f, g] = φ[f ] + ψ[G]−
∫
g(x)G(x)dν(x)−

∫
G(x)(f − g)(x)dν(x)

= φ[f ] + ψ[G]−
∫
G(x)f(x)dν(x). (11)

Applying the Legendre transformation to (G,ψ) implies that

ψ[G] = −φ[g] +
∫
g(x)G(x)dν(x) (12)

δψ[G; a] =
∫
g(x)a(x)dν(x). (13)

Using (12) and (13), dψ[G,F ] can be reduced to (11).

Non-negativity
The functional Bregman divergence is non-negative.

Proof: To show this, define φ̃ : R→ R by φ̃(t) = φ [tf + (1− t)g], f, g ∈ A. From the definition of the Fréchet
derivative,

d

dt
φ̃ = δφ[tf + (1− t)g; f − g]. (14)

The function φ̃ is convex because φ is convex by definition. Then from the mean value theorem there is some 0 ≤
t0 ≤ 1 such that

φ̃(1)− φ̃(0) =
d

dt
φ̃(t0) ≥ d

dt
φ̃(0). (15)

Because φ̃(1) = φ[f ], φ̃(0) = φ[g], and (14), subtracting the right-hand side of (15) implies that

φ[f ]− φ[g]− δφ[g, f − g] ≥ 0. (16)

If f = g, then (16) holds in equality. To finish, we prove the converse. Suppose (16) holds in equality; then

φ̃(1)− φ̃(0) =
d

dt
φ̃(0). (17)

The equation of the straight line connecting φ̃(0) to φ̃(1) is `(t) = φ̃(0) + (φ̃(1) − φ̃(0))t, and the tangent line to
the curve φ̃ at φ̃(0) is y(t) = φ̃(0) + t ddt φ̃(0). Because φ̃(τ) = φ̃(0) +

∫ τ
0

d
dt φ̃(t)dt and d

dt φ̃(t) ≥ d
dt φ̃(0) as a

direct consequence of convexity, it must be that φ̃(t) ≥ y(t). Convexity also implies that `(t) ≥ φ̃(t). However, the
assumption that (16) holds in equality implies (17), which means that y(t) = `(t), and thus φ̃(t) = `(t), which is not
strictly convex. Because φ is by definition strictly convex, it must be true that φ[tf + (1− t)g] < tφ[f ] + (1− t)φ[g]
unless f = g. Thus, under the assumption of equality of (16), it must be true that f = g.

UWEETR-2008-0001 6



4 Further Reading
For further reading, try the texts by Gelfand and Fomin [6] or Luenberger [7], and the wikipedia pages on functional
derivatives, Fréchet derivatives, and Gâteaux derivatives. Readers may also find our paper [2] helpful, which further
illustrates the use of functional derivatives in the context of the functional Bregman divergence, conveniently using the
same notation as this introduction.
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