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On Minimizing Distortion and Relative Entropy
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Abstract—A common approach for estimating a probability mass func-
tion when given a prior and moment constraints given by
is to minimize the relative entropy between and subject to the set of
linear constraints. In such cases, the solution is known to have exponen-
tial form. We consider the case in which the linear constraints are noisy,
uncertain, infeasible, or otherwise “soft.” A solution can then be obtained
by minimizing both the relative entropy and violation of the constraints

. A penalty parameter weights the relative importance of these
two objectives. We show that this penalty formulation also yields a solution

with exponential form. If the distortion is based on an norm, then the
exponential form of is shown to have exponential decay parameters that
are bounded as a function of .We also state conditions underwhich the so-
lution to the penalty formulation will result in zero distortion, so that the
moment constraints hold exactly. These properties are useful in choosing
penalty parameters, evaluating the impact of chosen penalty parameters,
and proving properties about methods that use such penalty formulations.

Index Terms—Convex optimization, cross-entropy, exact penalty, func-
tion, inverse problem, relative entropy, Kullback–Leibler distance, max-
imum entropy, moment constraint.

I. INTRODUCTION

Consider the problem of estimating a probability mass functionw 2
[0; 1]k given a strictly positive prior q 2 [0; 1]k. A useful restriction is
thatw must satisfy a set of moment constraints: if a random variableX
is drawn according to w, the probability mass function w must satisfy

Ew[fi(X)] � bi (1)

where b1; b2; . . . ; bm are the required moments, Ew is the expectation
operator, and the functions fi are (possibly nonlinear) transformations
of the random variable X . (Typically, (1) is expressed as an equation;
however, it is not much more difficult to treat the more general in-
equality case, as we do here.) The expectation operator is linear in w,
so that we may compactly express the set ofm moment constraints as
a set of linear equations Aw � b, where the columns of A 2 m�k

represent the transformations of a random variableX drawn according
to w, and b = (b1; b2; . . . ; bm) 2 m.
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A standard approach for estimating w is to minimize the relative
entropy function

I(w; q) =

k

j=1

wj log
wj

qj
(2)

over the constrained probability simplex

1
T
w = 1; w � 0 (3)

Aw � b (4)

(see, for example, [1]–[3]). The symbol 1 denotes a vector of ones; its
length is determined by context. Often the prior is the uniform distribu-
tion (i.e., q = 1

k
1), and in that case theminimization of (2) is equivalent

to maximizing entropy.
In practice, the data may be noisy or uncertain, or the constraints

(3)–(4) may be infeasible and admit no solution. In such cases, a more
appropriate estimate of the probability mass function may then be the
solution w of

minimize
w

I(w; q) + �D(Aw � b)

subject to 1Tw = 1; w � 0
(5)

where D : m ! is a convex function that measures the distortion
in satisfying (4), and � is a positive scalar used to balance the trade-off
between minimizing relative entropy and distortion from the required
moments. The parameter � can be set in response to expected noise in
measurements of A or b, and may depend on the units of measurement
of the distortion function compared with the bits of relative entropy.
In this correspondence, we characterize the analytic form of the min-

imizing probability mass function of (5). Its solution has an exponential
form for any convex distortion D (see Section III). When the distor-
tion function is based on the `p norm, a minimizer of (5) has a rate of
decay that is bounded by a function of �, and moreover, the moment
constraints will hold exactly for all � over a finite threshold value (see
Section IV). The special case of the `1 penalty is computationally im-
portant in practice and serves to illustrate the more general case. We
discuss it in more detail in Section IV-D.
The estimate’s bounded exponential-decay property ensures that no

single observation (the columns of A) receives an arbitrarily large or
small relative weight, regardless of the number of observations or their
specific values. The bound on the exponential decay described in The-
orem 4.2 translates into a bound on the ratio between the largest and the
smallest components of the weight vector. We use the bounded expo-
nential-decay property to prove asymptotic behavior of an asymmetric
nonparametric neighborhood learning method that trades-off solving
the linear interpolation equations with maximizing entropy. This appli-
cation of (5), and the properties of its solution, are discussed in detail
in Section V.
In Section VI, we discuss two extensions to our approach. First, the

given analysis of (5) can be extended easily to the space of contin-
uous probability distributions, and we note the assumptions required.
Second, we consider a variation of the minimum relative entropy func-
tion with reversed arguments—the parameters that normally describe
the prior become the variables—and give a source-coding interpreta-
tion.
Both the relative entropy problem (2)–(4) and the penalty function

problem (5) belong to the class of convex optimization problems, which
are characterized by a convex objective function and a convex poly-
hedral feasible region. Their convex structure makes them especially
suitable for numerical solution by a variety of interior-point solvers for
nonlinear optimization, such as KNITRO [4], LOQO [5], and MOSEK
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[6] (though the problem may first have to be reformulated, as discussed
above). We focus on the analytic solution of these problems.

A. Other Work on Minimizing Relative Entropy

The exponential form of the solutions to minimum relative entropy
problems with equality constraints is a classic result. Proofs can be
found in Kullback [2, Theorem 2.1] and in Cover and Thomas [7,
Ch. 11]. Similar problems arise in rate-distortion theory, and solutions
in that framework have also been shown to have an exponential form.
(For an overview of rate-distortion results, see [7] and [8].)

Statistical inference based on minimum relative (or maximum) en-
tropy with constraints is now standard (see [9], [2], [10], [1]). For ex-
ample, relative entropy arises in statistics as the expected logarithm of
the likelihood ratio, and its minimization has applications in hypoth-
esis testing [2]. The results we present are applicable to large-devia-
tions theory; for example, Sanov’s theorem relies on solving for distri-
butions that minimize a relative entropy [11]. Maximum entropy plays
a role in statistical physics (see [12], [13]), and our results may illu-
minate certain problems in that field. Minimizing relative entropy is a
common way to solve a wide variety of ill-posed problems (see [14],
[3], [15]–[18]). There has been recent interest in approaches that do not
necessarily treat (4) as a hard constraint (see, for example, [19], [20],
and [21]).

Campbell [19] derives an analytic solution for a special case of (5).
He considers a single equality constraint aTw=b, where a2 k; b2 ;

and the distortion function is based on the `1 norm. In that case,
D(aTw � b) = j k

j=1 ajwj � b j. Campbell’s analysis assumes that
the uncertain moment b lies within the convex hull of the event set, so
that b must satisfy mini ai � b � maxi ai. In effect, the constraints
(3)–(4) must be feasible.

Our analysis extends Campbell’s work in several useful ways. First,
multiple inequality constraints are allowed, so that there may be m
moment constraints. Second, we give results for any convex distor-
tion functionD and derive more extensive results for specific distortion
functions. Third, the moments b (now in m) need not lie in the convex
hull of the data vectors specified by the columns ofA—a solution con-
tinues to exist even if the constraints (3)–(4) are infeasible.

B. Definitions

Much of our theoretical development is focused on a distortion func-
tion based on the `p norm, defined by

kxkp = j jxj j
p

1=p

if 1 � p <1

maxj jxj j if p =1:

We denote the jth component of a vector x by xj . Let x+ denote the
positive part of a vector x, so that (x)+j = max(0; xj). Let aij denote
the ijth element (ith row, jth column) of A.

The `p norm is convex and continuous, but not differentiable
everywhere. In practice, the `1 and `1 norms are most useful because
there are well-known techniques for reformulating optimization prob-
lems with these functions into smooth optimization problems with
equivalent solutions (see, for example, [22, Theorem 4.8] and [23,
Sec. 4.B.3]). We use such a technique in Section IV-D.

Let � and y be the Lagrange multipliers associated with the first
and second linear constraints of (3) and (4), respectively, and let z be
the Lagrange multiplier associated with the bound constraint on w. A
minimizerw�, together with its associated Lagrangemultipliers ��; y�,
and z�, must satisfy the Karush–Kuhn–Tucker (KKT) conditions.

Definition 1.1 (First-Order KKT Optimality Conditions): The
4-tuple (w�; ��; y�; z�) is a first-order KKT point of the optimization
problem defined by (2)–(4) if the following hold:

1Tw� = 1 (6a)

rwI(w
�; q) + �

�

1+A
T
y
� = z

� (6b)

min(b�Aw
�

; y
�) = 0 (6c)

min(w�; z�) = 0: (6d)

Conditions (6c) and (6d) are shorthand, respectively, for feasibility and
complementarity conditions that can be expressed explicitly as

fb� Aw
� � 0; y� � 0g and f(Aw�)i = bi or y

�

i = 0g

and

fw� � 0; z� � 0g and fw�i = 0 or z�i = 0g :

II. THE EXPONENTIAL FORM

Before we consider the penalty-function formulation of the min-
imum relative entropy problem, we examine the formulation in which
the constraints (3)–(4) are imposed explicitly, as so-called hard con-
straints

minimize
w

I(w; q)

subject to 1Tw = 1

Aw � b:

(7)

We have anticipated a strictly positive solution w� and disregarded the
nonnegativity constraintw � 0. When computing a numerical solution
in practice, however, the constraint would usually be kept explicit.
We establish in this section that the solution of (7) is exponential;

its parameters are given by the columns of A and by y, the Lagrange
multipliers associated with the second constraint. (The Lagrangemulti-
pliers � of the first constraint can be eliminated.) As discussed in Sec-
tion I, this result is not new, and it can be derived from a variety of
perspectives. Kullback [2, Theorem 2.1] derives the required result for
continuous probability distributions and equality constraints. Vital to
his approach are the assumptions that there exists a feasible solution to
the constraints and that both the solution and the prior must be gener-
alized probability densities. We make the analogous assumptions that
the prior q is strictly positive, and that there exists a strictly positive
w that satisfies the constraints of (7). The latter assumption is known
in the optimization literature as either Slater’s constraint qualification
or Slater’s condition. With this assumption, the first-order optimality
conditions of (7) are in fact both necessary and sufficient (see, for ex-
ample, [24], [25]).

Assumption 2.1 (Slater’s Condition): There exists a feasible point
w in the relative interior of the domain of I(w; q). In other words, there
exists a w such that

w > 0; 1
T
w = 1; Aw � b:

The KKT conditions for (7) are a special case of (6). The solutionw�

of (7) must be positive, so that (6d) implies that z� = 0. An optimal
point of (7), together with its associated Lagrange multipliers, must
therefore satisfy

1
T
w
� = 1 (8a)

rwI(w
�; q) + �

�

1+A
T
y
� = 0 (8b)

min(b� Aw
�

; y
�) = 0: (8c)
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Theorem 2.2 (Exponential Form): Suppose that Slater’s condition
holds. Then there exist Lagrange multipliers y� and �� (corresponding
to the constraintsAw � b and 1Tw = 1, respectively) that satisfy (8),
and (7) is solved by the vector with components

w�j =
uj
k

i=1
ui
; j = 1; . . . ; k (9a)

where

uj = qj exp �
`2A

a`jy
�
` (9b)

and A = fij(Aw�)i = big.
Proof: By Slater’s condition, the feasible set of (7) is nonempty. Be-

cause q > 0, the definition of relative entropy implies that the level set
fwjI(w; q) � I(w0; q)g is closed and bounded. The strict convexity
of I therefore implies that there exists a unique solution w� to (7).
Slater’s condition is sufficient to guarantee that there exist Lagrange
multipliers �� and y� such that (w�; ��; y�) satisfies the KKT condi-
tions (8) (see [25, Sec. 5.2.3]).

Note that rwI(w; q)j = 1 + log(wj=qj). Solve the jth equation
of (8b) for w�j to obtain

w�j = qj exp ��� � (AT y�)j � 1 : (10)

Sum (10) over all j, and use (8a) to obtain

k

j=1

qj exp ��� � (AT y�)j � 1 = 1:

Hence, �� must satisfy

�� = log

k

j=1

qj exp �(AT y�)j � 1 : (11)

Replacing �� in (8b) with (11), and subsequently solving for w�j , we
arrive at

w�j =
qj exp �(AT y�)j
k

i=1
qi exp f�(AT y�)ig

: (12)

However, note that (8c) implies that y�i = 0 if i 62 A, so that (12) can
be rewritten as (9a)–(9b), as required.

III. PENALTY FORMULATION

It may be that the constraints (3)–(4) are infeasible, or that the con-
straint Aw � b need not be solved exactly. For example, the data may
be known to be noisy, such that b = btrue+n, where n is some known
or unknown noise; or the mean constraint may be uncertain; or fidelity
to the prior q may be highly important relative to the constraint. These
cases may be captured by introducing the set of constraints Aw � b
into the objective via a penalty function as done in (5).

In Lemma 3.1, we show that the solution to (5) will have an
exponential form for a wide class of convex distortion functions D.
The minimizer of (5) will depend uniquely on the penalty parameter
�. Therefore, we can denote its parameterized solution by w�(�). A
consequence of Lemma 3.1 is that w�(�) is also the unique solution
of (7), but with the mean constraint given by Aw = b(�), where
b(�)

def
=Aw�(�).

Lemma 3.1 (Exponential Form: Penalty Formulation): Suppose that
D is convex and thatD(Aw� b) achieves its minimum for all w such
that Aw � b. The following properties then hold:

1) the problem (5) has a unique solution w� > 0;
2) w� is also a unique solution to (7) with b � �b, where �b is any

vector such that �b � Aw�;
3) the unique solution w� has an exponential form defined by (9),

where y� is the Lagrange multiplier of (7) corresponding to the
constraints Aw � �b.

Proof:
(Part 1) Over the compact set defined by the constraints 1Tw = 1

and w � 0; D is convex and I is strictly convex. Therefore, a unique
minimizer w� of (5) exists, and w� > 0.

(Part 2) Let �b
def
=Aw�, and let �w be a minimizer of (7) with the con-

straintAw � �b. (Such a minimizer must exist because the constraint is
feasible, i.e., w� is feasible.) Because �w solves (7), it satisfies the con-
straint A �w � �b, and thus D(A �w � �b) = D(Aw� � �b), the minimum
value of D.
Further, it must be that I(w�; q) = I( �w; q). Otherwise, if

I(w�; q) < I( �w; q); �w could not solve (7), because w� would
be feasible and have lower relative entropy, which is a contra-
diction. Similarly, if I(w�; q) > I( �w; q); w� could not be the
minimizer of (5). Because w� satisfies the constraint Aw� � �b, and
I(w�; q) = I( �w; q); w� must be a minimizer of (7). Moreover, the
minimizer of (7) is unique, so that w� = �w, as required.
(Part 3) Parts 1 and 2 imply that (7) satisfies Slater’s condition.

Therefore, Theorem 2.2 applies, and because w� is the unique solu-
tion of (7), it must satisfy (9), as required.

IV. EXACT PENALTY FORMULATION

Consider the distortion function

D(Aw � b) = k(Aw � b)+kp: (13)

With this distortion, the penalty-function formulation (5) is exact if
(3)–(4) is feasible: for a finitely large penalty parameter �, the solu-
tion of (5) has zero distortion, so that the constraints (3)–(4) are sat-
isfied exactly. Exact penalty functions play an important role in the
modeling of continuous optimization problems; they have rich theo-
retical properties, and when the norm is polyhedral (i.e., p = 1 or
p =1), they are computationally practical because they can be refor-
mulated as polyhedral constraints. The use of penalty functions consti-
tutes a particular approach: by augmentation of the objective function
to include a penalty on the constraint violation, a constrained (and pos-
sibly difficult) problem can be transformed into an unconstrained (and
easier, we hope) problem. Exact penalty functions were first analyzed
by Pietrzykowski [26], and later by Bertsekas [27], Fletcher [28], and
Han and Mangasarian [22], among others.
The objective of (5) is convex for any 1 � p � 1, but it is not

everywhere differentiable. When the norm is polyhedral, (5) can be
reformulated as an equivalent and smooth problem, and in that case,
the corresponding first-order KKT conditions (see Definition 1.1) can
be applied to find optimal solutions. Moreover, a variety of algorithms
for smooth, constrained optimization could then be used to numerically
solve the smooth reformulations. We discuss one such reformulation
for p = 1 in Section IV-D. In general, there exists a rich theory of
optimization for nonsmooth functions, and in Theorem 4.2 we derive a
result analogous to Theorem 2.2 for (5) when the distortion function is
given by the more general `p norm.
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A. Nonsmooth Optimality Concepts

We summarize in this section some of the optimality concepts from
nonsmooth optimization that we need for our analysis. Our treatment
follows the approach of [28]. The vector g is a subgradient of the
convex function f(x) : n ! at x if

f(x+ p) � f(x) + gT p

for all p 2 n. The subgradient is normal to a supporting hyperplane
of f at x. The set of all subgradients

@f(x)
def
= fgjf(x+ p) � f(x) + gT p for all p 2 ng

is the subdifferential of f at x. When f is differentiable at x, there is
only a single supporting hyperplane at that point, and the subgradient
is unique and corresponds to rf(x).

Definition 4.1 (Nonsmooth First-Order Optimality): A triple
(w�; ��; y�) is a first-order optimal point of (5) if it satisfies the
following conditions:

1
Tw� = 1 (14a)

rwI(w
�; q) + ��1+AT y� = 0 (14b)

where y� 2 @(�k(Aw� � b)+kp). [Note that we have anticipated a
strictly positive solution w�, so that there is no need for a condition
analogous to (6d).]

Comparing (8) with (14), we see how y� 2 @(�k(Aw� � b)+kp)
may be interpreted as a kind of Lagrange multiplier for the constraint
Aw � b implied by the penalty function (13). Note that for any given
�, Aw� � b may or may not hold with strict inequality.

The dual norm is particularly important for the study of exact penalty
functions, and will be useful in our analysis. For any norm kykp in n,
the corresponding dual norm is defined as

kykd = sup
kxk �1

yT x:

For any p and d such that 1=p + 1=d = 1, the `p and `d norms are
duals of each other.

B. Solution With Exact Penalization: Inequality Constraints

Theorem 4.2 shows that the penalty function formulation (5) always
has a solution with the form specified in (9). The parameter y� is the
Lagrange multiplier associated with the (relaxed) moment constraints
Aw � b, and it is computed as a by-product of the solution of (5); its
norm is bounded as a function of �.

Theorem 4.2 (Exponential Form: Exact Penalty): The solution to
(5), where D is defined by (13), is a vector with components

w�
j =

qj exp �(AT y�)j
k

i=1
qi exp f�(AT y�)ig

; j = 1; . . . ; k

where the parameter y� 2 @(�k(Aw� � b)+kp):
Proof: The feasible set of (5) is nonempty, and the level sets

fwjI(w; q) � I(w0; q)g are closed and bounded. Hence, the strict
convexity of I implies that there exists a unique solution w� to (5).
Moreover, the constraint 1Tw = 1 is linear, so that, by [28, Theorem
14.6.1], there exist a vector y� 2 @(�k(Aw� � b)+kp) and a scalar
�� such that (w�; ��; y�) satisfies the first-order optimality condi-
tions (14).

The form of the solution w� can be derived in the same manner
as (12).

Note that the condition y� 2 @(�k(Aw� � b)+kp) imposes an im-
plicit bound on the magnitude of y�. With the definition of the dual
norm, the subdifferential of�k(Aw� b)+kp can be equivalently stated
(see [28, Ch. 14]) as

@(�k(Aw� b)+kp) = f yjyT (Aw � b) = �k(Aw� b)+kp;

0 � y; kykd � � g: (15)

The very last condition in (15) guarantees a bound on the norm of y�.
This is a critical part of our analysis: because a bound on the norm
of y� now exists (given by �), we can derive an a priori bound on
the exponential decay of the solution w� (expression (12) shows the
relationship between y� and w�). We use this property in Section V.
The exact penalty function formulation is exact in the following

sense: for all penalty-parameter values greater than a certain threshold
value, KKT points of (7) are also stationary points of its exact penalty-
function formulation.

Theorem 4.3 (Exact Penalization): Letw� be a solution of (7), with
corresponding Lagrangemultipliers �� and y� (see Theorem 2.2). Then
for every � > ky�kd; w

� is also a minimizer of (5) whereD is defined
in (13).

Proof: This result follows immediately from [28, The-
orem 14.3.1].

C. Solution With Exact Penalization: Equality Constraints

Section IV-B discusses properties of exact penalization of inequality
constraints on the moments Aw � b. For completeness, and because
we will refer to them in Section V, we specialize Theorems 4.2 and 4.3
to the penalization of equality moment constraints Aw = b.
For equality constraints, a penalty needs to be applied to components

ofAw that are positive or negative. In that case, the distortion function
(13) is instead defined as

D(Aw � b) = kAw � bkp: (16)

(Both the positive and negative parts of Aw � b are considered.)
The following two corollaries parallel Theorems 4.2 and 4.3, and

give properties of the solution of (5) when the distortion function is
defined by (16). The proofs can be derived as a special case of the
proofs for Theorems 4.2 and 4.3. The vital difference is that the so-
lution of (5) (now with equality constraints) satisfies (14), but now
y� 2 @(�kAw� � bkp). This subdifferential can be equivalently stated
(see [28, Ch. 14]) as

@(�kAw� bkp) = f yjyT (Aw � b) = �kAw � bkp; kykd � � g:

A bound on ky�kd continues to hold, but nonnegativity of y� is no
longer required.

Corollary 4.4 (Exponential Form: Exact Penalty): The solution of
(5), where D is defined by (16), is a vector with components

w�
j =

qj exp �(AT y�)j
k

i=1
qi exp f�(AT y�)ig

; j = 1; . . . ; k

where the parameter y� 2 @(�kAw� � bkp).

Corollary 4.5 (Exact Penalization): Letw� be a solution of (7) with
constraint Aw = b, and with corresponding Lagrange multipliers ��

and y� (see Theorem 2.2). Then for every � > ky�kd; w
� is also a

minimizer of (5), where D is defined by (16).
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D. The `1 Penalty Function

When the penalty function (13) is based on the `1 norm, its objective
is discontinuous over sets of hyperplanes. However, a common tech-
nique is to reformulate it as an equivalent and smooth problem (see,
for example, [22, Theorem 4.8] and [23, Sec. 4.2.3]). The `1 penalty
function can be implemented so that it is computationally efficient, and
it also allows us to further characterize the solution described in The-
orem 4.2.

We introduce a pair of elastic variables r; s � 0, and rewrite (5) as

minimize
w;r;s

I(w; q) + �1
T
r

subject to 1
T
w = 1

Aw + r � s = b

r; s � 0

(17)

where we use D(Aw � b) = kAw � bk1. The solution of (17) is a
5-tuple (w�; r�; s�; ��; y�) that satisfies the first-order KKT conditions

1
T
w
� = 1 (18a)

Aw
� + r

� � s
� = b (18b)

rwI(w
�; q) + �

�
1+ A

T
y
� = 0 (18c)

min(r�; �1� y
�) = 0 (18d)

min(s�; y�) = 0: (18e)

The last two conditions (18d)–(18e) imply that their arguments are non-
negative, so that 0 � y� � �1. This pair of inequalities can be restated
as

0 � y
�
; ky�k1 � �: (19)

Note that the `1 and `1 norms are duals of each other, so that (19) is
equivalent to 0 � y�; ky�kd � � [see (15)].

Lemma 4.6 (Complementarity of r and s): Suppose that the 5-tuple
(w�; r�; s�; ��; y�) is a solution of (18) with� > 0. Then r� and s� are
componentwise complementary; that is, r�i s

�
i = 0, for i = 1; . . . ; k.

Proof: Set zr = �1� y� and zs = y�. Then

z
r + y

� = �1 > 0 (20)

because � > 0 by hypothesis. Note that (18d)–(18e) imply that

r
�
i z

r
i = s

�
i y
�
i = 0: (21)

Now suppose that r�i > 0. Multiplying the ith component of (20) by
r�i yields r�i y

�
i > 0. Hence y�i > 0, and from (21), we have s�i = 0.

By analogous argument, s�i > 0 implies r�i = 0. Then r�i s
�
i = 0, as

required.

Theorem 4.7 (Exponential Form: `1 Penalty): Let � be a positive
constant. Suppose that (w�; r�; s�; ��; y�) is a solution of (17). Let
A;A+;A� be index sets such that

(Aw�)i = b; i 2 A

(Aw�)i > b; i 2 A+

(Aw�)i < b; i 2 A�:

Then

w
�
j =

uj
k

j=1 uj

where

uj = qj exp �
i2A

aijy
�
i � �

i2A

aij :

Proof: Because (17) and (5) are equivalent, w� must have the
form specified by (12).
Now we consider the values that each y�i may have. If i 2 A+, then

(Aw�)i > b, and (18b) together with (18d) implies that 0 � r�i < s�i .
By Lemma 4.6, we must have r�i = 0. Then from (18e) we deduce
that y�i = 0. By analogous argument, y�i = � for i 2 A�. For i 2
A; (Aw�)i = b, and by (18b), r�i = s�i . Lemma 4.6 then implies
r�i = s�i = 0, and so we have from (18d)–(18e) that � � y�i � 0. In
summary, we may now write k

i=1 aijy
�
i as

a
T
j y
� =

i2A

aijy
�
i + �

i2A

aij (22)

for each j = 1; . . . ; k. Substituting (22) into (9), we see that w�j has
the required form.

V. APPLICATION TO STATISTICAL SUPERVISED LEARNING

An estimation method can be practically and philosophically justi-
fied as a method of induction if it can be proved that, in some sense,
the generated estimates converge to the “truth” (see Pierce [29] and
Kneale [30]). For statistical estimation methods this criteria can be for-
malized as consistency. The results developed in Sections III and IV
play a vital role in the proof of statistical consistency of the linear in-
terpolation with maximum entropy (LIME) nonparametric statistical
learning algorithm [31], [32].
LIME is a nonparametric neighborhood method that determines how

to weight near-neighbors of a test point by solving a mean-constrained
problem with a maximum entropy penalty on the weights. LIME has
been shown to perform significantly better than other standard neigh-
borhood methods in a situation of high bias [33], and to be a useful
method for estimating pipeline integrity [34], estimating look-up tables
for color management [35], and estimating custom color enhancements
based on sample color transformations [36].
In particular, Corollaries 4.4 and 4.5 are needed to prove that the

LIME method generates a sequence of estimates of a random variable
that converge to its true expected value. In light of the exponential form
given by Lemma 3.1, the LIME method can be interpreted as a data-
adaptive exponential kernel. The results and proof presented here may
also be useful for proving statistical consistency of other asymmetric
kernel estimators.
In the application of supervised statistical learning methods it is as-

sumed that each test pointX can be associated with a neighborhood of
k (out of a total of n) sample pairs (Xi; Yi); i = 1; . . . ; k. EachXi is a
random feature vector (withm components), and each Yi is a random
associated scalar. The aim is to estimate the true value of Y that is as-
sociated with the test point X; the estimate is based on the n sample
pairs (Xi; Yi). The neighborhood size k might be fixed, might depend
on the total number of neighbors n, or might otherwise be adaptive.
To prove the consistency of LIME, we make the following common

statistical learning assumptions. The n sample pairs (Xi; Yi) and
the test pair (X;Y ) are all drawn independently and are identically
distributed with a joint distribution PX;Y . Let k be a function of n,
and gather the k(n) nearest-neighbors X1; X2; . . . ; Xk(n) of X into
the columns of the m � k(n) matrix XXXk(n). Similarly, we form the
k(n)-vector YYY k(n) from the associated scalars Y1; Y2; . . . ; Yk(n). Let
the ith component of wk(n) be the weight on the ith nearest neighbor.
Let H(w) be the Shannon entropy function, so that H(wk(n)) =

I(wk(n);
1

k(n)
1). The LIME algorithm solves an optimization problem



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 1, JANUARY 2006 243

similar to (5) that combines the relaxed moment constraint with the
maximum-entropy criteria, and finds the vector of weights w�k(n) that
solve

minimize
w2

�H(w) + �D XXXk(n)w �X

subject to 1
Tw = 1; w � 0:

(23)

The function D = kXXXk(n)w �Xkp measures the distortion in satis-
fying the moment constraint. The positive scalar parameter � balances
the tradeoff between maximizing entropy and satisfying the moment
constraint. It is fixed in the LIME objective and might have been de-
termined by cross-validation, by an estimate of signal-to-noise ratio, or
it might simply be set arbitrarily large to focus the objective on mini-
mizing the distortion D.

Lemma 3.1 implies that the LIME weight vector w�k(n) has an
exponential form, and we may therefore interpret the LIME weights
as a data-adaptive kernel with exponential shape that tends to center
around the test point X . Learning kernels are usually symmetric
around the test point. Recent reviews of statistical learning methods,
Hastie et al. [37] and Kulkarni et al. [38], discuss kernel estimators
in more depth. The simplest neighborhood weighting is the Fix and
Hodges k-nearest-neighbor algorithm [39], which assigns uniform
weights uk(n)

def
= 1

k(n)
1 to the k(n) data points in a neighborhood

around the test point X . The resulting estimate of Y is the equally
weighted average of the sample outputs, given by Ŷ = YYY T

k(n)uk(n).
As is well known, such uniform weights maximize entropy when there
are no additional constraints on the distribution.

The LIME approach balances satisfaction of the moment constraints
and equalization of the weights, with a tradeoff specified by �. At one
extreme, with � small, the LIME objective (23) focuses on maximizing
entropy, and the LIME method is similar to the k-nearest-neighbor
method. At the other extreme, with � large, emphasis is placed on
finding weights on the training samples that place the center of mass of
the k-nearest neighbors close to the pointX , so that the LIME weights
(approximately) satisfy the constraint XXXk(n)wk(n) = X . Note that,
together with the requirements that 1Twk(n) = 1 and wk(n) � 0,
the constraint XXXk(n)wk(n) = X could be infeasible. We conjecture,
based on simulation results in [33], that the distortion term D in the
objective of (23) helps to reduce estimation bias. On the other hand,
the estimation variance is lowered by requiring the weights to satisfy
the maximum entropy objective (and thus be close to uniform).

We show that the LIME estimates Ŷk(n)
def
=YYY T

k(n)w
�

k(n) are consis-
tent in the following standard sense: if Y satisfies E(Y s) < 1 for
s > 1, then E(Ŷk(n)jX) ! E(Y jX) in Ls as n ! 1; k(n) ! 1,
and k(n)=n! 0, where the expectations are over the training set and
test point. (See, for example, Devroye, et al. [40, Ch. 6].) The proof re-
lies on the following result (stated as a corollary by Stone [41]), which
is sufficient to show consistency for nonparametric neighborhood esti-
mators:

Theorem 5.1 (Stone [41, Corollary 2]): Let uk(n) be a consistent
sequence of probability weights. Suppose that wk(n) is a sequence of
probability weights such that wk(n) � Muk(n) for some constant
M > 1 and for all n. Then wk(n) is consistent.

The proof of LIME’s consistency is nontrivial because of its adap-
tive, asymmetric kernel.With Stone’s result, we can prove LIME’s con-
sistency using Corollary 4.4.

Theorem 5.2 (LIME Consistency): Let w�k(n) be the pmf that
solves the LIME minimization problem (23) for X and its k(n)
near-neighbors XXXk(n). Suppose that all training and test feature

vectors are random variables drawn iid from a distribution with bound
kXkp � �, for some constant � > 0. Then the sequence of weights
w�k(n) is consistent as n! 1; k(n)!1, and k(n)=n! 0.

Proof: Let uk(n) be the k-nearest-neighbor uniform weights
so that uk(n) = 1

k(n)
1. As proved by Stone ([41, Corollary 3]), the

k-nearest-neighbor uniform weights (for near-neighbors ranked by `p
distance) are a consistent sequence of probability weights under the
standard assumptions n! 1, k(n)! 1, and k(n)=n! 0.
By construction, 1Tw�k(n) = 1 andw�k(n) 2 [0; 1]k(n) for all n, and

this w�k(n) is a sequence of probability weights. It remains to establish
that there exists a finite M > 1 such that w�k(n) � Muk(n) for all
n � 1, so that under Theorem 5.1, w�k(n) is consistent.
Because q is uniform (qi = 1=k(n)), it follows from Corollary 4.4

that the jth LIME weight is given by

(w�k(n))j =

1
k(n)

exp � XXXT
k(n)y

�

j

k(n)
i=1

1
k(n)

exp � XXXT
k(n)y

�

i

(24)

for j = 1; . . . ; k(n), where y� is the vector of Lagrange multipliers of
(23).
To show thatw�k(n)�Muk(n), we show that kw�k(n)k1�M=k(n),

or equivalently, that k(n)kw�k(n)k1 � M for some finite M . From
Corollary 4.4, ky�kd � �. Hence, the boundedness of kxkp and the
Hölder inequality imply that

j(XXXT
k(n)y

�)j j = jXT
j y

�j � kXjkpky
�kd � �ky�kd

for some positive constant � and for all j = 1; . . . ; n. Therefore,

k(n)kw�k(n)k1 � k(n)max
j

1
k(n)

exp � XXXT
k(n)y

�

j

1
k(n)

k(n)
i=1 exp � XXXT

k(n)y
�

i

�
maxj exp � XXXT

k(n)y
�

j

minj exp � XXXT
k(n)y

�

j

� exp 2max
j

XXXT
k(n)y

�

j

� exp(2�ky�kd)

� exp(2��) �M:

Because � and � are both positive, M > 1, as required by The-
orem 5.1.

Note that Theorem 5.2 guarantees the consistency of the LIME
weights for any positive value of the penalty parameter �, regardless
of the feasibility of the moment constraint XXXk(n)wk(n) = X . If the
constraint is feasible (i.e., it admits probability weights that satisfy
that equation), then Corollary 4.5 asserts that for � large enough, the
constraint will be satisfied exactly.

VI. EXTENSIONS

In this section, we discuss two extensions, first the continuous ver-
sion of problem (4), and then the case in which the relative-entropy
arguments are reversed.

A. Continuous Density Functions

We have presented results for discrete minimizers of (5), but the
mathematical development and results are analogous when the problem
is defined for continuous distributions q andw. We restate the problem
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and required assumptions for the continuous case, and explain why the
development is parallel.

Suppose Q andW are probability measures in Euclidean space n

that are absolutely continuous with respect to Lebesgue measure, such
that the respective Radon-Nikodym derivatives (density functions) q
and w exist. The relative entropy between the densities w and q is now
given by I(w; q) = w(x) logw(x)=q(x)dx. Then the discrete
problem (5) has the following continuous analog:

minimize
w

I(w; q) + �D(e)

subject to w(x)dx = 1

where e is anm-vector of errors of themmoment constraints such that
ei = w(x)fi(x)dx� bi for given continuous functions fi(x) and
scalars bi; i = 1; . . . ; m.

The continuous problem above differs from (5) in that the relative
entropy is now defined over a continuous domain. Notably, the dis-
tortion D remains a function of a set of discrete errors corresponding
to the error for each constraint; it could be defined by either (13) or
(16), respectively, depending on whether the moment constraints are
inequalities or equalities. Then, given the modified assumptions for the
continuous case, there are no significant differences in terms of the op-
timization problem.

Analogous forms of the results given in this paper all hold based
on the same mathematical development. For example, application of
Lemma 3.1 applied to the continuous case yields

w�(x) =
q(x) exp � m

i=1
fi(x)y

�

i

q(x) exp � m

i=1
fi(x)y�i dx

:

The continuous analogues to Theorems 4.2 and 4.3 imply that ky�k is
bounded.

B. Reversed Arguments in Relative Entropy

A minimum relative entropy problem is usually formulated as
“Given q, find w that minimizes I(w; q) subject to some constraints
on w.” However, one might be interested in reversing the arguments
of the relative entropy and saying, “Given w, find q that minimizes
I(w; q) subject to some constraints on q.” C̆encov discusses the
relationship of this variant to the maximum-likelihood problem and
establishes conditions for the existence of a minimizer [42, pp. 115,
323–334]. We note that the discrete version of the variation has the
following source-coding interpretation: “Given w, find the probability
mass function q that results in an efficient code that, on average,
requires the fewest additional bits I(w; q) to code identically and
independently distributed random variables drawn from source w,
subject to some constraints on q” (see [7, Theorem 5.4.3].

Consider the minimum relative entropy problem that reverses the
objective function arguments of (7)

minimize
q

I(w; q)

subject to 1
T q = 1

Aq � b:

(25)

A similar approach to that in Theorem 2.2 is used to derive an expres-
sion for each component of the minimizing probability mass function
of (25)

q�j =
wj

�� + (AT y�)j
; j = 1; . . . ; k: (26)

Analogous to (10), �� and y� are the Lagrange multipliers associated
with the first constraint and the set of constraints of Aq � b of (25).

Notably, (26) shows that the exponential form of the minimizer is lost
when the arguments are reversed.
The reverse-argument problem specified in (25) can also be refor-

mulated with soft constraints as a penalty problem, and the approach
given earlier in this paper can be used again to show that the result will
be unique and have the form specified by (26).
In general, the logic of Lemma 3.1 is applicable to the broad set

of hard-constraint problems that have been relaxed by using a penalty
formulation in which a strictly convex function is minimized with a
convex penalty.
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Error Exponents for Finite-Hypothesis
Channel Identification

Patrick Mitran, Student Member, IEEE, and
Aleksandar Kavc̆ić, Member, IEEE

Abstract—We consider the problem of designing optimal probing signals
for finite-hypothesis testing. Equivalently, we cast the problem as the design
of optimal channel input sequences for identifying a discrete channel under
observation from a finite set of known channels. The optimality criterion
that we employ is the exponent of the Bayesian probability of error. In our
study, we consider a feedforward scenario where there is no feedback from
the channel output to the signal selector at the channel input and a feedback
scenario where the past channel outputs are revealed to the signal selector.

In the feedforward scenario, only the type of the input sequence matters
and our main result is an expression for the error exponent in terms of
the limiting distribution of the input sequence. In the feedback case, we
show that when discriminating between two channels, the optimal scheme
in the first scenario is simultaneously the optimal time-invariant Markov
feedback policy of any order.

Index Terms—Bayesian hypothesis testing, classification, detection
theory, Chernoff’s theorem, error exponent, feedback, method of types,
sequential detection, signal selection, waveform selection.

I. INTRODUCTION

In traditional hypothesis testing, we are given a set of hypotheses
H. For each hypothesis h 2 H, we know the probability law for
an observable variable Y , i.e., we know P h

Y [y] PY jH [y jh]. We
make n observations yn1 = [y1; y2; . . . ; yn] and based on these ob-
servations, we need to infer the hypothesis h 2 H. This is a well-
known problem with well-known solutions in the context of Bayesian
and Neyman–Pearson decision making [14]. Furthermore, the type-II
error exponent (for Neyman–Pearson) or average error exponent (for
Bayesian) detection is well known and may be derived by the method
of types [5], [4] or large deviation theory [8].
Let us now suppose that the observable variable Y is obtained as the

response to an input variable X , which we control. In particular, each
hypothesis h, drawn from a finite set of hypothesesH, may be viewed
as a memoryless channel P h

Y jX [y j x] PY jX;H [y j x; h]. We refer
to this type of problem as a finite-hypothesis channel identification or
channel detection problem. The objective is to choose a set of input
signals xn1 = [x1; x2; . . . ; xn] according to some policy. We will con-
sider two broad classes of policies.

Open-Loop Policies: We transmit these n signals xn1 and only
after all signals are transmitted, we observe the n responses yn1 =
[y1; . . . ; yn]. We make a decision on h 2 H after we observe all
outputs yn1 .

Feedback Policies: This case may be described as follows. At time
t = 1, an input x1 is chosen according to some policy and sent over
the channel. Based on the observation of the response output y1, a new
input x2 is chosen. The signal x2 is transmitted and a response y2 is
observed. Based on knowledge of x1; x2; y1; and y2, an input x3 is
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