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Abstract—We show how to compute lower bounds for the
supremum Bayes error if the class-conditional distributions must
satisfy moment constraints, where the supremum is with respect to
the unknown class-conditional distributions. Our approach makes
use of Curto and Fialkow’s solutions for the truncated moment
problem. The lower bound shows that the popular Gaussian as-
sumption is not robust in this regard. We also construct an upper
bound for the supremum Bayes error by constraining the decision
boundary to be linear.

Index Terms—Bayes error, maximum entropy, moment con-
straint, quadratic discriminant analysis (QDA), truncated mo-
ments.

I. INTRODUCTION

A standard approach in pattern recognition is to estimate
the first two moments of each class-conditional distribu-

tion from training samples, and then assume the unknown dis-
tributions are Gaussians. Depending on the exact assumptions,
this approach is called linear or quadratic discriminant analysis
(QDA) [1], [2]. Gaussians are known to maximize entropy given
the first two moments [3] and to have other nice mathematical
properties, but how robust are they with respect to maximizing
the Bayes error? To answer that, in this paper, we investigate the
more general question: “What is the maximum possible Bayes
error given moment constraints on the class-conditional distri-
butions?”

We present both a lower bound and an upper bound for the
maximum possible Bayes error. The lower bound means that
there exists a set of class-conditional distributions that have the
given moments and have a Bayes error above the given lower
bound. The upper bound means that no set of class-conditional
distributions can exist that have the given moments and have a
higher Bayes error than the given upper bound.

Our results provide some insight into how confident one can
be in a classifier if one is confident in the estimation of the
first moments. In particular, given only the certainty that two
equally likely classes have different means (and no trustworthy
estimate of their variances), we show that the Bayes error could
be , i.e., the classes may not be separable at all. Given the
first two moments, our results show that the popular Gaussian
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assumption for the class distributions is fairly optimistic—the
true Bayes error could be much worse. However, we show that
the closer the class variances, the more robust the Gaussian as-
sumption. In general, the given lower bound may be a helpful
way to assess the robustness of the assumed distributions used
in generative classifiers.

The given upper bound may also be useful in practice. Recall
that the Bayes error is the error that would arise from the op-
timal decision boundary. Thus, if one has a classifier and finds
that the sample test error is much higher than the given upper
bound on the worst case Bayes error, two possibilities should
be considered. First, it may imply that the classifier’s decision
boundary is far from optimal, and that the classifier should be
improved. Or, it could be that the test samples used to judge the
test error are an unrepresentative set, and that more test samples
should be taken to get a useful estimate of the test error.

There are a number of other results regarding the optimiza-
tion of different functionals given moment constraints (e.g.,
[4]–[12]). However, we are not aware of any previous work
bounding the maximum Bayes error given moment constraints.
Some related problems are considered by Antos et al. [13]; a
key difference to their work is that while we assume moments
are given, they instead take as given independent identically
distributed (i.i.d.) samples from the class-conditional distribu-
tions, and they then bound the average error of an estimate of
the Bayes error.

After some mathematical preliminaries, we give lower
bounds for the maximum Bayes error in Section III. We
construct our lower bounds by creating a truncated moment
problem. The existence of a particular lower bound then de-
pends on the feasibility of the corresponding truncated moment
problem, which can be checked using Curto and Fialkow’s
solutions [14] (reviewed in the Appendix). In Section IV, we
show that the approach of Lanckreit et al. [10], which assumes
a linear decision boundary, can be extended to provide an upper
bound on the maximum Bayes error. We provide an illustration
of the tightness of these bounds in Section V, then end with a
discussion and some open questions.

II. BAYES ERROR

Let be a vector space and let be a finite set of
classes. Without loss of generality, we may assume that

. Suppose that there is a measurable classifica-
tion function , where is the probability
simplex. Then, the component of can be interpreted as
the probability of class given , and we write .

For a given , the Bayes classifier selects the class
that maximizes the posterior probability (if there is a tie
for the maximum, then any of the tied classes can be chosen).
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The probability that the Bayes classifier is wrong for a given
is

Suppose there is a probability measure defined on . Then,
the Bayes error is the expectation of :

(1)

The fact that the must sum to one over , and thus
, implies a trivial upper bound on the Bayes

error given in (1)

Suppose that the probability measure is defined on such
that it is absolutely continuous w.r.t. the Lebesgue measure such
that it has density . Or suppose that it is discrete and ex-
pressed as

where is the Dirac measure with support , for
all and , and we say the density

. In either case, (1) can be expressed in terms of the
class prior and class-conditional

density (or probability mass function ) as follows:

discrete case

abs. continuous case.

(2)
If is a general measure, then Lebesgue’s decomposition the-

orem says that it can be written as a sum of three measures:
. Here, is a discrete measure and the

other two measures are continuous, is absolutely continuous
w.r.t. the Lebesgue measure, and is the remaining singular
part. We have a convenient representation for both the discrete
and the absolutely continuous part of a measure but not for the
singular portion. For this reason, we are going to restrict our
attention to measures that are either discrete or absolutely con-
tinuous (or a linear combination of these kind of measures).

III. LOWER BOUNDS FOR WORST CASE BAYES ERROR

Our strategy to providing a lower bound on the supremum
Bayes error is to constrain the probability distributions ,

to have an overlap of size . Specifically, we con-
strain the distributions to each have a Dirac measure of size

at the same location. In the case of uniform class prior prob-
abilities, this makes the Bayes error at least . The largest
such for which this overlap constraint is feasible determines

the best lower bound on the worst case Bayes error this strategy
can provide. The maximum such feasible can be determined
by checking whether there is a solution to a corresponding trun-
cated moment problem (see the Appendix for details). Note that
this approach does not restrict the distributions from overlap-
ping elsewhere which would increase the Bayes error, and thus
this approach only provides a lower bound to the maximum
Bayes error.

We first present a constructive solution showing that no matter
what the first moments are, the Bayes error can be arbitrarily bad
if only the first moments are given. Then, we derive conditions
for the size of the lower bound for the two moment case and
three moment case, and end with what we can say for the general
case of moments.

Lemma 1:
Suppose the first moments are given for each in a subset

of and the remaining class-conditional distributions
are unconstrained. Then, for all , one can construct G
discrete or absolutely continuous class-conditional distributions
such that the Bayes error .

Proof: This lemma works for any vector space . The mo-
ment constraints hold if the class-conditional distribution is
taken to be where .
This constructive solution exists for any and yields a
Bayes error of at least . To see this, substi-
tute the measures into the discrete case of
(2) to produce

For an absolutely continuous example, consider . The
uniform densities
with (where is the indicator function of
the set ) provide class-conditional distributions such that as

the Bayes error goes to . To see this,
let and consider the difference

.
If , then as ; therefore, there
is an such that if , then , and hence,

. A similar derivation shows that there is
an such that if , then .
In other words, if , then even-
tually dominates since all the functions ,

have the same amplitude . If ,
then the integral of the function that is not dominated

by is as . Finally, the inte-
gral of the dominant function is ,
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and therefore, the Bayes error approaches as
.

Theorem 1:
Suppose that and that there exist class-conditional

measures with first and second moments .
Given only this set of moments , , a lower
bound on the supremum Bayes error is

where the supremum on the left-hand side is taken over all com-
binations of class-conditional measures satisfying the mo-
ment constraints.

If , then

Further, if the class priors are equal, then, in terms of the cen-
tered second moment , the optimal value is
one of

(3)

if . Otherwise, if

(4)

and the lower bound simplifies

Proof: Consider some . If the class prior is uni-
form, then a sufficient condition for the Bayes error to be at least

is if all of the unknown measures share a Dirac measure of
at least . First, we place this Dirac measure at zero and find the
maximum for which this can be done. Then, later in the proof,
we show that a larger (and hence a tighter lower bound on
the maximum Bayes error) can be found by placing this shared
Dirac measure in a more optimal location, or equivalently, by
shifting all the measures.

Suppose a probability measure can be expressed in the form
where is some measure such that . If

satisfies the original moment constraints, then also satisfies
them; this follows directly from the moment definition for

:

Also . Thus, we require a measure with a
zeroth moment and the original first and second
moments . Then, as described in the Appendix, there are
two conditions that we have to check. In order to have a measure
with the prescribed moments, the matrix

has to be positive semidefinite, which holds if and only if
. (Note that the Theorem assumes that there exists a distri-

bution with the given moments, and thus the above implies that
.) Moreover, the rank of matrix and the rank of (for

notation, see the Appendix) have to be the same. Matrix can
have rank 1 or 2. If , then the columns of are lin-
early dependent, and therefore, . If ,
then is invertible and . Thus, there is a measure

with moments iff . If such
a exists, then there also exists a discrete probability measure
with moments and by Curto and
Fialkow’s results [14, Ths. 3.1 and 3.9].

Suppose we have such discrete probability measures satis-
fying the corresponding moments constraints given in the state-
ment of this theorem. Denote the discrete probability mea-

sure by where and
for all , and indexes the set of all non-zero atoms in

the discrete measures . Then, the supremum Bayes error
is bounded below by the Bayes error for this set of discrete mea-
sures:

(5)

This is true for any collection of , . This
means that is an upper bound for (5) for these ad-
missible and we can find a tighter inequality by finding the
supremum of (5) over the set of admissible . The domain of

the function (5) is the Cartesian product . It
is a nonempty compact set and (5) is continuous, so we can ex-
pect to find a maximum. The maximum is unique and to find
it let be any element in the domain and let

. Since , we have
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Therefore

(6)

where the supremum on the left-hand side is taken over all the
combination of class-conditional measures that satisfy the given
moments constraints.

The next step follows from the fact that the Lebesgue mea-
sure and the counting measure are shift-invariant measures
and the Bayes error is computed by integrating some functions
against those measures. Suppose we had class distributions,
and we shift each of them by . The Bayes error would not
change. However, our lower bound given in (6) depends on the
actual given means , and in some cases we can produce a
better lower bound by shifting the distributions before applying
the above lower bounding strategy. The shifting approach we
present next is equivalent to placing the shared measure
someplace other than at the origin.

Shifting a distribution by does change all of the moments
(because they are not centered moments), specifically, if is a
probability measure with finite moments , ,
and is the measure defined by for all

-measurable sets , then the th noncentered moment of the
shifted measure is

where the second equality can easily be proven for any -fi-
nite measure using the definition of integral. This same formula
shows that shifting back the measure will transform back the
moments.

For the two-moment case, the shifted measure’s moments are
related to the original moments by

Then, a tighter lower bound can be produced by choosing the
shift that maximizes the shift-dependent lower bound given
in (6):

If , then this lower bound is

We can say more in the case of equal class priors, that is, if
. The functions

are maximized at , where the maximum value is 1 and
the derivative of function is strictly positive for and
strictly negative for . This means that the
potential maximum occurs at the point where the two functions
are equal. This results in a quadratic equation if with
solutions (3), and otherwise a linear one with solution (4).

If , then the function with smaller will
provide us with the lower bound which is , as expected. If

, then since the maximum occurs at a
value which is between the two . To see this, let be the

interval defined by the two . As a consequence of the strict
nature of the derivatives, for any value outside of the interval

, the function

is less than on . But on , the function is con-
tinuous and thanks to the fact that and the behavior
of the derivatives, it has different sign at the two endpoints of .
This means that there is a such that .

This theorem applies only to 1-D distributions. The approach
of constraining the distributions to have measure at a common
location can be extended to higher-dimensions, but actually de-
termining whether the moment constraints can still be satisfied
becomes significantly hairier; see [14] for a sketch of the trun-
cated moment solutions for higher dimensions.
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An argument similar to the one given in the last two para-
graphs of the previous proof can be used to show that if
are all equal for all and any finite , and if the class priors
are equal, then the optimal is , where
and are the smallest and the largest values in the set

, respectively. To see this, we start with rewriting the
function :

This shows that if the condition mentioned previously holds,
then the functions are shifted versions of each other. Let
and be the functions corresponding to and ,
respectively, and let be the point where and in-
tersect. Because of the strict nature of the derivatives of and
because the functions are shifted versions of each other, for any

, is smaller than any other . Because of sym-
metry, it is true that for any , is smaller than any
other . Again, by symmetry, we have that ,
and therefore, this is the optimal .

Corollary 1: Suppose that and that the first, the
second, and the third moments are given for class-conditional
measures, i.e., for the class-conditional measure we are
given . Then, the Bayes error has lower bound

Proof: In this case, we have a list of four numbers
and again

If , then is positive definite if

. In this case, and it is in the range of
since is invertible. The statements in the Appendix imply

that there is a measure with moments and
consequently that

The rest of the proof follows analogously to the proof of The-
orem 1.

The proof of Corollary 1 relies on the fact that for
the matrix featured in the proof is invertible, so one of

the conditions for the existence of a measure with the given
moments is automatically satisfied (see Appendix). If
then is only positive semidefinite and it is not obvious that
the vector is in the range of .

The following lemma is stated for completeness.
Lemma 2: Suppose that and that the first moments

are given for equally likely class-conditional measures,
i.e., for the class-conditional measure, we are given

. Then, if there exist measures of the form
where satisfies the moments conditions given above

the corresponding Bayes error can be bounded from below:

where the supremum on the left is taken over all the measures
satisfying the moment constraints noted above.

Proof: The first part of the proof of Theorem 1 is applicable
in this case.

As in the case for two moments, the lower bound can be
further tightened by optimizing over all possible shifts of the
overlap Dirac measure.

IV. UPPER BOUND FOR WORST CASE BAYES ERROR

Because the Bayes error is the smallest error over all decision
boundaries, one approach to constructing an upper bound on
the worst case Bayes error is to restrict the set of considered
decision boundaries to a set for which the worst case error is
easier to analyze. In related work, Lanckreit et al. [10] take as
given the first and second moments of each class-conditional
distribution, and attempt to find the linear decision boundary
classifier that minimizes the worst case classification error rate
with respect to any choice of class-conditional distributions that
satisfy the given moment constraints. Here, we show that this
approach can be extended to produce an upper bound on the
supremum Bayes error for the case.

Let be any feature space. Suppose one has two fixed class-
conditional measures on . As in Lanckreit et al. [10],
consider the set of linear decision boundaries. Any linear de-
cision boundary splits the domain into two half-spaces and

. We work with linear decision boundaries because these are
the only kind of decision boundaries that split the domain into
two convex subsets. The error produced by a linear decision
boundary corresponding to the split is

That is, the error from any linear decision boundary upper
bounds the Bayes error for two given measures. To
obtain a tighter upper bound on the Bayes error, minimize the
left-hand side over all linear decision boundaries

Now suppose and are unknown, but their first moments
(means) and second centered moments and
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are given. Then, we note that the supremum (over all measures
and with those moments) of the smallest linear decision

boundary error forms an upper bound on the supremum Bayes
error, where the supremum is taken with respect to the feasible
measures :

(7)

This upper bound can be simplified using the following result1

by Bertsimas and Popescu [15] (which follows from a result by
Marshall and Olkin [16]):

(8)
where the in (8) is over all probability measures with
domain , mean , and centered second moment ; and is
any convex set in the domain of .

Since and in (7) are half-spaces, they are convex and (8)
can be used to quantify the upper bound. To simplify this upper
bound, for the rest of this section, let be 1-D. Then, the covari-
ance matrices and are just scalars that we denote by
and , respectively. In one dimension, any decision boundary
that results in a half-plane split is simply a point . Without
loss of generality with respect to the Bayes error, let and

. Then, and in (8) simplify (for details, see
[10, Appendix A]), so that (7) becomes

(9)
If and , then the infimum occurs

at and the upper bound becomes

For this case, the given upper bound is twice the given lower
bound.

V. COMPARISON TO ERROR WITH GAUSSIANS

We illustrate the bounds described in this paper for the
common case that the first two moments are known for each
class, and the classes are equally likely. We compare with the
Bayes error produced under the assumption that the distribu-
tions are Gaussians with the given moments. In both cases
the first distribution’s mean is 0 and the variance is 1, and the
second distribution’s mean is varied from 0 to 25 as shown
on the x-axis. The second distribution’s variance is 1 for the
comparison shown in the top of Fig. 1. The second distribu-
tion’s variance is 5 for the comparison shown in the bottom of

1Some readers may recognize this result as a strengthened and generalized
version of the Chebyshev–Cantelli inequality.

Fig. 1. Comparison of the given lower bound for the worst case Bayes error
with the Bayes error produced by Gaussian class-conditional distributions.

Fig. 1. For the first case, so the infimum in (9) occurs
at and the upper bound is .
For the second case with different variances we compute (9)
numerically.

Fig. 1 shows that the Bayes error produced by the Gaussian
assumption is optimistic compared to the given lower bound for
the worst case (maximum) Bayes error. Further, the difference
between the Gaussian Bayes error and the lower bound is much
larger in the second case when the variances of the two distri-
butions differ.

VI. DISCUSSION AND SOME OPEN QUESTIONS

We have provided a lower and upper bound on the worst case
Bayes error, but a number of open questions arise from this
study.

Lower bounds for the worst case Bayes error can be con-
structed by constraining the distributions. We have shown that
constraining the distributions to be Gaussians produces a weak
lower bound, and we provided a tighter lower bound by con-
straining the distributions to overlap in a Dirac measure of .
Given only first moments, our lower bound is tight in that it is
arbitrarily close to the worst possible Bayes error. Given two
moments, we have shown that the common QDA Gaussian as-
sumption for class-conditional distributions is much more op-
timistic than our lower bound and increasingly optimistic for
increased difference between the variances. However, because
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in our constructions we do not control all the possible overlap
between the class-conditional distributions, we believe it should
be possible to construct tighter lower bounds.

On the other hand, upper bounds on the worst case Bayes
error can be constructed by constraining the considered decision
boundaries. Here, we considered an upper bound resulting from
restricting the decision boundary to be linear. For the two mo-
ment case, we have shown that work by Lanckreit et al. leads al-
most directly to an upper bound. However, the inequality we had
to introduce in (7) when we switched the inf and sup may make
this upper bound loose. It remains an open question if there are
conditions under which the upper bound is tight.

Our result that the popular Gaussian assumption is generally
not very robust in terms of worst case Bayes error prompts us to
question whether there are other distributions that are mathemat-
ically or computationally convenient to use in generative clas-
sifiers that would have a Bayes error closer to the given lower
bound.

In practice, a moment constraint is often created by estimating
the moment from samples drawn i.i.d. from the distribution. In
that case, the moment constraint need not be treated as a hard
constraint as we have done here. Rather, the observed samples
can imply a probability distribution over the moments, which in
turn could imply a distribution over corresponding bounds on
the Bayes error. A similar open question is a sensitivity analysis
of how changes in the moments would affect the bounds.

Lastly, consider the opposite problem: given constraints on
the first moments for each of the class-conditional distribu-
tions, how small could the Bayes error be? It is tempting to sup-
pose that one could generally find discrete measures that over-
lapped nowhere, such that the Bayes error was zero. However,
the set of measures that satisfy a set of moment constrains may
be nowhere dense, and that impedes us from being able to make
such a guarantee. Thus, this remains an open question.

APPENDIX

EXISTENCE OF MEASURES WITH CERTAIN MOMENTS

The proof of our theorem reduces to the problem of how to
check if a given list of numbers could be the moments of some
measure. This problem is called the truncated moment problem;
here, we review the relevant solutions by Curto and Fialkow
[14].

Suppose we are given a list of numbers ,
with . Can this collection be a list of moments for some
positive Borel measure on such that

(10)

Let , and construct a Hankel matrix from
where the row of is . For example, for

or , :

Let be the transpose of the vector . For
this vector is the column of . Define

if is invertible, and otherwise is the smallest
such that is a linear combination of .
Then, whether there exists a that satisfies (10) depends on
and :
1) If , then there exists such a solution if

is positive semidefinite and is in the range of .
2) If , then there exists such a solution if is

positive semidefinite and .
Also, if there exists a that satisfies (10), then there definitely
exists a solution with atomic measure.
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