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Abstract — We present a robust probabilistic method
to classify targets based on their tracks. Asis customary
in supervised learning problems, it is assumed that ez-
ample tracks from various classes are available to train
a classifier. We present an optimal but computationally
intensive sequential solution, and show that a computa-
tionally feasible naive Bayes approximation works better
than ignoring sequential information. We show how to
take into account the uncertainty of the track, as quan-
tified by the error covariance matriz from a Kalman
tracker, using the recently proposed expected maximum
likelihood rule coupled with a robust local Bayesian dis-
criminant analysis classifier. In addition, we propose
an expected maximum a posterior rule to take test sam-
ple uncertainty into account for classifiers that model
the posterior, and use it to define a robust kernel clas-
sifier. Simulations with a Kalman tracker show signifi-
cantly improved performance by taking into account the
tracked state covariance.
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1 Introduction

Tracking provides a set of sequential estimates of the
state of a dynamic object, usually position and veloc-
ity. We study the problem of classifying a test track
given example tracks from objects of different classes.
Classification of dynamic objects arises in a number
of applications and with a variety of sensor modali-
ties, such as identifying friends from foes on the battle-
field using sonar or radar measurements [1], separating
teammates on the sports field with video tracking [2],
or distinguishing between humans and dogs using laser
scans [3]. For some applications, classification can be
performed independently from tracking by using dif-
ferent data such as sonar signal signatures or imagery
data. In this paper, we focus on discriminating objects
using only the tracked states. The tracking information
may be the only data available, or classification esti-

mates from tracking data can be fused with estimates
based on complementary information.

We classify a dynamic object (also referred to as tar-
get) based upon its state estimates and covariances, as
produced by a standard Kalman tracker. We consider
two approaches: either classifying based only on the
current state, or classifying optimally based on the his-
tory of states. Unfortunately, optimal sequential classi-
fication is computationally impractical, and we propose
a naive Bayes approximation that is simple to use.

A key contribution of this paper is showing that we
can greatly improve the classifier performance by taking
into account the uncertainty in the Kalman estimate.
We do so by applying the recently proposed expected
maximum likelihood decision rule applied to a genera-
tive classifier [4]. In addition, we introduce an expected
maximum a posterior decision rule and use it to create
a robust kernel smoothing classifier. In this work we as-
sume that the training tracks are legitimate examples of
their class, that is, we do not model the training data
as noisy. Simulations show that taking into account
the uncertainty in the track estimates can significantly
improve classification results.

2 Related Work

Given a sequence of training track states for each
class, and a sequence of test track states, one can apply
any standard classifier to the feature vector formed by
the sequential tracks. Alternatively, a hidden Markov
model can be used with class-conditional probabilistic
transitions to model the state dynamics.

Here, we focus on incorporating the known uncer-
tainty in the test sample given by the tracker’s mea-
surement noise covariance. Related work in dealing
with measurement uncertainty when classifying tracks
is the work of Luber et al. [3]. They focus on classifying
tracks of bearing and range measurements from laser
scan data, but their approach is fairly general. They
convert each test track into a likelihood over a discrete
grid, using a Gaussian distribution to represent the sen-



sor noise. Then a variant of k-means is used to clus-
ter the training track likelihood grids to form exemplar
likelihood grids for each class. Transition probabilities
between the class exemplars are learned to model the
dynamics over time. They classify a test track based on
its maximum a posterior probability, using a smoothing
kernel probability estimator, and taking into account
the state dynamics as modeled by the transition prob-
abilities between the exemplars.

Other models with different assumed class-
conditional information have been shown to be
useful for classifying tracks. For example, Coraluppi
and Carthel use the track length to differentiate targets
from clutter [5]. Many researchers have worked on
classifying tracks assuming one has a priori different
kinematic models for each class, and then classifying
based on the likelihood of the estimated state dynamics
under the different class-conditional kinematic models.
For example, Leung and Wu model the maximum
acceleration as different for passenger planes and
fighter jets [6]. A general approach is to model the
state transition matrices as class-conditional, such that
the state s at time k depends on the past state and on
the class g through class-conditional state-transition
matrices Fy, G4 and possibly class-conditional noise
Wk,g:

Sk = ngk,1 + Ggwk,g. (1)

Optimal Bayesian joint tracking and classification for
that framework have been worked out by others [7-9].
That work differs from this research in that they assume
that distinct class-specific state transition models are
given. We take a more empirical approach, in which a
generic state transition model is used for every class,
and differences between the models are attributed to
modeling noise.

3 Background

To classify a target, we adopt the supervised learn-
ing paradigm, in which it is assumed that a set X =
{(s5,9:)}M, of labeled feature vectors is available to
train a classifier. We take s; € R? to be a valid state
of a target belonging to class g; € G. Having trained a
classifier from the training data, we may then classify
a target based on its true state s.

In this section, we review recent work on robust clas-
sification, from which we build classifiers for Kalman
tracks. First, in Sec. 3.1, we review the expected ML
rule for classifying noisy test samples. Then, in Sec.
3.2, we review the robust Bayesian quadratic discrimi-
nant analysis classifier.

3.1 Expected ML rule for Noisy Fea-
tures
One traditional statistical approach to classify s from

X is the maximum likelihood (ML) classification rule.
First, we model s as a realization of random state S

with likelihood p(s|g) inferred from the training set X.
Then, if given the true state s of a target, the ML
rule is to classify the target as the class that solves
arg max, p(s|g).

However, it is most often the case that the true state
s of the target is not observed directly. Rather, we
observe a noisy measurement z of s. Sequential filter-
ing and tracking methods (Kalman filter, particle filter,
etc.) estimate the expected state and error covariance
of the (unknown) true state of a target using noisy and
possibly nonlinear measurements z at discrete time in-
tervals.

Anderson and Gupta recently proposed the expected
ML rule to robustly classify noisy observations [4], and
in this paper we apply the expected ML rule for classi-
fying target tracks via the Kalman filter. The authors
showed in experiments that the expected ML rule can
tolerate moderate amounts of measurement noise, and
that it far outperforms the naive approach of simply
treating the estimate § as the true feature vector. Given
a noisy measurement z of S, the expected ML rule pre-
scribes classifying z as class

§=ar%$ax Es: [p(Slg)]p(g),  (2)

where B, [p(S]g)] = / p(s|2)p(slg) ds,  (3)

where the prior p(g) accounts for unbalanced classes,
also inferred from the datal.

In general, the integral in (3) must be solved numeri-
cally. However, when both p(s|z) and p(s|g) can be rep-
resented as Gaussian distributions, then the product of
Gaussians rule can be used to derive a closed form solu-
tion [4]: let p(s|]z) = N(s;a, A) and p(s|g) = N(s; b, B);
then,

N(s;a, A)N (s;b, B)

= N(a;b, A+ B)N(s;¢,C), (4)
where C' = (A7 + B_l)_1 and ¢ = C(A~'a + B71b).
Substituting (4) into (2), the term A (a;b, A + B) on
the right hand side of (4) can be moved outside the
integral, and the term N (s;c,C) integrates to unity.
This results in a closed form solution for (2):

g = argmax N (a;b, A+ B).
9

Modeling the distribution p(s|z) as Gaussian arises
naturally from the Kalman filter, where the mean a
and covariance A are taken to be the estimate and er-
ror covariance matrix. Following the supervised learn-
ing paradigm, the class-conditional distribution p(s|g)

I Anderson and Gupta call their rule “expected MAP rule” due
to the inclusion of the prior p(g); however, to avoid confusion, we
refer to it as the expected ML rule, since expectation is performed
only on the likelihood.



can be modeled as Gaussian with parameters derived
from the training data X. In section (3.2), we detail a
classification method that models p(s|g) as Gaussian,
and describe how to robustly estimate the parameters
of the class-conditional distribution.

3.2 BDA and Robust BDA Classifiers

Quadratic discriminant analysis (QDA) models the
samples from each class as being drawn independently
and identically from a Gaussian distribution [10]. This
simple model is usually not flexible enough to capture
the true distribution, and a standard practice is to use
a Gaussian mixture model (GMM) [10]. For example,
GMMs were found to work well for classifying radar
tracks as having been generated from planes vs. birds,
compared to a support vector machine, neural network,
and single-Gaussian-per-class models [11].

However, learning a GMM can be computationally
expensive and lead to overfitting, so in this work we
use a simpler alternative that was recently proposed
called local QDA [4] [12]. Local QDA fits one Gaus-
sian model per class, but only to the k nearest neigh-
bors of a test sample, where k is a parameter that
can be chosen or averaged over [12]. Local QDA can
also be viewed as a generalization of the local near-
est means classifier [13]. To avoid estimation prob-
lems when & < d, the local Bayesian QDA (local BDA)
classifier uses data-dependent Bayesian estimation for
each class-conditional Gaussian (see [14] for details on
BDA estimation). The resulting local BDA classifier
has been shown to produce state-of-the-art classifica-
tion results [12].

Anderson and Gupta extended the BDA classifier for
use with noisy test samples. The robust BDA (R-BDA)
classifier approximates the BDA class-conditional dis-
tribution p(slg) as a Gaussian, and employs the ex-
pected ML rule in (2) to form a classifier of the form g =
arg max, N(s; 3,4, %), where 3, is the class-conditional
sample mean and 33, is the covariance matrix specified
by the BDA class-conditional distribution (see [4] for
details).

4 Expected MAP Rule and Ro-
bust Kernel Classifier

Some classifiers model the posterior distribution
p(g|s) directly, rather than modeling p(s|g). For ex-
ample, kernel smoothers model the posterior as [10]:

Zg—g

where the kernel function K (s, s;) is often chosen to be
a radial function such as the Gaussian radial basis func-
tion K(s,s;) = N (s;85,77 1) o exp (—2[|s — s4]1?).
The kernel rule is used by maximizing the posterior
p(g|s) directly given a test sample s.

(s, i),

For such classifiers, analogous to the expected ML
rule in (2), we introduce the expected MAP rule for
noisy data, which solves

§ = arg max Es2[p(g]5)]- ()

For a kernel smoother, this becomes

M
g= argmaxZIgi:g /p(s|z)K(s, si)ds.  (6)
9 =1

When K(s,s;) is chosen to be the radial basis func-
tion with bandwidth parameter ~, and the distribution
p(s|z) = N (s;a, A), the noise-robust kernel (R-kernel)
becomes
Eg|. [K(S,5:)] =N (si; a, A+ ’y_lI) )

We note that an earlier kernel classifier for an ad-
ditive noise model § = s + € was proposed in [15] that
weights training points by the noise distribution p(3|s;),

= arg maxz K(8,s;).

We use Pawlak’s smoothing kernel to account for arbi-
trary uncertainty given by the distribution p(§|s;). We
note that if there is no uncertainty in the test point,
then the covariance matrix A = 0; therefore, the Gaus-
sian probability evaluates to zero at all points other
than the training point s;. In practice, this can pose
computational problems for even small covariance.

—gp |S

5 Kalman Filtering Single and
Sequential Approaches

In this section, we briefly describe the operation of
the Kalman filter as it relates to tracking dynamic tar-
gets. We then describe how the robust classification
methods from the previous sections can be used to
classify the noisy state estimate at the output of the
Kalman filter.

The linear Kalman filter provides a minimum mean
square error estimate of a target state vector when both
the dynamic and measurement models are linear with
zero mean independent Gaussian noise. In the discrete
time filter, the target state vector at time index k is
given as si, and consists of the target kinematic infor-
mation. The state dynamics and measurement models
are given as:

s = Fsp_1+ Dup—1 + Gui_1 (7)
2 = Hsp + vy (8)
where z;, and uy, are the measurement and (known) con-

trol input at step k. The matrices F' and G are used to
model the dynamics of the target, and the observation



matrix H encapsulates the measurement process. Un-
certainty is represented by wy and vy, which are zero
mean Gaussian random vectors with covariance matri-
ces @ and R, respectively.

Suppose that at step &k — 1 we have estimated the
mean S_; and error covariance P,_1 of sp_;. The
Kalman filter performs two steps to form the estimate
8 from the previous state estimate: the prediction step
and the update step. The prediction step predicts the
state vector at time k using the dynamic model and the
estimate at time k£ — 1:

§]; =FS._1+ Dup_1
Py =FP,_1F" + GQG™.

The update step utilizes the measurement zj to update
the predicted state estimate:

§k=§lz “I‘Kk[zk_Hg;;] (9)
P, =[I- KkH}P,;, (10)

where K}, is the Kalman gain matrix [16].

Equations (9) and (10) allow us to model p(sg|z*)
(where the superscript denotes all measurements up to
time k, that is 2% = [T ... 2]]T) as conditionally Gaus-
sian with mean E[s|2*] = ), and cov|sy|2¥] = P,. We
can, therefore, classify the target at state k& using the
expected ML rule given in (2), the R-kernel rule (6), or
the Pawlak smoothing kernel (4).

The above methodology allows us to classify a single
state vector; however, it would be useful to form a se-
quential classification rule that can update the class la-
bel as new measurements from the target arrive. Let s*
denote a vector containing the target state information
at steps 1 through k. The optimal MAP classification
rule is then:

s*|9)p(9)- (11)

argmax p(
9€g
As per (7), the state dynamics are a Markov process
k
such that p(s*|g) = p(s1|9) [Ti—s P(silg, si—1). There-
fore, at step k (11) becomes:
k
g = argmax p(g)p(s1lg) [ p(silg, si-1)
9€9 i=2

= arg Irglaxp(g)p(Sk\% sk—1)p(s"g),
ge

(12)

which can be computed recursively.
Converting (12) into the corresponding expected ML
rule produces:

gr = argmax Egek|,x
g€eg

k
lp(g)p(sl 9) [T p(silg, si-1)

i=2
(13)
k

= arg max p(g)/p(sk\zk)p(&lg)Hp(sz*lgasifl)dsk

9€9 i=2

We can again take advantage of the Markov prop-
erty in the dynamic model to rewrite p(s¥|z¥) =

p(51|zk)H?ZQp(sj\zk,sj_l) which we approximate as
p(s1]2h) H?:Q p(s;]27,s;-1) in order to arrive at a se-
quential solution. Substituting this form of the condi-
tional probability into (13) gives:

k

gk:argmax(m ) [ il DIECEEEE

Y _

k
) Hp(si|g,si_1)dsk> . (14)

To simplify (14) to a form that can be updated se-
quentially, we apply the so-called Naive Bayes rule [10]
and approximate the state s; as being independent of
any other state when conditioned on g or z*. Then, we
can rewrite (14) as

k k
gr = arg max p(g)/Hp(Sj\zj)H
9€9 j=1 i=1

— arg max (p<g> [ plsrlzp(selg) s

geg

: /p(sk‘llzk‘l)p(sk”Iy) dSH) :

Equation (15) allows an update of the class label esti-
mate when each new measurement arrives. The update
consists of solving the integral [ p(sk|z¥)p(sk|g) dsk at
the kth observation using the product of Gaussians rule
in (4), then multiplying the result with the running-
tally integral [p(s*~1|zF=1)p(sh~1g)ds*~1 that was
updated at step k — 1.

p(silg)ds

(15)

6 Simulation Setup

We evaluate the performance of the proposed classi-
fication methods by simulating a tracking system that
tracks targets from two possible classes. Targets from
both class 1 and class 2 are generated using the dy-
namics in equation (7). We simulate a target mov-
ing in a 2-dimensional plane, therefore, the state vector
sk=[r @ y ¢|T. The F, D, G matrices are identi-
cal for each class with:

1 T 0 0 T2/2 0

01 00 T 0
F=lg o 1 7| P=C=| o 12| (0

0 0 0 1 0 T

where T' = 0.25 is the sampling interval.

The two classes are distinguished by the input vector
uj, the measurement noise covariance () and the initial
state sg. The values of these parameters for each class
are given in table 1. Note that the initial « position and
velocity are the same for each class, whereas the ini-
tial y position and velocity are distributed as Gaussian



Class 1 Class 2
ur | [0 0.1]F 0 —01]7
0.1 0 0.5 0
Q 0 0.1 0 0.5
xo | —50 —50
o | 10 10
yo | N(52,3) N (48,3)
g0 | N (=04,0.3) | N(0.4,0.3)

Table 1: Parameters for Class 1 and 2

Y Coordinate

35 I )
-50 0 50
X Coordinate

Figure 1: Sample paths for class 1 and 2 tracks. The
targets move from the left side of the region to the right
side.

random variables that differ between classes by their
means. Figure 1 plots ten sample paths for each of the
classes. Note that, although the underlying dynamics
of each target is Gaussian, p(si|z¥) is not Gaussian,
but is rather a Gaussian mixture. The Kalman tracker
makes a Gaussian assumption for this probability which
we use for classification.

We track the classes using a Kalman filter with the
F and G matrices given in (16). However, our dynamic
model for filtering does not include any control input.
The filter is initialized with 3 = [-50 10 50 0]
and Py = diag[2 2 4 1.5]. Additionally, the mea-
surement model and measurement noise covariance ma-
trix are given as:

2
7— {1 0 0 0} R— |:O'm Ug}

000 1 0 o2 (17)

Figure 2 shows the error signal between the true and
estimated state, as well as the three sigma bounds of
the error variance for each signal. We can see that the
measurement error variance decreases rapidly over the
first few iterations, and then converges to a stable value.

We compare five different classifiers: BDA, R-BDA,
a standard Gaussian kernel classifier, the R-kernel, and
the Pawlak smoothing kernel. BDA and the standard
kernel are 'non-robust,” in that they consider the esti-
mated state §; as the true state and ignore the error
covariance.

We generate 100 clean tracks for training. The
tracks are generated such the classes are equally likely:
p(g1) = p(g2) = 0.5. The feature vectors in the training
data are the clean states segregated by the state index
k. In other words, p(sg|g) is trained only using the la-
beled training set of 100 k index states, or in the case
of the kernel classifier, the test state k is only compared
to training states also with index k.

The parameters for the classifiers are learned by 5-
fold cross validation. In each cross validation run, the
cross validation test set is made to look like the actual
test set by measuring the cross validation test states
according to the measurement equation with appropri-
ate H and R matrices. These noisy measurements are
propagated through the same Kalman filter that is used
to generate the real test data so that each test set used
in cross validation has the same statistics as the actual
test data.

We perform simulations with five different values of
measurement noise covariance o2, using the same test
and training sets. Note that in the case of 02, = 0,
both the test and training sets have no uncertainty.
The Monte Carlo simulation is performed twice, with
new test and training sets generated on each run.

7 Results and Discussion

Figure 3 shows the error rate versus the measure-
ment noise variance for both the single state classifi-
cation method and the sequential method using the
naive Bayes assumption. The results at each value
of measurement noise variance are averaged over all
sampling indices. We can see that the noise robust
methods, R-BDA and R-kernel, significantly outper-
form their non-robust counterparts in both sets of sim-
ulations. By comparing figures 3 (a) and (b), we can see
that sequential R-BDA and R-Kernel outperform their
non-sequential counterparts at all noise levels. On the
other hand, the non-robust methods perform worse in
the sequential classifiers than in the non-sequential at
all measurement noise levels other than o2, = 0 and
o2, =0.1.

Figure 4 plots the error rate vs. the sampling index
for a fixed measurement noise covariance of 1 where (a)
and (b) show the single state method and sequential
method, respectively. This figure gives a clear inter-
pretation of why the robust classifiers perform better
in sequential classification than single state at all levels
of noise covariance; whereas the non-robust classifiers
perform worse with sequential classification as the noise
covariance increases. We can see in figure 4 (a) that for
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Figure 2: Error signal and 3 sigma bounds on the error variance for the four components of the state vector as
a function of sampling index k. The measurement noise variance is o, = 0.1.

single state estimation the non-robust classifiers per-
form poorly when the state indices are small (k < 10).
Referring to figure (2) shows that this is when the un-
certainty in the true tracks is greatest. However, the
robust classifiers are able to make much better single
state estimates even under this uncertainty, and thus
have the worst performance when 20 < k < 30. Re-
ferring to 1), this is when the tracks exhibit the most
mixing. The effect of these observations on the sequen-
tial classification error rate in figure (4) (b) is that the
robust estimation methods are able to leverage the good
information that they learn at small £ to aid in classi-
fication at larger k. However, the non-robust methods
are hampered by poor decisions early that carry over
into larger k.

We also note that in figure 3, the Pawlak smooth-
ing kernel performs worse than the non-robust kernel
method at measurement noise variance o2, = 0.1. This
is due to the computational difficulties that we ad-
dressed in section 4. In the case of no test point un-
certainty, we edited the Pawlak smoothing kernel to be
equivalent to the standard Gaussian kernel.

8 Conclusions

We have presented a sequential method for classifying
tracks under uncertainty. We have shown that the noise
robust methods significantly outperform the non-robust
methods, particularly in the case of the naive Bayes
sequential classifier.
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