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Abstract

Accurate protein and peptide identifications by database search depend on the quality of the mass
spectrometer spectra. Excessive quantities of low quality spectra consume valuable computing resources
and can decrease overall accuracy of peptide and protein identifications. We present a fast spectrum
quality filter called French Press that can remove low quality spectra without database searching. The
filter’s speed is the result of a tuned random forest classifier and a greedily optimized classification feature
subset, culled from features appearing in prior research on spectrum filtering and modeling. Results on
diverse data sets of mass spectrometer runs show that the filter can remove roughly 50% of low quality
spectra while retaining 99% of identifiable spectra.

Background

Tandem mass spectrometry (MS/MS) has become the primary tool for the identification of peptides within
a complex protein mixture. Most proteomics laboratories first digest a complex protein mixture into pep-
tides, then analyze these samples by microcapillary chromatography-tandem mass spectrometry (uLC-
MS/MS) [29]. In these analyses, peptides are separated by reverse phase chromatography and are elec-
trosprayed into the mass spectrometer where the instrument measures the peptide m/z (mass-to-charge
ratio) and makes decisions on which peptides to select for MS/MS using data-dependent acquisition [28].
Computational approaches are then used to assign the resulting MS/MS spectra to peptide sequences and
assemble the peptides back into a parsimonious list of proteins. This process is commonly referred to as
“shotgun proteomics” [16,18,30,34].

Modern advances in mass spectrometry [17,23,27] have facilitated the acquisition of MS/MS spectra at
an astonishing rate, with improvements likely to continue in the future. Acquisition rates exceeding 10 Hz
are now possible and result in tens of thousands of MS/MS spectra per hour that need to be processed to
yield peptide and protein identifications. Data collection at such rapid rates is promising because it increases
the number of peptides sampled, but it also places an immense computational burden on the laboratory.

While the development of faster scanning mass spectrometers improves the number of peptide identi-
fications, an overwhelming majority of the MS/MS spectra still remain unassigned to a peptide sequence.
Reasons for failing to identify a peptide from an MS/MS spectrum include (1) the peptide belongs to a
sequence that is not accounted for by the “reference” sequence, (2) the peptide contains an unanticipated
post-translational modification, (3) the spectrum is a chimera from multiple peptide sequences, (4) the spec-
trum is of poor quality (noisy or corrupted), or (5) the spectrum is of a non-peptide molecular species. We
and others have shown that even for well-annotated model organisms a surprisingly large number of peptides
can be identified from regions of the genome that are not annotated as protein coding [19]. Because of the
importance of identifying spectra that belong to peptides containing: post-translational modifications, poly-
morphisms, or sequences from unannotated regions of the genome, we would like to be able to efficiently filter
out spectra of poor quality while retaining a high percentage of spectra that contain biologically interesting
information.

In pursuit of this goal, we have developed a computationally efficient classification filter termed French
Press that discriminates between high and low quality MS/MS spectra prior to database searching.
(Research-grade code is available at: http://students.washington.edu/sergeyf/FrenchPress.zip.) By remov-
ing the low quality MS/MS spectra, one can greatly reduce the total computational overhead of the database
search, despite the additional overhead of the classifier. Also, by removing spectra that are unlikely to result
in confident peptide identifications one can improve the discrimination between true and false peptide spec-
trum matches because of the reduction in the number of hypothesis tests that are performed without reducing
the number of correct peptide spectrum matches. French Press can be used to discover MS/MS spectra that
are of high quality but remain uninterpretable, after which more expensive computational methods can be
devoted to this remaining subset to identify potential unanticipated modifications.

A number of other researchers have investigated the problem of pre-filtering [1,7,15,35]. Also related
is research into post-filtering to discover high-quality spectra previously unmatched by a protein database
search (with SEQUEST [6], for instance) [15,22,32]. Both pre-filtering and post-filtering research has varied
in what is used as training data, normalization schemes, the choice of features, the type of classifier, how



Table 1: Summary of Prior Work

Paper Feature Type(s) Classifier(s) | Spectrum Classification Problem

Bern et al. [1] HC, PPD-Hist QDA, SVM | score above threshold vs. below (SQ)

Ding et al. [5] HC WKM score clustering (SQ)

Flikka et al. [7] HC, PPD-Hist ensemble score above threshold vs. below (MT, MV)

Klammer et al. [14] HC, PL-Hist SVM charge state determination

Koenig et al. [15] HC, PPD-Hist RF, SVM score regression (MT)

Moore et al. [20] HC linear score above threshold vs. below (SQ)

Na and Paek [21] HC SVM score above threshold vs. below (SQ, MV)

Nesvizhskii et al. [22] | HC, PPD-Hist, ST | linear score above threshold vs. below (PP, SQ)

Purvine et al. [24] HC threshold high spectra quality vs. low (hand-specified)

Salmi et al. [26] HC DT, RF score above threshold vs. below (SQ, ProlCAT, MV)

Wong et al. [31] HC logistic score above threshold (PP, ProteinProphet, SQ)
regression or p-value below threshold (pepNovo, SPIDER)

or p-value below threshold (InsPecT) vs. not

Wu et al. [32] HC LDA score above threshold vs. below (PP, SQ)

Xu et al. [33] HC quadratic score above threshold vs. below (MT)

Zou et al. [35] HC SVM score above threshold vs. below (PP, SQ)

Table 2: Legend for Table 1

DT decision tree

LDA Linear Discriminant Analysis
HC hand-crafted

MT MASCOT

MV manually verified

PL-Hist | peak locations histogram

PP PeptideProphet

PPD-Hist | pairwise peak differences histogram
RF Random Forest [2]

SQ SEQUEST [6]

ST sequence tag features

WKM weighted K-Means

much training data was used to form the filter, how much test data was used to evaluate performance, and
how well the filter was evaluated on as-yet unseen and diverse data. Details of prior work are summarized in
Tables 1 and 2, and will be discussed further where relevant. This paper builds on prior work’s exploration
of possible features and normalization schemes.

Methods

We first describe the data, then the class labels, and then the features.

Data

To represent a range of experimental conditions and the variations in spectra and spectra quality they
produce, we selected runs from a number of source organisms analyzed under varying conditions. All
experiments share the following features: proteins were extracted using standard methods and digested to
peptides with trypsin; peptides were separated using reverse-phase chromatography and introduced into the
instrument by electrospray; and spectra were acquired on the LTQ-FT Ultra Hybrid Mass Spectrometer
(Thermo Fisher Scientific) using data-dependent acquisition. We used five of the MS/MS runs (run IDs 21
through 25 in Table 3, 51564 spectra) for the initial model selection and to run independent and identically
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Table 3: Run IDs and Corresponding Data

Run ID | Data type

1 C. elegans daf-2/daf-16 mutant

2 C. elegans daf-2 mutant

3 S. cerevisiae

4 S. cerevisiae

5 Mouse Heart Mitochondria

6 Mouse Heart Mitochondria

7 Mouse Heart Mitochondria

8 Michrom 6 Protein Bovine Mixture
9 Media from Leishmania culture

10 Mouse Heart Mitochondria

11 Mouse Heart Mitochondria

12 Human P7 Nuclear Preparation

13 Human BJ Tert Nuclear Preparation
14 Human CACO Nuclear Preparation
15 Human Hep G2 Nuclear Preparation
16 Human K562 Nuclear Preparation
17 Human SKNSH Nuclear Preparation
18 Human GM12878 Nuclear Preparation
19 Human Hela Nuclear Preparation

20 Human HL60 Nuclear Preparation
21 C. elegans glp-4 mutant

22 C. elegans wild-type strain N2

23 S. cerevisiae

24 S. cerevisiae

25 S. cerevisiae strain S288c

distributed (IID) experiments. We used the additional 20 MS/MS runs (run IDs 1 through 20 in Table 3,
147346 spectra) to further validate the selected classifier model with non-IID experiments. The 25 runs are
detailed in Table 3.

For our training data we took advantage of the high-resolution MS1 scans to measure a specific aspect
of spectrum quality: the software program Hardklor [10] analyzed each region of the MSI scans that was
isolated for fragmention and determined if there was a peptide-like isotope distribution present. All MS/MS
spectra were searched with SEQUEST [6] and g-values for each peptide spectrum match were computed by
Percolator [11]. (A g-value is the minimum false discovery rate at which a particular spectrum-protein pair
will appear in the list of matches that results after database searching for a given dataset [13].)

Class Assignment and Data Partitioning

A key question is how to define ‘good’ and ‘bad’ quality spectra (also referred to as positives and negatives)
for the purpose of training a classification filter. Prior work relating to this question is detailed in the right-
most column of Table 1. The standard approaches rely on database search scores and/or manual validation
(in Table 1, ‘Score above threshold vs. below’ indicates that the classes were defined using the output scores
of the relevant protein matching database such as SEQUEST). In contrast to prior work and motivated by
the fact that a spectrum can receive a low score from a database search for reasons other than the quality of
the spectrum (e.g. post-translational modifications, sequence polymorphism), our definition of ‘bad’ spectra
is unrelated to the search score: we define ‘bad’ spectra to be those that are determined (by Hardklor [10])
to have no peptide isotope distribution in the MS1 scan. ‘Good’ spectra are those that have exactly one
peptide isotope distribution as well as a g-value less than or equal to 0.01. Note that many spectra have an
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Figure 1: Examples of ‘good’ (above) and ‘bad’ (below) spectra.

MS1 peptide isotope distribution, but a g-value larger than 0.01; we refer to these as ‘intermediate’ spectra.
Some randomly chosen example ‘good’ and ‘bad’ spectra are shown in Figure 1. The top two spectra are
examples of our definition of ‘good’ spectra, with charges of +2 and +5, respectively. The bottom two
spectra are examples of our definition of ‘bad’ spectra.

For development, validation, and training purposes, we worked with only five runs of data (IDs 21 through
25). First, we split these 51,564 spectra randomly in half, and all training was done on one half, with the
other half reserved for evaluating the model once it was fully trained. To train (selecting features and
parameters), we used randomized cross-validation (CV): we randomly split the training data into 50% CV
training sets and 50% CV test sets ten times.

Features

We surveyed and categorized the set of features that have been proposed for spectrum filtering as described
in Table 1, and implemented representative features from within each category for a total of 109 features
considered. Only representative features were implemented because many of the features in literatures are
nearly identical, except for minor and insignificant differences. Some researchers have taken an exhaustive
approach by attempting to explicitly encode as much knowledge as possible, creating features like pairwise
peak difference histograms and peak locations histograms. Other features were hand-crafted; either inspired
by the expert visual intuition of the referenced authors and their associates (e.g. peak density), or guided by
the physics of mass spectrometry (e.g. Bern’s Good-Diff Fraction [1]). Prior work deals almost exclusively
with ions of charges +1, 42, and +3. However, there is a need to have an algorithm flexible enough to handle
data containing ions of higher charges, and, thus, some of our features are natural extensions of those found
in literature to charges +4 and +5.

Let F; be the ith feature. The first 26 features (Fj_s6) we investigated are detailed in Table 5, and
assume a given spectrum triplet (x,y,m), where € RY is a N-length sorted vector of mass-to-charge peak
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Table 4: Notation

Ni number of peaks in kth spectrum

z1, € RN* sorted peak intensity locations of kth spectrum (m/z)

yr € RV peak heights of kth spectrum

Yk[i] ith peak intensity of the kth spectrum

Uk normalized peak heights (see the section on normalization for more details)
mg precursor mass-to-charge of kth spectrum (m/z)

TP(r) true positive rate at false negative rate r

Ig indicator function; equal to 1 if @ is true, 0 otherwise

Azy € RNe—1 discrete derivative of xy, i.e. Axyl[i] = zx[i + 1] — xx[i] for i € {1,..., N, — 1}
Dy, € RNkXNk matrix of pairwise absolute peak location distances, i.e. Dg[i,j] = |z[i] — zk[j]]
ﬁk e RNVe(Nx=1)/2 | vectorized version of Dy, retaining only the upper triangular

prct(y, p) p% percentile of vector y; e.g. prct(y,50) = median(y)

rank (y [i]) rank; e.g. rank(yg[i]) = n if yi[i] is the nth largest peak intensity

locations, y € RY is a vector of corresponding abundances, and m € R is the mass-to-charge ratio of the
precursor ion. All summations are from 1 to N (unless otherwise noted). For notation, see Table 4.

The next 50 features (Fay_g7) are a generalization of a subset of features from Klammer et al. [14] to
determine charge states of peptides. These features rely on the intuition that, in good quality spectra,
precursor ions tend to fragment into pairs of ions, of which the individual masses and individual charges sum
to the total mass and the total charge of the precursor ion, respectively. For example: if the precursor ion
had mass 1035 and charge +5, then one of the ways it could fragment would be into two ions, with masses
460 and 575, and charges +2 and +3, respectively. Klammer et al. only consider charges of 4+1, +2, and
43. Our data, however, also contains charges of +4 and 45, and so we expanded the features to cover these
cases. We implemented features from equations numbered (1)-(7) in Klammer’s paper, as well as the final
set of features described after (but not including) equation (11). For full descriptions of these features we
refer the reader to Klammer’s paper. As an example, consider

km
For = Z S[i]S[2m — i),

where S is a surrogate spectrum such that S[i] is the sum of all spectrum peaks within 0.5 m/z of 4, for
i € {1...,km} (the value of m is rounded to the nearest integer), and k, an integer, is a user-defined
parameter. We recommend setting k to the maximum ion charge that is expected to appear in the training
and test data. The reason for this is that the maximum theoretic mass of any fragment should be no larger
than km. We set k to be 5 because that was the maximum charge of the precursors in our training data.
Feature Fy; should theoretically be large for +2 and +4 ions as they tend to be symmetric around the
precursor mass-to-charge ratio m. The rest of the features are analogously extended to larger ion charges,
and also extended in an attempt to encode various neutral losses.

Features Fg3_g7 are designed to capture the distribution of the signal intensity in the spectrum across
the m/z range. To do so, we bin the peak intensities into regions, the sizes of which are relative to the
precursor m/z m. This feature set makes no distribution assumptions. For these features, we also round m
to the nearest integer. The features are:

l o
it ins ., ST

cjefl,.. . kD,
ST I

Fooyj =
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Table 5: Hand-crafted Features

=N

Fy =3 yli]
Fy=3

Fy, = mean(9)
Fs =o(9)

~ 2 Igfil>a s g0
% 3 Ijii)> o max: (31i])

Fii_13=

Fia_16

Fir = %Y Lijigsnm

Fig = max;(x[i]) — min;(z[i])

Fi9 = N/ (max;(z[i]) — min;(x[7]))

Fao = X 3l/ (maxs(zli)) — min (afi])

F5 = mean(Ax)

Fyy = 0(Ax)
Fos=m

Fy, = mean(D)
Fos = o(D)

F26 = median(ﬁ)

number of raw peaks

TIC (total ion current)

mean raw peak intensity

mean normalized peak intensity

stand. dev. of the peak intensity

Bth percentiles of the normalized peak intensity

B8 ={5,25,50,75,95}

fraction of peak intensities above « times normalized TIC
fraction of peak intensities above « times the max peak
a ={0.01,0.10,0.50}

fraction of peak locations above precursor

peak location range

peak location density

TIC density

mean of successive peak location differences

stand. dev. of successive peak location differences
precursor m/z

mean distance between peaks

stand. dev. of the distances between peaks

median distance between peaks
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where [ captures the granularity of the histogram, and is another user-defined parameter; we set [ to be 5,
as suggested by Klammer et al. [14]. After calculating features Fg3_g7, they are normalized to sum to 1.
This is done to turn the features into a probability distribution and make them independent of the number
of peaks.

Features Fgg_gg and Fyg_109 are unweighted and weighted normalized histograms, respectively, of pairwise
peak location differences D. In our data, peak location differences are never larger than 2048 m/z, and, we
divide the entire range from 1 to 2048 m/z into bins whose sizes increase as powers of 2: the first bin is from
1 to 2 m/z, the second bin is from 3 to 4 m/z, the third bin is from 5 to 8 m/z, the fourth from 9 to 16 and
so on until the last bin which is from 1025 to 2048 m/z. The non-uniform bin sizes were inspired by the fact
that the majority of meaningful peak pair differences are expected to be below 200m/z, as that is the range
within which amino acid weights lie. Thus, we wanted finer grain histograms in the lower end of the m/z
range, while keeping the total number of bins relatively small. The histograms are calculated as follows:

Sop AL | alh] -] € 271 + 1,27}
F87+i = 11
> =1 Forj

. iefl,... 11},

and
> Amin(y[h] yls]) | x[h] —z[j] € [271 +1,2]}

5]
> j—1 Fos+j

The min (instead of a fixed constant of 1) in the second expression is inspired by the results in [1]. Feature
sets Fgg_gs and Fyg_109 are, as shown above, normalized to sum to 1.

F98+i: , 26{1,,11}

Results and Discussion

In this section we discuss the algorithm and then both IID and non-IID tests.

Algorithm

We first describe the classifier, then the performance metric, then discuss pre-processing normalization of
the spectra, followed by our feature selection process and parameter selection.

Classifier

We chose to use Breiman and Cutler’s random forest (RF) classifier [2,9], due to its speed of evaluation at test
(and relative speed of training), its state-of-the-art classification performance, its robustness to parameter
choices, and the ease of implementation into an efficient end-user package. The RF composed of a total of
B independent decision trees, where B is user-set parameter. To grow the bth tree, the following steps are
taken:

1. Draw a bootstrap sample from the training data (that is, take a subsample of the data with replace-
ment).

2. Grow the bth decision tree by recursively repeating the following steps, until the minimum node size
is reached):
(a) Select n variables at random from the d-dimensional feature space.
(b) Pick the best split among them by minimizing node impurity (measured by Gini index [9]).
(c) Split the node into two child nodes.
A test sample’s class is then chosen to be the one that received the most votes amongst the B trees.

We use the default bootstrap subsample parameter, so the RF parameters to select are the number of trees
to grow B, and the number of feature dimensions n to be randomly selected at each split. Initially, we set
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Table 6: Normalization Schemes

Jli] = yli] no normalization (none)

7] = /yli] square root of peaks (sqrt)

gli] = log(yli]) log of peaks (log)

gli] = rankl(y[z]) inverse peak rank (inv rank)

Jli] = ZZ[;][J'] peaks divided by total ion current (raw/TIC)

Jli] = % peaks divided by base peak intensity (raw/max)
I SEED

cumulative intensity normalization from Na and Paek [21] (cumul)

5=, vl

B =100 features and n = 30 trees, which were the smallest values required to obtain good performance on
some preliminary experiments. With these fixed parameter values, we then (a) chose a method with which
to normalize the raw spectra based on cross-validated accuracy, and (b) performed optimal feature subset
selection using a greedy exhaustive search (see subsequent sections for details). As detailed below, we then
froze the normalization scheme and feature subset, and lastly cross-validated the RF parameters B and n
for the final classifier.

Performance Metric

To train a normalization scheme, feature subset, and parameters B and n, we needed a single performance
metric. Since the goal is to filter out as many true negatives (bad spectra) as possible at high rates of true
positives (good spectra), the leftmost portion of the receiver operating characteristic (ROC) curve is not of
interest. Thus to train the classifier we used a modified area under the ROC (AU ROC) curve score, what
we refer to as AUROC95. The standard AU ROC' is defined as

1
AUROC :/ TP(r)dr.

r=0
Using the indicator function 14, our AUROC95 is defined as

1

AUROC%:/ TP(r)Irp(ry>0.95dr.
r=0

See Figure 2 for an illustrative example: the area of the shaded region is the AUROC95 score, and takes
values from 0 to 1. Intuitively, it is the fraction of ‘bad’ spectra filtered out while retaining 0.95 of the ‘good’
spectra.

Normalization

Nearly every algorithm listed in Table 1 has used some normalization scheme. Normalization schemes that
are designed to address uninformative variability (noise) in spectrum peak heights are numerous and ad hoc.
Because many of our features (detailed in the next section) are based on raw peaks, normalization has a
large effect on the features. We summarize the normalization methods we found and tested in Table 6, for
a spectrum triplet (x,y,m). To compare normalization schemes, we implemented each of the approaches
detailed in Table 6, extracted the entire set of 109 features (see next section), and compared the cross-
validation AU ROC95 score, averaged across 10 splits. RF parameters were fixed, as noted above, at B = 100
trees and n = 30 randomly chosen dimensions per tree. The results averaged over the 10 CV splits are shown
in Table 7, for both AUROC95 and standard AUROC' scores. Surprisingly, not normalizing yields better
performance than any individual normalization scheme according to both metrics. Because of these findings,
all of the results reported for the rest of this study are for features extracted from unnormalized spectra.

UWEETR-2012-0001 8



Figure 2: An example of an AUROC95 metric calculation.
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Table 7: Normalization Classification Results: Mean (and standard deviation) AUROC95 scores for various
normalization schemes.

Normalization type | mean (std) AUROC | Mean (std) AUROC95
none .941 (.003) 754 (.015)
sqrt .935 (.003) 732 (.014)
log 931 (.003) 719 (.012)
inv rank .924 (.004) 711 (.019)
raw/TIC 935 (.003) 736 (.013)
raw/max .933 (.003) 725 (.014)
cumul .932 (.003) 724 (.014)
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Figure 3: Greedy Feature Selection Results
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Feature Selection

Classification with RF is fast, so a large portion of the running time of the French Press algorithm is devoted
to feature extraction. Thus, to achieve the goal of computationally efficient spectrum filtering, we reduced
the 109 considered features to a small, speedy subset using a greedy exhaustive search, similar to forward-
stepwise selection [9]. Feature reduction can also increase the accuracy of machine learning methods [9].

We began with feature F}, the number of raw peaks. Then, at the Nth iteration of our greedy feature
search, there were N features in the feature set, and we compared the mean AUROC95 CV score that would
result if one of the remaining 109 — N features was added. The remaining feature that yielded the lowest
mean AUROC95 CV score was then added to the feature set, and this process was repeated.

Despite being greedy, this method is quite computationally intensive. If the total number of features is
d, and we are performing n-fold cross-validation, then the random forest has to be run O(nd?) times. On a
standard 2.6 GHz PC, the feature selection process took approximately 2 weeks of continuous computation.

The results are shown in Figure 3. The mean AUROC95 CV score is practically maximized with only
the first 18 features chosen by the greedy search, which were (in order),

1,58,8,5,23,68, 106,98, 10, 71,99, 35, 70,9, 73, 65, 101, 51.

We chose these 18 features for our final classifier.
The first chosen feature, Fsg, was extrapolated from features in Klammer et al. [14]:

S Sl = i S[)
22 5] ’

and is one of a number of features designed to capture information about +4 ions (in this case, the feature
value would be small if the ion broke into a +1 ion and a +3 ion).

Fsg =

UWEETR-2012-0001 10



Table 8: Random Forest Parameter Selection Scores: Mean (and standard deviation) AUROC95 Scores for
various numbers of trees (columns) and numbers of features per tree (rows).

100 trees 200 trees 300 trees 400 trees
3 features | .755 (.011) | .760 (.011) | .760 (.011) | .762 (.011)
5 features | .758 (.010) | .761 (.012) | .762 (.011) | .765 (.010)
10 features | .753 (.010) | .757 (.013) | .757 (.012) | .757 (.011)
15 features | .745 (.012) | .750 (.012) | .752 (.012) | .752 (.014)

Features Fg 919 are three out of the five peak height percentile features. Fg = prct(y,50) accounts
for the median peak height, and Fjy = prct(y,95) is a robust max. The fact that these features have
good discriminatory power seems to indicate that the peak height variability, which is usually considered a
hindrance requiring normalization, is in fact an informative indicator of spectrum quality. Similarly with
F>3 = m; even though our training data contains a large number of different precursors, the precursor
mass-to-charge ratio is by itself a good indicator of spectrum quality.

Features Fgs 68,70,71,73 are part of a set of features that attempts to capture the distribution of peak
locations relative to the precursor mass-to-charge ratio. For our choices of k and [, there were 25 total
features in this set. These 25 features split the m/z range into bins of equal widths, the sizes of which
depend on the precursor m/z. The chosen features are the 3rd, 6th 8th, 9th, and 11th bins.

While chosen features F35 51 58 make assumptions about the distribution of the peak heights (dependent
on the charge of the precursor ion as well as on the neutral loss of 18 Da), Fgs6s,70,71,73 are free of such
assumptions. To calculate these features one must actually compute all of the features in the range Fg3_g7,
because this set of features is normalized to sum to one.

Fyg is the last bin of the weighted peak location difference histogram, from 1024 to 2048 m/z. Foys
captures information about the relative proportion of peaks that are significantly far apart. Fyg 101,106 are
bins from the unweighted peak location difference histogram, covering ranges of 1 to 2 m/z, 5 to 8 m/z, and
129 to 256 m/z, respectively. Similarly, they capture information about how often peaks are in close and
mid-range proximity.

Parameter Selection

Having settled on a normalization type and feature subset, we proceed to parameter selection for the random
forest. As in all of the above experiments, we used 10-fold cross-validation to find the best set of parameters.
The number of trees B was chosen from the parameter set {100,200, 300,400}, and the number of randomly
chosen features per tree n was chosen from the parameter set {3,5,10,15}. Mean (and standard deviation)
AUROCY5 scores for a range of random forest parameters are shown in Table 8. (All results are reported
for the reduced feature space with 18 features.)

Since we are concerned with algorithmic speed as well as accuracy, it is beneficial to set B and n to
the smallest necessary values. Our results show that using more than B = 100 trees and more than n = 5
features per tree offers only incremental improvements Therefore, we set the number of trees to 100 and the
number of randomly chosen features per tree to 5.

Testing

Having settled on a normalization scheme, subset of features, and classifier parameters, we retrained by CV
the random forest using all of the training data (a random half of the spectra in five MS/MS runs), and
then classified the as-yet-untouched test data (the remaining random half). On the test data we obtained an
AUROC95 score of .770, which is very close to the CV score. We hypothesize that the slight improvement
is due to the increased size of the training data compared to the CV experiments, where, for each of the ten
splits, only half of the data was used to train the RF.

The magnitude of the AUROC95 scores does not carry a great deal of interpretable information. To
gain some intuition about our results we first examine exactly how the AUROC95 score translates into more
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Table 9: Relevant Points and Thresholds from the ROC Curve

Threshold | TP | TN | Fraction ‘intermediate’ filtered out
.51 .901 | .854 .542
37 953 | .776 432
.28 971 | 712 .362
.15 990 | .587 257

Figure 4: ROC Curve for the Test Data
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familiar values: true positives (TPs) and true negatives (TNs). We are interested in high rates of TPs.
Consider Table 9, which contains a few points of interest from the ROC curve in Figure 4, as well as their
associated thresholds. The threshold values are votes that result from the RF algorithm, normalized to sum
to 1; samples above the threshold are classified as ‘good’, and below or equal to the threshold are classified
as ‘bad’. For example, if the user wishes to retain approximately 97% of the ‘good’ spectra, she can expect
to accurately filter out about 71% of the ‘bad’ spectra. The fourth column will be discussed in the section
on ‘intermediate’ spectra, below.

Computational Efficiency

The running time to extract the 18 optimal features from 10,000 spectra on a standard 2.6 GHz PC using
MATLAB 7.5 is approximately 240 seconds. The time to actually classify the extracted features is negligible:
10,000 spectra are classified in 0.23 seconds. There is additional time overhead importing the data into
MATLAB. However, the overhead as well as the feature extraction time would both be significantly reduced
in a more efficient programming language such as C++. In particular, a RF is an ensemble of decision trees,
and as such is easy to parallelize.
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Expanded Positives

To test the flexibility of our classifier, we repeated the above experiment with an expanded notion of ‘good’
spectra. In the previous experiment ‘good’ spectra were defined to be those that have a SEQUEST [6]
g-value of at most 0.01. In the following experiment, we have expanded this definition to include other
commonly-used database search algorithms: to qualify as ‘good’ a spectrum must have a SEQUEST g-value
of at most 0.01 OR an OMSSA [8] g-value of at most 0.01 OR a X! Tandem [4] g-value of at most 0.01.
Having reassigned classes, we had to resplit the training/test data. As before, we trained the RF on 50% of
the data, and tested on the remaining 50%. The resulting AUROC95 score was 0.762, which is well within
the standard deviation of the CV scores, which indicates that our classifier is robust to feature and parameter
choice. The very similar performance is indicative of the fact that OMSSA and X! Tandem do not provide
much discriminative information above and beyond that of SEQUEST.

Filtering ‘Intermediate’ Spectra

Approximately half of all of the data in our original data source is neither ‘good’ or ‘bad’. These ‘intermediate’
spectra have at least one peptide isotope distribution in the MS1 scan but have excessively high g-values
and would generally not be considered to have a reliable peptide match. Not all of these spectra, however,
are beyond identification and may be worth further investigation. For example, the peptide may have a
post-translational modification that was not considered in the search, or there may be two peptide species
isolated in the same window that could be identified with a specialized search. In general, any time there is
a variation in the peptide sequence that is not represented in the database, the correct identification cannot
be made. Because our definition of ‘bad’ spectra is based on the isotope distribution in the MS1 scan (and
not, for instance, a Xcorr score), we suspect that our classifier is agnostic to such peptide variations, and
would filter out only ‘intermediate’ spectra without a good peptide signal.

To understand how our classifier behaves with the ‘intermediate’ spectra, we turn once again to Table
9. The fourth column contains the fraction of the ‘intermediate’ set classified as ‘bad’ for a number of
thresholds. This gives a complete picture of how all of the resulting data in an individual round of MS/MS
would be dealt with by our classifier. For instance, if the user wants to retain 99% of the ‘good’ spectra, her
or she can expect to filter out 57.8% of the ‘bad’ spectra and 26% of the intermediate spectra.

Non-IID Classification

The experimental results reported above are somewhat optimistic because the training and test partitions
were drawn randomly from a superset of the five MS/MS runs, so there are spectra from each of the 5 runs
in both the training and test sets. Thus the test set and training set are statistically similar. Since each
MS/MS run has different statistics from any other, and, thus, a new test MS/MS run will likely not be
IID with respect to the training data. To mimic this practical issue and better evaluate the performance of
French Press we performed another set of experiments using all 25 runs detailed in Table 3, where, in turn,
each of the 25 runs was held out entirely as a test set and the classifier trained on the remaining 24 runs.

These test results averaged over the 25 runs are in shown in Figures 5 and 6. The plot in Figure 5 shows
the range of TP and TN that we observed across the 25 runs when using various thresholds for filtering. The
threshold defines the maximum number of the trees in the random forest that classify the spectra as ‘good’
(divided by 100, the total number of trees) allowed such that the RF classifier calls the spectrum ‘bad’.
Thus, we see that at in the extremely conservative case of setting the threshold to 0 (that is, only remove
spectra that have exactly 0 ‘good’ votes), one can still remove 20% of the true negatives on average. More
realistic thresholds are between 0 and 0.2, where at least 95% of true positives are retained with up to 80%
of the true negatives removed. These results are promising and satisfying, in that they provide statistical
evidence for the performance of the classifier at various thresholds.

The plot in Figure 6 is similar, but the threshold is chosen such that a certain percentage of the total
spectra are retained after filtering. This is an alternative way of choosing a threshold, and provides a different
viewpoint on performance. For example, if one wishes to retain 80% of the spectra, one can expect about
50% of the true negatives to be filtered out, and 95% of the true positives to be retained.
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Figure 5: TP and TN Rates vs Thresholds

The plot depicts the mean and standard deviation true positive (TP) and true negative (TN)
rates for a range of potential user-selected RF threshold. The centers of the bars are the
means of the 25 runs, and the width of the bars indicates standard deviation over the 25 runs.
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Figure 6: TP and TN Rates vs Fractions

The plot depicts the mean and standard deviation true positive (TP) and true negative (TN) rates
for a range of user-selected fractions. The fractions on the x-axis are fractions of spectra retained
after filtering; this is also user-selected parameter, much like the threshold in Figure 5. The centers of
the bars are the means of the 25 runs, and the width of the bars indicates standard deviation over the 25 runs.
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Table 10: Detailed Non-IID Results: Table shows the numbers of positives kept and negatives filtered out
for three relevant thresholds. Each row shows the results for held-out run.

Run ID Total Positives kept at thresh.: Total Negatives filtered at thresh.:
positives | 0.1 0.2 0.3 negatives | 0.1 0.2 0.3
1 7208 7182 | 7139 7058 1100 1085 | 1096 1100
2 3181 3159 | 3095 2992 1018 603 | 708 T
3 3412 3406 | 3392 3349 5297 984 | 1554 2218
4 583 558 | 523 490 1656 493 | 646 760
5 4540 4537 | 4502 4439 6028 1253 | 2027 2777
6 3363 3325 | 3269 3158 905 544 | 640 707
7 2279 2265 | 2230 2176 1057 602 | 729 816
8 7716 7702 | 7665 7609 14967 696 | 1150 1807
9 2077 2074 | 2059 2040 7267 2202 | 3167 3944
10 776 775 | 771 755 2035 520 | 883 1222
11 2032 2030 | 2024 1997 7381 2346 | 3347 4159
12 8615 8609 | 8600 8572 1400 1398 | 1400 1400
13 1865 1862 | 1845 1808 7404 2362 | 3236 3944
14 1805 1795 | 1773 1717 1159 594 | 775 897
15 2204 2178 | 2130 2053 1063 574 | 751 835
16 2617 2606 | 2582 2518 1065 212 | 274 328
17 3153 3105 | 3022 2930 978 544 | 661 747
18 8370 8350 | 8310 8245 6581 2084 | 3045 3835
19 7490 7471 | 7439 7378 6499 2182 | 3061 3796
20 2494 2460 | 2405 2315 1062 508 | 666 753
21 4596 4522 | 4313 4010 1481 724 | 961 1096
22 7743 7493 | 7219 6835 3767 1822 | 2307 2572
23 3588 2305 | 1863 1614 4117 1015 | 1398 1577
24 3149 3145 | 3092 2991 7249 3337 | 4192 4900
25 7385 7363 | 7341 7299 1967 1967 | 1967 1967

The reason we present the data in this form, and not as a collection of AUROC95 scores, has to do with
how we anticipate the end-user might use the filter. It is difficult to choose the final threshold setting for the
filtering of heretofore unseen data just by examining a set of 25 AUROC95 scores. Therefore, depending on
the need, we offer two choices of setting a threshold: directly setting TP and TN rates based on information
in the first plot, or choosing to retain a certain percentage of the total spectra based on information in the
second plot.

Table 10 provides a closer look at the experiments in this section. We report the absolute numbers of
positive spectra retained and negative spectra filtered out for thresholds of 0.1, 0.2, and 0.3. For almost
every run (the notable exception being run #23) the overwhelming majority of positives are retained, while
large percentages of negatives (as high as 100%) are filtered out.

Examining Xcorr Values

To gain more intuition about the quality of filtered-out spectra, we turn to the Xcorr score [6]. For filtering
thresholds of 0.1, 0.2, and 0.3, we obtained the histograms of Xcorr values for the spectra that were filtered
out, for both decoy and target databases. Two examples randomly chosen from the 25 runs are shown in
Figure 7. The two panels in the figure show that the bulk of the filtered-out spectra have Xcorr values
between 0.5 and 2.5, which are considered quite low. This matches the above results in that ‘good’ spectra
are rarely filtered out. With respect to these figures, there is little variation amongst the 25 runs, and the
two figures shown are representative.
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Figure 7: Histograms of Xcorr scores of filtered-out spectra. Top and bottom figures are two randomly
chosen runs (out of 25).
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Conclusions

Mass spectrometry has become the primary technology for the characterization of proteins within complex
mixtures. With each advance in instrumentation we obtain the capability to collect more and more MS/MS
spectra per unit time. With the release of the new LTQ-Velos ion trap mass spectrometer we can collect
MS/MS spectra at a rate that is more than two times faster than the previous generation LT(Q. However,
we do not obtain twice as many peptide spectrum matches; thus, this improvement in instrument speed also
increases the fraction of MS/MS spectra that remain unidentifiable [27]. For French Press to successfully
work with other ion trap instruments, it may be necessary to re-implement the feature selection and training
with data from that instrument.

There are many reasons for MS/MS spectra remaining unidentified after a database search. Some spectra
are of poor quality or belong to non-peptide molecular species. It is likely that sampling peptides of lower
abundance will further exacerbate this problem. Thus, it is imperative to be able to differentiate spectra
that are identifiable versus those that are not prior to performing the computationally expensive database
search.

The key contribution of this work is in our definition of low quality spectra, motivated by the observation
that a spectrum can have a low score from database searches for reasons unrelated to the quality of its
spectrum. In contrast to prior work, our definition of ‘bad’ spectra is unrelated to the search score: we
define ‘bad’ spectra as those that are determined to have no peptide isotope distribution in the MS1 scan.
Indeed, this is the main advantage of French Press over other spectra quality filters: we have encoded the
computationally expensive information that Hardklor is able to obtain from the MS1 scan into an efficient,
quick-to-evaluate classifier. That is also why we did not compare to other classifiers in this work. Namely,
none of the prior work detailed above uses the same definition of ‘good’ and ‘bad’ spectra as we do.

We have included all the relevant details of our classifier and experimental design, and have demonstrated
its efficacy. Research-grade code is available that runs the Fj..ss classifier, currently trained on all of the
25 runs discussed in this work. We can maintain > 99% of the peptide identifications while eliminating

UWEETR-2012-0001 17



roughly 50% of the unidentifiable MS/MS spectra. While many of these spectra may be identifiable if we
perform extensive modification searches, these searches are computationally expensive and can be performed
on only the MS/MS spectra that are classified as “good” and that are not identified as being derived from
unmodified peptides [3].

The analysis of MS/MS spectra represents a challenging problem in obtaining statistically significant
identifications because of the enormous number of multiple hypothesis tests that are made in the analy-
sis of the mass spectrometry data [11,12], as well as the complications inherent in very large proteomics
datasets [25]. More peptides can be identified at a constant false discovery rate by either improving the
discrimination between the correct and incorrect results or just eliminating incorrect identifications. By
eliminating MS/MS spectra that are of insufficient quality to provide a correct peptide spectrum match, in
selected cases the database search score threshold can be set lower to obtain more correct peptide identifi-
cations while maintaining the same false discovery rate.
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