
Fast Linear Interpolation

NATHAN ZHANG, Stanford University
KEVIN CANINI, Google Research
SEAN SILVA, Google
MAYA GUPTA, Google Research

We present fast implementations of linear interpolation operators for piecewise linear functions and multi-
dimensional look-up tables. These operators are common for efficient transformations in image processing
and are the core operations needed for lattice models like deep lattice networks, a popular machine learning
function class for interpretable, shape-constrained machine learning. We present new strategies for an efficient
compiler-based solution using MLIR to accelerate linear interpolation. For real-world machine-learned multi-
layer lattice models that use multidimensional linear interpolation, we show these strategies run 5− 10× faster
on a standard CPU compared to an optimized C++ interpreter implementation.
CCS Concepts: • Software and its engineering→ Source code generation.

Additional Key Words and Phrases: compiler, interpolation
ACM Reference Format:
Nathan Zhang, Kevin Canini, Sean Silva, and Maya Gupta. 2020. Fast Linear Interpolation. ACM J. Emerg.
Technol. Comput. Syst. 1, 1 (September 2020), 16 pages.

1 INTRODUCTION
Linearly-interpolated look-up tables (LUTs) are a core operation of many real-world machine-
learned models, such as piecewise-linear (PWL) functions and lattice models, which interpolate
multi-dimensional look-up tables [10]; see Fig. 1 for examples. Interpolating LUTs has long been a
common choice for low-dimensional signal and image processing applications where fast evalua-
tion and flexible models are needed. For example, the International Color Consortium standard
for color management for printers uses two-layer models where PWLs correct each individual
color channel, and then multi-dimensional look-up tables convert between 3D colorspaces [9, 27].
Recently, as concerns grow about the black-box nature of AI, lattice models have become useful
to machine learning practitioners because they offer interpretable and semantically-regularized
machine learning by enabling constraints on the underlying LUTs that provide guarantees about
model behavior, like ensuring that selected inputs can only increase the output (monotonicity)
while still producing flexible accurate models [4, 6, 12–14, 29, 31, 33]. Higher-dimensional problems
are handled with multi-layer models formed by ensembling or cascading multiple layers of PWLs
and lattices [4, 6, 29, 33].
In this paper, we investigate the question: Just how fast can one interpolate LUTs on standard

CPUs? In theory, interpolating LUTs can be very fast because only the LUT parameters nearest an
input are needed to evaluate that input. This is in stark contrast to models like DNNs and CNNs,
Authors’ addresses: Nathan Zhang, nathanzhang@google.com, Stanford University; Kevin Canini, Google Research, canini@
google.com; Sean Silva, Google, silvasean@google.com; Maya Gupta, mayagupta@google.com, Google Research.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
1550-4832/2020/9-ART $15.00
https://doi.org/

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2020.

https://doi.org/

2 Nathan Zhang, Kevin Canini, Sean Silva, and Maya Gupta

PWL Lattice with 5 × 2 LUT

Fig. 1. Left: An example of a PWL defined by 8 key-value pairs. Right: An example of a lattice model formed
by bilinear interpolation of each cell of a 5× 2 LUT defined on a regular grid of keys (a.k.a. knots) with 10 free
LUT parameters corresponding to each key. The rainbow colormap goes from blue (0) to red (100). Inputs
outside the domain of the LUT were clipped component-wise to the domain of the LUT.

for which every model parameter might be touched during the evaluation of a single example.
However, ML models based on LUTs have many small operations and are thus easily bottle-necked
by overhead, thus necessitating performance-oriented optimizations there as well. We show that
our proposed custom low-level optimizations and data-handling implemented using MLIR [11] can
enable fast runtimes on standard CPUs.
Specifically, the main contributions of this paper are: (i) we give two new complementary

strategies to reduce the runtime of PWLs; (ii) we show how to optimize the compute kernels for
two types of multi-dimensional linear interpolation (simplex and multilinear); (iii) overall we show
a 5 − 10× runtime speed-up on real-world multi-layer lattice models compared to a prior C++
interpreter implementation with optimized C++ code.
First, we review some related work on compilation for ML. Then in Section 3, we review one-

dimensional and multi-dimensional linear interpolation and what is already known about how
to make them efficient. Then we propose new strategies for more efficient PWLs in Section 4,
more efficient multilinear interpolation in Section 5, and more efficient simplex interpolation in
Section 6. We contextualize these contributions in Section 7 with analysis of theoretically possible
performance. Experiments in Section 8 show our proposals lead to 5 − 10× speed-ups on real
multi-layer machine-learned models. We conclude in Section 9 with a summary and some open
questions.

2 COMPILATION MATTERS DUE TO LARGE DISPATCH OVERHEAD
Recent work investigated the use of compilers to speed-upmachine-learnedmodels [5, 17, 24, 28, 30],
but focused on models with large operations, such as convolutional networks or large matrix-
multiplication models, where the operations takes hundreds of times longer than the dispatch
process. For example, ResNet-34 performs 3.6 billion floating point ops across 34 layers, averaging
over 100 million floating point operations per kernel [15].

In contrast, for small operation models like linear interpolation (technical details follow), the cost
of dispatch can be bigger than the computation, and thus reducing dispatch overhead becomes key.
For example, the proprietary multi-layer lattice models described in this paper execute at most
a few thousand floating point ops per kernel, and many useful lattice models use a few hundred

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2020.

Fast Linear Interpolation 3

or fewer ops per kernel. We often use lattice models in latency-sensitive pipelines where single
examples must be evaluated as they occur, removing the choice to amortize overhead by batching.
To reduce dispatch overhead, we use a compiler constructed using the MLIR framework [11]

to convert the trained models into compiler-optimized C++ code. By replacing the interpreter
with a hard-coded model, the compiler removes a significant portion of the dispatch overhead and
provides an overall speedup of 2 − 3×. In the next sections, we show how to reduce the overall
runtime by 5 − 10× by taking advantage of the details of the linear interpolation ops.

3 BACKGROUND AND RELATEDWORK
We review PWLs, and the two most popular multidimensional interpolation methods, and what
the challenges are in making them run fast.

3.1 Piecewise-Linear Functions (PWLs)
PWLs have been used to approximate and represent one-dimensional functions for centuries, for
example tables for logarithms [26] [23] and actuarial tables [7]. As illustrated in Fig. 1, we define a
PWL by N key-value pairs (ki ,vi)Ni=1, where the keys are sorted ki < ki+1.
To evaluate any input x ∈ [k1,kN], the surrounding key-value pairs are linearly interpolated.

That is, first find the index of the nearest keypoint to the left of x :

j = max{i : ki ≤ x}. (1)

Then,

f (x) = w j (x)vj + (1 −w j (x))vj+1, (2)

where the interpolation weight is

w j (x) =
kj+1 − x

kj+1 − kj
. (3)

One nice property of PWLs for safe and interpretable AI [13, 16, 31] is that they can be guaranteed
to be monotonically increasing if every look-up table parameter is larger than its left-neighbor.

3.2 Quantile Keypoints
For machine-learned PWLs it is recommended to choose the PWL keys {ki } based on the quantiles
of the training examples for that input: assign keypoint k1 to the minimum possible value of the
PWL’s domain, assign the last keypoint kN to the maximum possible value of the PWL’s domain,
and assign the remaining N − 2 keypoints to equally-spaced quantiles of the training examples’
inputs [29]. We assume the keypoints stay fixed at these values and are not trained (though their
corresponding values {vi } are trained). Quantile keypoints are good for machine-learning because
each keypoint sees roughly 1/N of the training examples, reducing the chance of overfitting any
of the trained PWL values {vi }. Quantile keypoints also aid in interpretability because if one
plots a PWL, the keys reflect the distribution of the training data. However, we next show that
quantile keypoints result in pessimal PWL runtimes because each keypoint is equally likely to be
the left-keypoint for a random input x .

3.3 Linear Search For PWLs Is Slow, Even For Small PWLs
The key challenge to efficiently evaluating PWLs is to quickly find the index j in (1). We estimate the
cost of a memory load and compare at 2 cycles if speculative memory loads are allowed, and 4 cycles
if they are not, due to the 2-3 cycle latency of a memory load. Each branch misprediction costs an
expected 15-20 cycles depending on architecture [8]. As a result, we estimate the overall expected

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2020.

4 Nathan Zhang, Kevin Canini, Sean Silva, and Maya Gupta

cost to be E[# Cycles] = 4×E[# Comparisons]+ 17×E[# Mispredictions]. Here, we assume that all
parameters are within the L1-cache because there are few enough parameters to be loaded together.

Linear search over the N keypoints requires E[# Comparisons] = N+1
2 . However, as we show in

this section, it is the branch mispredictions that are the bigger problem.
Recall that a branch predictor predicts whether or not a given branch is taken, and an optimal

branch predictor always predicts the outcome associated with the highest probability. During the
linear search, a branch prediction will predict whether the for-loop over the keypoints will stop,
for each i = 1, . . . ,N . Typically, a branch predictor is able to access a summary of its history, and
any static information the compiler may be able to provide. For quantile keypoints, each of the
first N − 1 keypoints is equally likely to be the correct index. Thus the optimal branch prediction
is to continue unless the linear search has reached i = N − 2, in which case there is a 50-50
chance of either of the remaining two keypoints being the right one. However, (N − 2)/(N − 1)
of the examples will find their correct index before the linear search reaches i = N − 2, which
means the branch prediction will be wrong once with probability (N − 2)/(N − 1), producing
E[# Mispredictions] = (N − 2)/(N − 1).

3.4 Binary Search for PWLs
In a branch-free implementation of binary search with known depth, the compiler is able to fully
unroll the structure and thus avoid branch mispredictions. Additionally, a well-optimized binary
search implementation is able to perform each step of the binary search in approximately 6 cycles
[18]. It thus takes 6 × ⌈log2(N)⌉ cycles to find the appropriate location. This makes binary search
roughly 2× more efficient than linear search even for N = 3 to 10, and is the baseline that any
proposed indexing must beat.

3.5 A Map-to-Index Function for PWLs
More abstractly, the goal is to construct an efficient function that can map an input x to the correct
index j. An old trick is to build an auxiliary LUT over [k1,kN] with B uniformly-spaced buckets,
use that to map x to a bucket, and then linearly-search through all the keypoints that fell in
that bucket. However, with irregularly-spaced keypoints, a uniform bucket can still have O(N)

keypoints to search through. Aus and Korn [1] proposed constructing a hierarchy of such auxiliary
uniformly-spaced LUTs to better cover irregular keypoints. O’Grady and Young [22] proposed
using a sufficiently large B such that no uniform bucket contains more than one keypoint, but at
the cost of potentially large B. An analogous problem arises in database indexing, where recent
work has proposed machine-learning a two-layer DNN to produce the map-to-index function [19].
Our proposed solution will be in a similar spirit but lighter-weight.

3.6 Multilinear Interpolation
Next we review linear interpolation for regular D-dimensional LUTs. See Fig. 1 for an example
D = 2 dimensional LUT with a regular grid of 5 × 2 keys, and Fig. 2 for more examples of D = 2
LUTs on a regular grid of 2 × 2 keys.

An interpolated LUT is called a lattice. Our real-world models in Section 8 use LUTs of dimension
D = 4 − 8. In practice, D up to 20 is reasonable, beyond D = 20, memory can be an issue due to
the 2D parameters for one cell of a D-dimensional LUT. Higher-dimensional feature vectors are
handled with ensembles [4] and multi-layer deep lattice networks [33].
Like PWLs, a nice property of lattice models is they can be restricted or checked for whether

their output is a monotonic response of selected inputs, simply by constraining that adjacent
parameters in the underlying multidimensional LUT are increasing in the selected input directions

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2020.

Fast Linear Interpolation 5

multilinear multilinear multilinear multilinear simplex

Fig. 2. Examples of D = 2 lattices defined by 2 × 2 LUTs with different parameters, which are shown at
the corresponding keys. Colorbar goes from blue (0.0) to red 1.0). The first four examples interpolate the
LUT with multilinear interpolation. The fifth example uses simplex interpolation instead. One can see in the
simplex interpolation example that the function is linear on the D! = 2 simplices: the lower-right triangle
and the upper left triangle. The right-most three examples are all monotonically increasing functions in both
directions, which can be checked by noting the LUT parameters increase in each dimension. The left-most
example is a non-decreasing function in the horizontal direction only.

[13, 29]. Monotonicity constraints have been shown to be useful for AI interpretability [13, 29],
regularization [4], and making AI models more ethical [31].
The linear interpolation acts on each cell of the LUT independently. Consider one cell of a

regular D-dimensional LUT, which without loss of generality is a D-dimensional unit hypercube
parameterized by LUT values v ∈ R2

D corresponding to the O(2D) vertices of the hypercube.
There are multiple ways to linearly interpolate a D-dimensional look-up table [27], but the

most common is multilinear interpolation, which for D = 2 is known as bilinear interpolation.
For an input x ∈ [0, 1]D , multilinear interpolation outputs f (x) =

∑2D
i=1viwi (x), where vi is

the stored multi-d LUT value for the ith vertex in the D-dimensional unit hypercube, and wi (x)
is the multilinear interpolation weight on the ith unit hypercube vertex ξi ∈ [0, 1]D taken in
lexicographical order, computed from x ∈ [0, 1]D as:

wi (x) =
D∏
d=1

x[d]ξi [d] (1 − xd)
1−ξd , (4)

for all i = 1, . . . , 2D .
Gupta et al. [13] gave an O(2D) dynamic programming algorithm for computing (4). We note

that while asymptotically efficient, the dynamic programming solution introduces a loop-carried
dependency, and thus prevents critical compiler optimizations, a problem we show how to avoid.

3.7 Simplex Interpolation
Simplex interpolation is a more efficient linear interpolation of a D-dimensional LUT cell that
produces a locally linear surface. For each input x ∈ [0, 1]D , the D components of x are sorted, the
resulting sort order determines a set of D + 1 vertices whose simplex is guaranteed to contain x ,
and then a sparse inner product is taken with the corresponding D + 1 LUT values to produce f (x)
[13, 25, 32].

This method produces a continuous function made up of D! different local hyperplanes over D!
mutually-exclusive simplices that partition the LUT cell. See the two right-most examples of Fig. 1
for a visual comparison of the output of multilinear interpolation and simplex interpolation of the
same LUT.

Simplex interpolation is the same as the Lovász extension in submodularity [2].

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2020.

6 Nathan Zhang, Kevin Canini, Sean Silva, and Maya Gupta

Gupta et al. [13] gave runtimes for single-layer models using either multilinear or simplex
interpolation implemented in C++ on a single-threaded 3.5GHz Intel Ivy Bridge processor: for
D = 4 inputs both simplex andmultilinear interpolation ran in about 50 nanoseconds, but forD = 20,
simplex interpolation ran in 750 nanoseconds, and multilinear interpolation ran in 12 milliseconds,
around 15,000× slower than simplex. Despite the slower runtime forD > 4, multilinear interpolation
might be preferred because it produces a smoother surface. The large-scale multiplications needed
for multilinear are a better match for machine learning libraries like TensorFlow than the sorting
operation needed for simplex interpolation.

Like with PWLs, branch prediction poses a significant challenge when implementing the simplex
interpolation kernel. For example, we found that libc++ (used by LLVM) defaults to using either a
hard-coded insertion sort or quicksort depending on the input size, which is determined at runtime.
However, we note that this run-time decision is not needed for machine learningmodels, because the
number of inputs D is fixed and known. If one sorts with std::sort<std::pair<double, int>>,
we found that the sorting operation accounts for approximately 70% of the simplex kernel’s overall
runtime.

4 HOW TOMAKE PWLS RUN FASTER
We describe two complementary techniques for making PWLs run faster. In Section 4.1 we show
how to construct a better auxiliary index-mapping function that takes into account the spacing of
the keypoints. In Section 4.2 we show that ensemble or deep lattice models often pass the same
input through multiple PWLs, allowing us to remove redundant index searches.

x → LUT[

Auxiliary Lookup Index︷ ︸︸ ︷
⌊α + βT (x)⌋]︸ ︷︷ ︸

Predicted Keypoint Index

=m(x) → correct(m(x))︸ ︷︷ ︸
Keypoint Index

= j → w j (x)vj + (1 −w j (x))vj+1 = PLF(x)

Fig. 3. Process for efficiently computing a piecewise linear function using an auxiliary lookup table and
transform functions, as in section 4.1. The definitions ofw and v are given in Section 3.1.

4.1 Keypoint Dependent Optimization
We propose a new way to construct an index mapping functionm that first transforms the key-
points to be more uniformly-spaced, and then applies an auxiliary lookup table (LUT) to map
the transformed space to an index using an optimal number of uniform buckets. The resulting
implementation, summarized in figure 3, is constant-time in the number of pieces in the PWL.
Let C(m,x) be the cost of evaluating the mappingm on an input x , and A(m,x) be the cost of

correcting the predicted indexm(x) to the correct index given in (1). If we know the model will be
evaluated on random examples x ∼ P , x ∈ X ⊆ R, then we propose finding the mappingm∗ from a
family M of possible mapping functions that minimizes the expected cost over random examples
to be evaluated:

argmin
m∈M

Ex∼P [C(m,x) +A(m,x)]. (5)

We propose taking M to be mappings of the form

m(x) = LUT[⌊α + βT (x)⌋],

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2020.

Fast Linear Interpolation 7

where T : X → R is some 1-D transform, the auxiliary lookup table LUT has B uniformly spaced
buckets of size 1

β , where each bucket maps to the smallest index encountered in the bucket’s
interval, and α is used as an offset in computing the lookup table index.
Estimating 3 operations for arithmetic and 2 operations for typical L1-cache hit latency, we

estimate the cost C(m,x) of performingm(x) to be C(T ,x) + λB + 5, where λ is a parameter that
represents the cache behavior cost of arrays, and is set to λ = 0.05 for all of our experiments. We
note that this is an important but relatively insensitive hyperparameter as our parameters are
loaded into a contiguous buffer; if a set of parameters is large then it means that the next set of
parameters is unlikely to be loaded as part of the same cache line.
For most modern CPUs, the branch-misprediction penalty is high, so we only use functions

that are branch-free. A consequence of making T branch free is that the cost C(T ,x) = C(T) is
independent of x . To correct the predicted indexm(x) we use a fixed-step linear search that always
executes the worst-case number of steps needed to achieve branch-free behavior. Importantly, this
also removes dependence on the actual distribution P in (5); the procedure instead optimizes over
the range of possible inputs X.

With these choices, (5) becomes:

argmin
T ∈T,α ∈R,β ∈R,B∈N

C(T) + λB +A(m,x) (6)

where

A(m,x) = max
x ∈X

Index(x) − LUT[⌊α + βT (x)⌋].

Note that A(m,x) is determined by the pair of points with maximally different indices that get
mapped to the same bucket. That is,

A(m,x) = max
x,z∈X

Index(x) − Index(z)

such that ⌊α + βT (x)⌋ = ⌊α + βT (z)⌋ .

Importantly, the choice of T need not be a perfect mapping; in fact, for complex distributions,
it is likely that a simple transformation followed by multiple adjustment steps may be optimal.
Experimentally, we approximatedT by choosing the best out of a small fixed set of simple monotonic
transformations, including a fast approximate log2(x) and an approximate 2x , which resulted in
needing at most 3 steps for the linear scan for our models. We note that the problem of constructing
T , orm in general, may be a problem well suited for superoptimizers.

In order to solve (6), we first choose theT that produces the most linear transform of the PWL key-
points in that it minimizes the squared distance from the set {(1,T (k1)), (2,T (k2)), . . . , (N ,T (kN))}
to the best fit line through the set. We next do a grid search over the α − β − B space that checks all
candidate α ’s and β ’s and B’s that can produce unique values for A(m,x), which can be reduced to
checking O(N 3) candidates. Overall, for N = 50 keypoints, solving (6) usually takes 1-2 seconds on
a standard CPU.

4.2 Efficient Handling of Shared Index PWLs
Next, we consider models that have shared index PWLs such that the same input is passed through
multiple PWLs in order to transform the same input in different ways. As a very simple example,
the one-dimensional function f (x) = 3 log(x) + 4

√
x + 6x + 2x2 for x ∈ [0, 1] can be represented as

the sum of four PWLs with the same ki values, but different vi values. For example, if one sets the
ki ’s based on the quantiles of input x , then all 4 PWLs will have the same ki values. In this case, the
work to determine j in (1) is duplicated across all PWLs that act on the same input. To avoid this

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2020.

8 Nathan Zhang, Kevin Canini, Sean Silva, and Maya Gupta

Fig. 4. We propose encoding the index in the low-order bits of the residual for higher sorting efficiency in
simplex interpolation. For the double-precision floating point format the exponent instead has 11 bits and
the mantissa has 53 bits.

duplication, in the compiler we transform the model to group all such PWLs into a single larger
kernel.

5 LATENCY HIDING FOR FASTER MULTILINEAR INTERPOLATION
Gupta et al. [13] give a O(2D) dynamic programming algorithm for multilinear interpolation that
iterates over the D inputs, and on each iteration the number of computed interpolation weights
doubles. This makes the last iteration roughly half of the work. We propose that during this last
and most expensive iteration, one can interleave in the next step of computing the inner product
between the interpolation weights and the LUT values. This interleaving of operations helps the
processor be productive while the next value is fetched. This trick is an example of latency hiding,
a popular computing technique for performing useful work while waiting on a data fetch [20, 21],
and is critical for performance using accelerators [5]. To get this latency hiding, we take the trained
model parameters, and generate C++ code for the multilinear interpolation such that the compiler
will do this interleaving. This provides around a 10-15% end-to-end speed-up for relevant models.

6 SORTING NETWORKS FOR FASTER SIMPLEX INTERPOLATION
As described in Algorithm 2 of [13], the simplex interpolation algorithm requires a sorting permu-
tation π over the inputs. On a D-dimensional hypercube, the simplex interpolation requires D + 1
weights, but constructing the sorting permutation requires O(D log(D)) comparisons which we
found dominates the overall runtime.

As with piecewise linear functions, the cost of even a single branch misprediction is high, so we
desire a branch-free algorithm. We use sorting networks [3], which construct sequences of max and
min operations in order to construct a branch-free sorting implementation for inputs of fixed size.
Because the size D of the LUT is fixed, each evaluation will require the same size-D sort.
A sorting permutation would typically be constructed by sorting ⟨key, index⟩ pairs, but such

paired min-max operations require a comparison followed by six conditional moves. We note that
sorting over basic datatypes is much more efficient: min-max on basic datatypes only requires a
min and max operation, requiring fewer than half the cycles. This is particularly important for
the small sorting problems that arise in simplex interpolation: D is unlikely to be bigger than 25,
because the number of parameters to define a D-dimensional LUT cell is 2D . Since small sorting
problems can be handled almost entirely in registers, optimal sorting code is effectively purely
computation. To leverage this more efficient sorting, we adopt the bit-packing technique described
in Fig. 4, encoding the index in the low-order bits. The lost precision on the key is ⌈log2(D)⌉ bits; a
lattice with 232 parameters would lose 5 bits of precision. By definition the interpolation weights
are eachwi ∈ [0, 1), so we can bound the absolute error on eachwi by ϵ ⌈log2(D)⌉, where ϵ is the
machine precision for the datatype. As a result, the interpolation output has relative error of at
most ϵ ⌈log2(D)⌉.

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2020.

Fast Linear Interpolation 9

Operation Compute Memory

Simplex
D log(D)︸ ︷︷ ︸

sort

+ D + 1︸︷︷︸
index calculation

+ 2D + 1︸ ︷︷ ︸
sparse product

D + 1

Multilinear 2D︸︷︷︸
interpolation weights

+ 2 × 2D︸ ︷︷ ︸
interpolation

2D

PWL Lookup CT (x) + 5 1
PWL Interpolation 3 3

Fig. 5. Approximate computation and memory requirements of core kernels. D is the dimension of the lattice
for simplex and multilinear interpolation. CT refers to the cost of the transform function used in section 4.1.

7 PEAK PERFORMANCE MODELING
We summarize the theoretical performance needs for these interpolation methods in Fig. 5. As
these kernels are far smaller than the typical granularity for roofline analyses, the values presented
here are rough estimates. For simplex, memory access is typically serially dependent with other
compute or memory access; array access locations are computed right before they are needed and
the array value is required immediately after. As a result, the cache latency is difficult to hide.

8 EXPERIMENTAL PEFORMANCE EVALUATION
To illustrate the overall value of these proposals, some of which synergize, we ran experiments on
four machine-learned multi-layer lattice models: one model trained on a public benchmark dataset,
and three proprietary models from Google. Each is detailed below.
For the following evaluations, we use the batched interface provided by the compiled library

using a batch size of 1. Higher performance for single evaluations could have been achieved using
a dedicated single-evaluation interface, but would have proven more expensive to maintain in the
long term.

We compare to a baseline that is a C++ interpreter implementation of the interpolation algorithms
following the descriptions in Gupta et al. [13], with the additional speed-up that our baseline uses a
fixed auxiliary LUT as described in Section 4.1 for each PWL but with no transformT , fixed B = 50
uniform buckets, α = k1, β = (kn − k1)/50.
We benchmarked this baseline C++ interpreter code at approximately 100× faster than vanilla

TensorFlow Lattice [29] for single-evaluations on a two-layer calibrated lattice model with 4 inputs
(the model was just 4 PWLs followed by a four-dimensional lattice interpolated with multilinear
interpolation). TensorFlow does get more efficient when evaluated on batches: for a batch size of
4,000 examples, the amortized runtime was only 13× slower than our C++ interpreter baseline.
Additionally, TensorFlow Lattice does not support simplex interpolation. As a result, we did not
perform direct comparisons against TensorFlow Lattice.

8.1 Simplex Interpolation Experiments
Fig. 6 shows runtime results for two models where the lattices are interpolated with simplex
interpolation. For these we show the runtime of the baseline interpreter, the interpreter with our
proposed simplex kernel that uses bit-packing, and a compiled implementation with all of our
proposals (faster PWLs and faster simplex), all for both double and float. The proposed bit-packing
for the simplex kernel does lose a small amount of precision. The worst observed deviation in model

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2020.

10 Nathan Zhang, Kevin Canini, Sean Silva, and Maya Gupta

Ol
d I
nt
erp
ret
er

Ne
w
In
ter
pr
ete
r

Co
mp
ile
d (
D)

Co
mp
ile
d (
F)

Co
mp
ile
d (
D)
+ J
oin
t

Co
mp
ile
d (
F)
+ J
oin
t

Co
mp
ile
d (
D)
+ J
oin
t +
Tu
nin
g

Co
mp
ile
d (
F)
+ J
oin
t +
Tu
nin
g

0

2

4

6

8

10

12

14

16

Ti
m
e
(u
s)

Runtime of Wine Model

Ol
d I
nt
erp
ret
er

Ne
w
In
ter
pr
ete
r

Co
mp
ile
d (
D)

Co
mp
ile
d (
F)

Co
mp
ile
d (
D)
+ J
oin
t

Co
mp
ile
d (
F)
+ J
oin
t

Co
mp
ile
d (
D)
+ J
oin
t +
Tu
nin
g

Co
mp
ile
d (
F)
+ J
oin
t +
Tu
nin
g

0
10
20
30
40
50
60
70
80
90
100
110

Ti
m
e
(u
s)

Runtime of Selector Model

Fig. 6. The red line denotes a theoretically optimal implementation, based on the measured instructions per
cycle from performance counters. “Joint" refers to the optimization in Section 4.2, and “Tuning" refers to the
optimization in Section 4.1. Upper:Wine Model. The optimized solution provides a 6.5× speedup over the
original interpreter on batch size 1, increasing to 9.1× on large batches (see Figure 8). Lower: Selector Model.
The optimized solution provides a 9.88× speedup over the original interpreter on batch size 1, decreasing to
5.95× on large batches (see Figure 8). We note that this is due to the reference interpreter amortizing away
significant amounts of overhead, while the compiled version’s improvements are smaller.

output when compared to the C++ implementation was 10−13 for double-precision evaluation and
10−4 for single-precision.

The left results in Fig. 6 are for the Kaggle Wine dataset [12]. There are 150 inputs, but all of
them are Boolean features except for one continuous feature, which passes through five 40-piece
PWLs. The second-layer is an ensemble of 50 lattices, each of which acts on 8 first-layer outputs. In

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2020.

Fast Linear Interpolation 11

Ol
d I
nt
erp
ret
er

Ne
w
In
ter
pr
ete
r

Co
mp
ile
d (
D)

Co
mp
ile
d (
F)

Co
mp
ile
d (
D)
+ J
oin
t

Co
mp
ile
d (
F)
+ J
oin
t

Co
mp
ile
d (
D)
+ J
oin
t +
Tu
nin
g

Co
mp
ile
d (
F)
+ J
oin
t +
Tu
nin
g

0
1
2
3
4
5
6
7
8
9
10

Ti
m
e
(u
s)

Runtime of Travel Time Model

Ol
d I
nt
erp
ret
er

Ne
w
In
ter
pr
ete
r

Co
mp
ile
d (
D)

Co
mp
ile
d (
F)

Co
mp
ile
d (
D)
+ J
oin
t

Co
mp
ile
d (
F)
+ J
oin
t

Co
mp
ile
d (
D)
+ J
oin
t +
Tu
nin
g

Co
mp
ile
d (
F)
+ J
oin
t +
Tu
nin
g

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

2.2

Ti
m
e
(u
s)

Runtime of Whole Path Model

Fig. 7. The red line denotes a theoretically optimal implementation, based on the measured instructions per
cycle from performance counters. “Joint" refers to the optimization in Section 4.2, and “Tuning" refers to
the optimization in Section 4.1. Upper: Travel Time Estimation Model. The optimized solution provides a
5.9× speedup over the original interpreter on batch size 1, increasing to 9.1× on large batches (see Figure 8).
Lower: Whole Path Model. The optimized solution provides a 3.7× speedup over the original interpreter on
batch size 1, increasing to 4.3× on large batches (see Figure 8).

total, the model has roughly 3,240 parameters. Runtime was compared on 84.6k IID examples, and
the proposals delivered a speed-up of 6.5×.
The right results in Fig. 6 are for a proprietary selector model that predicts whether a certain

database should be queried for results in response to a given query. The model is an ensemble
of 200 calibrated lattices, and each lattice acts on 8 out of the 30 possible features, so each of the
30 inputs is mapped through an average of 53.33 different PWLs in the model’s first layer. The

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2020.

12 Nathan Zhang, Kevin Canini, Sean Silva, and Maya Gupta

1,600 PWLs each have an average of 15 pieces each. The 200 lattices are each 28 multi-dimensional
look-up tables. In total, the model has roughly 36,800 parameters. Runtime was compared on 650k
IID examples, and the proposals delivered a speed-up of 9.88×.

8.2 Multilinear Interpolation Experiments
Fig. 7 shows runtime results for two models where the lattices are interpolated with multilinear
interpolation. For these, we show the baseline interpreter runtime, and the runtime for a compiled
implementation with all of our proposals (faster PWLs and latency hiding for multilinear) for both
double and float.
The left results in Fig. 7 are for a proprietary model that predicts how long it will take a car to

travel a stretch of road. The model is a 4-layer model on 39 inputs, where the first layer passes
the 39 inputs through 156 PWLs (each input goes through 4 different PWLs), and each PWL has
50 pieces. The second layer is a linear embedding that maps the 156 calibrated inputs down to
four dimensions, followed by another calibrator layer of 4 PWLs, then the fourth layer takes those
four inputs and fuses in another four inputs using a 28 multidimensional LUT and multilinear
interpolation. In total, the model has roughly 8,688 parameters. Runtime was compared on 94k IID
examples, and the proposals delivered a speed-up of 5.9×.
The right results in Fig. 7 are for a proprietary model that fuses travel time estimates for

different parts of a route into a travel time estimate for the whole route. This model is a 2-layer
calibrated lattice model on 8 inputs, where the 8 PWLs each have 100–168 pieces, followed by
a 28 multidimensional LUT with multilinear interpolation. In total, the model has roughly 1,264
parameters. Runtime was compared on 4 million IID examples, and the proposals delivered a
speed-up of 3.7×.

8.3 Batch Performance
Fig. 8 shows that our proposals provide similar performance improvements when applied to batches
of samples as well. The figure also shows that larger batch sizes do not substantially reduce runtime
in this setting. This data as well as other profiling information suggest that the amortizable overhead
is likely around 20 − 30%, based on the decrease in time-per-inference batch size increases. These
typically come from function call overhead and other bookkeeping. Also, the Instructions Per
Cycle for these models range from 1.8 − 2.4, but are consistent across batch sizes. This indicates
an opportunity to obtain increased performance across all batch sizes by performing fine-grained
interleaving of kernels in order to expose more parallelism.

9 CONCLUSIONS AND OPEN QUESTIONS
This paper presents a set of state-of-the-art techniques for fast implementations of linear interpola-
tion, using both operation-level optimizations and compiler transformations, together producing
3.7 − 10× speed-ups compared to an interpreter-based implementation on several benchmark
and real-world models. Our speed-ups reduced both fixed overhead costs as well as improved the
efficiency of per-example computations.
ML models composed of interpolated lookup tables are attractive for their interpretability and

model guarantees. Here we show such models can be evaluated on the order of microseconds and
even nanoseconds without custom hardware, and are thus also well-suited to latency-sensitive
tasks. We note here that this ultra-low latency setting poses a challenge not just for accelerator
design, but also for the integration of the accelerator with the main processing units.

We focused on CPUs, which are cheap and readily available. Faster solutions may be possible with
GPUs, but this is unlikely to be a net win due to the kernel launch latency of a GPU. Additionally,
GPUs and other similar coarse-grained accelerators are likely to struggle with achieving good

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2020.

Fast Linear Interpolation 13

1 2 4 1024
0

10

20

30

Batch Size

ti
m
e
(m

ic
ro
se
co
nd

s)

Wine Model

1. Old Interpreter 2. New Interpreter
3. Compiled (Double) 4. Compiled (Float)
5. Compiled (Double) w/ Joint 6. Compiled (Float) w/ Joint
7. Compiled (Double) w/ Joint + Tuning 8. Compiled (Float) w/ Joint + Tuning

1 2 4 1024
0

50

100

150

Batch Size

ti
m
e
(m

ic
ro
se
co
nd

s)

Selector Model

1 2 4 1024
0

5

10

Batch Size

ti
m
e
(m

ic
ro
se
co
nd

s)

Travel Time Estimation Model

1 2 4 1024
0

1,000

2,000

Batch Size

ti
m
e
(n
an

os
ec
on

ds
)

Whole Path Model

Fig. 8. Comparisons for average evaluation time per sample when evaluating batches of size 1,2,4, and 1024
samples. Bars in the plots are ordered as per the legend.

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2020.

14 Nathan Zhang, Kevin Canini, Sean Silva, and Maya Gupta

utilization on small operations, especially when considering the small-batch setting. We hypothesize
that significantly faster speeds can be achieved with FPGAs and other spatial accelerators in settings
where a high-throughput streaming solution is desired, due to far finer-grained reconfigurability
compared to GPUs while eliminating the overhead due to flexibility in CPUs.

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2020.

Fast Linear Interpolation 15

REFERENCES
[1] H. M. Aus and G. A. Korn. 1969. Table-Lookup/Interpolation Function Generation for Fixed-Point Digital Computations.

IEEE Trans. Computers 18 (1969), 745–749.
[2] F. Bach. 2013. Learning with submodular functions: A convex optimization perspective. Foundations and Trends in

Machine Learning 6, 2 (2013).
[3] K. E. Batcher. 1968. Sorting networks and their applications. In Proceedings of the April 30–May 2, 1968, spring joint

computer conference. ACM, 307–314.
[4] K. Canini, A. Cotter, M. M. Fard, M. R. Gupta, and J. Pfeifer. 2016. Fast and Flexible Monotonic Functions with Ensembles

of Lattices. Advances in Neural Information Processing Systems (NeurIPS) (2016).
[5] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan, L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A.

Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing Compiler for Deep Learning. In 13th USENIX
Symposium on Operating Systems Design and Implementation. 578–594.

[6] A. Cotter, M. R. Gupta, H. Jiang, E. Louidor, J. Muller, T. Narayan, S. Wang, and T. Zhu. 2019. Shape Constraints for Set
Functions. ICML (2019).

[7] W. Farr. 1860. On the Construction of Life Tables, illustrated by a New Life Table of the Healthy Districts of England.
Journal of the Institute of Actuaries 9 (1860), 121–141.

[8] A. Fog. 2018. https://www.agner.org/optimize/microarchitecture.pdf.
[9] E. K. Garcia, R. Arora, and M. R. Gupta. 2012. Optimized Regression for Efficient Function Evaluation. IEEE Trans. on

Image Processing 21, 9 (2012), 4128–4140.
[10] E. K. Garcia and M. R. Gupta. 2009. Lattice Regression. Advances in Neural Information Processing Systems (NeurIPS)

(2009).
[11] Google. 2019. MLIR: Multi-Level Intermediate Representation for Compiler Infrastructure. https://github.com/

tensorflow/mlir
[12] M. R. Gupta, D. Bahri, A. Cotter, and K. Canini. 2018. Diminishing Returns Shape Constraints for Interpretability and

Regularization. Advances in Neural Information Processing Systems (NeurIPS) (2018).
[13] M. R. Gupta, A. Cotter, J. Pfeifer, K. Voevodski, K. Canini, A. Mangylov, W. Moczydlowski, and A. Van Esbroeck. 2016.

Monotonic Calibrated Interpolated Look-Up Tables. Journal of Machine Learning Research 17, 109 (2016), 1–47.
[14] M. R. Gupta, E. Louidor, N. Morioka, T. Narayan, and S. Zhao. 2020. Multi-dimensional Shape Constraints. In review,

ICML (2020).
[15] K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep Residual Learning for Image Recognition. 770–778. https://doi.org/10.

1109/CVPR.2016.90
[16] A. Howard and T. Jebara. 2007. Learningmonotonic transformations for classification. InAdvances in Neural Information

Processing Systems.
[17] Zhihao Jia, Sina Lin, Charles R. Qi, and Alex Aiken. 2018. Exploring Hidden Dimensions in Parallelizing Convolutional

Neural Networks. In Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018. 2279–2288. http://proceedings.mlr.press/v80/jia18a.html

[18] P. Khuong. 2012. Binary Search *Eliminates* Branch Mis-predictions. https://www.pvk.ca/Blog/2012/07/03/binary-
search-star-eliminates-star-branch-mispredictions/

[19] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. 2018. The Case for Learned Index Structures. SIGMOD (2018).
[20] N. Manjikian. 1997. Combining loop fusion with prefetching on shared-memory multiprocessors. In Proceedings of the

1997 International Conference on Parallel Processing. 78–82.
[21] T. Mowry. 1991. Tolerating Latency Through Software Controlled Data Prefetching. PhD Thesis (1991).
[22] E. P. O’Grady and B.-K. Young. 1991. A Hardware-Oriented Algorithm for Floating-Point Function Generation. IEEE

Trans. Computers 40 (1991), 237–241.
[23] J. Perry. 1899. Practical Mathematics. Wiley and Sons.
[24] N. Rotem, J. Fix, S. Abdulrasool, S. Deng, R. Dzhabarov, J. Hegeman, R. Levenstein, B. Maher, N. Satish, J. Olesen, J.

Park, A. Rakhov, and M. Smelyanskiy. 2018. Glow: Graph Lowering Compiler Techniques for Neural Networks. CoRR
abs/1805.00907 (2018). arXiv:1805.00907 http://arxiv.org/abs/1805.00907

[25] R. Rovatti, M. Borgatti, and R. Guerrieri. 1998. A geometric approach to maximum-speed n-dimensional continuous
linear interpolation in rectangular grids. IEEE Trans. on Computers 47, 8 (1998), 894–899.

[26] E. Sang. 1875. On Last-Place Errors in Vlacq’s Table of Logarithms. Proceedings of the Royal Society of Edinburgh 8
(1875), 371–376.

[27] G. Sharma and R. Bala. 2002. Digital Color Imaging Handbook. CRC Press, New York.
[28] Arvind K. Sujeeth, HyoukJoong Lee, Kevin J. Brown, Hassan Chafi, Michael Wu, Anand R. Atreya, Kunle Olukotun,

Tiark Rompf, and Martin Odersky. 2011. OptiML: An Implicitly Parallel Domain-Specific Language for Machine
Learning. In ICML.

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2020.

https://www.agner.org/optimize/microarchitecture.pdf
https://github.com/tensorflow/mlir
https://github.com/tensorflow/mlir
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
http://proceedings.mlr.press/v80/jia18a.html
https://www.pvk.ca/Blog/2012/07/03/binary-search-star-eliminates-star-branch-mispredictions/
https://www.pvk.ca/Blog/2012/07/03/binary-search-star-eliminates-star-branch-mispredictions/
https://arxiv.org/abs/1805.00907
http://arxiv.org/abs/1805.00907

16 Nathan Zhang, Kevin Canini, Sean Silva, and Maya Gupta

[29] TensorFlow Blog. 2020. TensorFlow Lattice: Flexible, Controlled, and Interpretable ML. https://blog.tensorflow.org/
2020/02/tensorflow-lattice-flexible-controlled-and-interpretable-ML.html

[30] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito, W. S. Moses, S. Verdoolaege, A. Adams, and A. Cohen.
2018. Tensor Comprehensions: Framework-Agnostic High-Performance Machine Learning Abstractions. CoRR
abs/1802.04730 (2018). arXiv:1802.04730 http://arxiv.org/abs/1802.04730

[31] S. Wang and M. R. Gupta. 2020. Deontological Ethics by Monotonicity Shape Constraints. In AIStats.
[32] A. Weiser and S. E. Zarantonello. 1988. A Note on Piecewise Linear and Multilinear Table Interpolation in Many

Dimensions. Math. Comp. 50, 181 (Jan. 1988), 189–196.
[33] S. You, K. Canini, D. Ding, J. Pfeifer, and M. R. Gupta. 2017. Deep Lattice Networks. Advances in Neural Information

Processing Systems (NeurIPS) (2017).

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2020.

https://blog.tensorflow.org/2020/02/tensorflow-lattice-flexible-controlled-and-interpretable-ML.html
https://blog.tensorflow.org/2020/02/tensorflow-lattice-flexible-controlled-and-interpretable-ML.html
https://arxiv.org/abs/1802.04730
http://arxiv.org/abs/1802.04730

	Abstract
	1 Introduction
	2 Compilation Matters Due to Large Dispatch Overhead
	3 Background And Related Work
	3.1 Piecewise-Linear Functions (PWLs)
	3.2 Quantile Keypoints
	3.3 Linear Search For PWLs Is Slow, Even For Small PWLs
	3.4 Binary Search for PWLs
	3.5 A Map-to-Index Function for PWLs
	3.6 Multilinear Interpolation
	3.7 Simplex Interpolation

	4 How To Make PWLs Run Faster
	4.1 Keypoint Dependent Optimization
	4.2 Efficient Handling of Shared Index PWLs

	5 Latency Hiding For Faster Multilinear Interpolation
	6 Sorting Networks for Faster Simplex Interpolation
	7 Peak Performance Modeling
	8 Experimental Peformance Evaluation
	8.1 Simplex Interpolation Experiments
	8.2 Multilinear Interpolation Experiments
	8.3 Batch Performance

	9 Conclusions and Open Questions
	References

