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Abstract

Similarity measures in many real applications
generate indefinite similarity matrices. In
this paper, we consider the problem of clas-
sification based on such indefinite similari-
ties. These indefinite kernels can be prob-
lematic for standard kernel-based algorithms
as the optimization problems become non-
convex and the underlying theory is inval-
idated. In order to adapt kernel methods
for similarity-based learning, we introduce a
method that aims to simultaneously find a
reproducing kernel Hilbert space based on
the given similarities and train a classifier
with good generalization in that space. The
method is formulated as a convex optimiza-
tion problem. We propose a simplified ver-
sion that can reduce overfitting and whose as-
sociated convex conic program can be solved
efficiently. We compare the proposed sim-
plified version with six other methods on a
collection of real data sets.

1. Introduction

Similarity-based learning assumes that only similari-
ties between samples are given, and in the supervised
case, also labels of the training samples (Chen et al.,
2009). Similarity-based learning arises in computer
vision, bioinformatics, information retrieval, natural
language processing, and a broad range of other fields.

If the matrix formed by the similarities between sam-
ples is positive semidefinite (PSD), then the similarity
matrix can be used as a kernel matrix in standard
kernel methods. However, for many applications the
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underlying similarity function does not produce PSD
similarity matrices. One can approximate the simi-
larity matrix by a PSD matrix, but different approxi-
mations can yield very different results. For example,
as shown in Table 1, support vector machine (SVM)
classification on the Protein data set has 32% error if
the indefinite similarity matrix is made PSD by adding
a scaled identity matrix to it (shift), but 9% error if
the indefinite similarity matrix is made PSD by set-
ting all the negative eigenvalues to zero (clip). In this
paper, we investigate learning a kernel given indefinite
similarities that produces a classifier with good gener-
alization.

For the similarity-based classification problem, we take
as given an n×n indefinite matrix S of pairwise simi-
larities between n training samples, and an n× 1 vec-
tor y of their class labels. For a test sample x, we
take as given an n × 1 vector s of pairwise similari-
ties between x and each of the n training samples, and
also its self-similarity. We assume that the underlying
similarity function ψ(x, x′) is only available in terms
of S, s and ψ(x, x); the case where one can directly
compute ψ(x, x′) for any sample pair can be viewed as
a special case.

An intuitive approach to similarity-based classifica-
tion is the k-nearest neighbor method, where nearest-
neighbors are determined by the given similarities.
Also, a number of researchers have developed meth-
ods that use the similarities as features: the ith row
of S is taken to be the feature vector for the ith
training sample; s is the feature vector for the test
sample. SVMs and other empirical risk minimiza-
tion classifiers have been applied to these similarity
features (Graepel et al., 1998; Liao & Noble, 2003;
Hochreiter & Obermayer, 2006). Recently, genera-
tive classifiers have been developed for similarity-based
learning that model the class-conditional distributions
of similarities (Cazzanti & Gupta, 2007). A more com-
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plete review of similarity-based classification can be
found in Chen et al. (2009).

In this paper we focus on treating the similarity func-
tion as a kernel. We first review the prior art in
adapting kernel methods for similarity-based classifi-
cation in Section 2. Then, in Section 3 we consider
methods to find an effective reproducing kernel Hilbert
space (RKHS) for learning given indefinite similarities.
Our experiments in Section 4 compare the proposed
method with other similarity-based classifiers on six
real data sets. We conclude in Section 5 with a dis-
cussion of extensions of this work.

2. Background and Related Work

To use kernel methods with indefinite similarities, one
could simply replace the kernel matrix K with the sim-
ilarity matrix S, and ignore the fact that S is indefi-
nite. Since the indefinite matrix S does not correspond
to an RKHS, one loses the underlying theoretical sup-
port for such kernel methods. In practice, the asso-
ciated optimization problems may become nonconvex,
for example, the SVM dual problem:

maximize
α

1Tα− 1
2
αT diag(y)K diag(y)α

subject to yTα = 0, 0 ≤ α ≤ C1,
(1)

with variable α ∈ Rn, is no longer convex if one re-
places K by S (here 1 is the column vector with all
entries one, and ≤ denotes component-wise inequal-
ity for vectors). Nevertheless, to solve the problem
in (1), Lin & Lin (2003) show that with a simple mod-
ification, the sequential minimal optimization (SMO)
algorithm will still converge, but to a stationary point,
not necessarily a global maximum.1 Ong et al. (2004)
interpret this as finding a stationary point in a repro-
ducing kernel Krĕın space (RKKS) induced by S, and
Haasdonk (2005) shows that this is equivalent to min-
imizing the distance between reduced convex hulls in
a pseudo-Euclidean space induced by S.

To gain the full theoretical and practical benefits of
kernel methods, in this paper we focus on approaches
to finding a surrogate kernel matrix K derived from
S. Previous work in this vein has considered different
spectrum modifications to make S PSD, such as spec-
trum clip, flip and shift (Wu et al., 2005). Assume
S is symmetric and thus has eigenvalue decomposi-
tion S = UΛUT , where U is an orthogonal matrix
and Λ is a diagonal matrix of real eigenvalues, that is,
Λ = diag(λ1, . . . , λn). Spectrum clip makes S PSD by

1Since (1) is to maximize a continuous function on a
compact set, the maximum can always be attained.

clipping all the negative eigenvalues to zero:

Sclip = U diag (max(λ1, 0), . . . ,max(λn, 0))UT .

A mathematical justification for spectrum clip is that
Sclip is the nearest PSD matrix to S in terms of the
Frobenius norm (Higham, 1988):

Sclip = arg min
K�0
‖K − S‖F ,

where � denotes the generalized inequality with re-
spect to the PSD cone for square matrices.2 Spectrum
flip makes S PSD by flipping the sign of the negative
eigenvalues:

Sflip = U diag (|λ1|, . . . , |λn|)UT ,

which is equivalent to replacing the original eigenval-
ues of S with its singular values. Spectrum shift makes
S PSD by shifting the whole spectrum by the mini-
mum required amount:

Sshift = U (Λ + |min(λmin(S), 0)| I)UT ,

where λmin(S) is the minimum eigenvalue of S, and I
is the identity matrix. Spectrum shift only enhances
the self-similarities and does not change the similarity
between any two different samples. Roth et al. (2003)
show that Sshift preserves the group structure when
used for clustering nonmetric proximity data.

Some research considers indefinite similarities to be
noisy observations of an unknown PSD kernel. A re-
cent paper took this perspective and formulated an
extension of the SVM for indefinite kernels (Luss &
d’Aspremont, 2007):

maximize
α

min
K�0

(
g(α,K) + ρ‖K − S‖2F

)
subject to yTα = 0, 0 ≤ α ≤ C1,

(2)

where g(α,K) , 1Tα − 1
2α

T diag(y)K diag(y)α; the
variables are α ∈ Rn and K ∈ Rn×n, and C > 0
and ρ > 0 are two hyperparameters. The problem
in (2) is a soft-penalty variant of maximizing the min-
imum of the objective function of (1) among the PSD
matrices close to S. Luss & d’Aspremont (2007) in-
terpret (2) as “a worst-case robust classification prob-
lem with bounded uncertainty on the kernel matrix.”
However, in this paper we offer a better interpretation
of (2) by showing that (2) is in fact equivalent to the
method we consider in Section 3.1. A fast algorithm
to solve (2) has been proposed by Chen & Ye (2008).

2For K ∈ Rn×n, K � 0 means that K is PSD and thus
implies that K is symmetric.



Learning Kernels from Indefinite Similarities

Lastly, we note that Lu et al. (2005) have proposed a
multidimensional scaling technique that fits a kernel
matrix to the given nonmetric dissimilarities, and the
resulting embedding is used for clustering and visual-
ization.

3. Methods for Learning Kernels

Given a similarity function ψ(x, x′), we would like to
seek a surrogate kernel function k(x, x′) that induces
an RKHS in which a classifier with good generaliza-
tion can be learned. However, assuming one only has
access to the values of the similarity function for all
pairs of the training samples, we pose the problem as:
Given an indefinite similarity matrix S, can we find a
surrogate PSD matrix K corresponding to an RKHS
in which a classifier with good generalization can be
learned?

First, in Section 3.1 we consider the surrogate PSD
matrix K to be a free parameter in the SVM primal.
Then, in Section 3.3 we restrict the surrogate K to be
a spectrum modification of S in order to reduce overfit-
ting and yield a more tractable optimization problem.

3.1. Learning the Kernel Matrix

For the development of the investigated methods, we
favor the primal form of the SVM due to its clear math-
ematical interpretation in terms of empirical risk min-
imization with regularization:

minimize
c,b,ξ

1
n

1T ξ + ηcTKc

subject to diag(y)(Kc+ b1) ≥ 1− ξ, ξ ≥ 0,
(3)

with variables c ∈ Rn, b ∈ R and ξ ∈ Rn, and regular-
ization parameter η > 0.

We consider minimizing the empirical risk with reg-
ularization simultaneously over the kernel matrix K
and the original SVM variables. Specifically, we form:

minimize
c,b,ξ,K

1
n

1T ξ + ηcTKc+ γ‖K − S‖F

subject to diag(y)(Kc+ b1) ≥ 1− ξ,
ξ ≥ 0, K � 0,

(4)

with additional variable K ∈ Rn×n and additional reg-
ularization parameter γ > 0. The regularization term
γ‖K−S‖F focuses the search for K in the vicinity of S
in terms of the Frobenius norm. Recall that spectrum
clip yields the nearest PSD matrix to S in terms of the
Frobenius norm, thus when γ is set very large, (4) is
almost the same as training an SVM with Sclip.

Although (4) and (2) are formed from different per-
spectives, we can show that they are equivalent ex-

cept for a slight difference in the regularizer of K. Let
A = {α ∈ Rn |yTα = 0, 0 ≤ α ≤ C1}, and rewrite (2)
as

max
α∈A

min
K�0

g(α,K) + ρ‖K − S‖2F . (5)

Because A and the PSD cone are both convex, and A
is compact, and the objective function of (5) is con-
tinuous in α and K, concave in α and convex in K, by
Sion’s minimax theorem (Sion, 1958), we can switch
the max and min, that is, (5) is equivalent to

min
K�0

max
α∈A

g(α,K) + ρ‖K − S‖2F . (6)

Since (1) is the dual of (3) with zero duality gap, (6)
is equivalent to (4) except that they are slightly dif-
ferent in the regularizer of K. Hence a more accurate
interpretation of (2) is that it finds the best-case K
for classification rather than the worst-case, though
we will keep calling (2) the “robust” SVM.

It is not trivial to solve (4) as formulated. We show
that by using the following lemma, (4) can in fact
be expressed as a convex conic program, which can
be solved by a general-purpose convex conic optimizer
such as SeDuMi (Strum, 1999) and SDPT3 (Tütüncü
et al., 2003).

Lemma 1. Let K ∈ Rn×n, z ∈ Rn and u ∈ R. Then[
K z
zT u

]
� 0

if and only if K � 0, z is in the range (column space)
of K, and u − zTK†z ≥ 0, where K† is the Moore-
Penrose pseudoinverse of K.

This lemma follows directly from Horn & Zhang (2005,
p. 44, Theorem 1.20), which states a basic property of
the generalized Schur complement.

Let z = Kc, and notice that cTKc = zTK†z because
KK†K = K. By introducing slack variables u and v,
and applying Lemma 1, we can express (4) as

minimize
z,b,ξ,K,u,v

1
n

1T ξ + ηu+ γv

subject to diag(y)(z + b1) ≥ 1− ξ, ξ ≥ 0,[
K z
zT u

]
� 0, ‖K − S‖F ≤ v,

(7)

with variables z ∈ Rn, b ∈ R, ξ ∈ Rn, K ∈ Rn×n,
u ∈ R and v ∈ R. The problem in (7) is a convex
conic program since it has a linear objective, a set of
affine constraints, a linear matrix inequality (LMI) and
a second-order cone (SOC) constraint. Let z?, b? and
K? denote the optimal solution to (7); we can recover
the optimal c? by c? = (K?)† z?.
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3.2. Consistent Treatment of Training and
Test Samples

As stated before, we would like to find a surrogate
kernel function k(x, x′) for the similarity function
ψ(x, x′). However, only K?, the surrogate of S in the
PSD cone, is learned from training. Given a test sam-
ple x, estimating its label using its unmodified simi-
larities to the training samples s, that is,

ŷ = sgn((c?)T s+ b?),

ignores the fact that c? is trained on K? not on S.

This problem has been addressed by Wu et al. (2005)
for the case of spectrum modification. Given s and
the self-similarity of the test sample ψ(x, x), their ap-
proach is to recompute the same spectrum modifica-
tion on the augmented (n + 1) × (n + 1) similarity
matrix

S′ =
[
S s
sT ψ(x, x)

]
to form S̃′, and then let the modified test similarities
s̃ be the first n elements of the last column of S̃′. The
classifier trained on the modified training similarities
S̃ is then applied on s̃. To implement this approach,
they propose a fast algorithm to perform eigenvalue
decomposition of S′ by using the results of the eigen-
value decomposition of S.

Similarly, given s, ψ(x, x), S and K?, we propose to
find the appropriate s̃ by solving

minimize
k,r

∥∥∥∥[
K? k
kT r

]
−

[
S s
sT ψ(x, x)

]∥∥∥∥
F

subject to
[
K? k
kT r

]
� 0,

(8)

with variables k ∈ Rn and r ∈ R, in the hope that
the optimal solution k? is related to s in a way that is
similar to how K? is related to S. The test sample x
is then classified as

ŷ = sgn((c?)T k? + b?). (9)

By applying Lemma 1 with its condition that k be in
the range of K? expressed as (Boyd & Vandenberghe,
2004, Appendix A.5.5)(

I −K?(K?)†
)
k = 0,

we can reduce (8) to the following quadratically con-
strained quadratic program (QCQP):

minimize
k,r

2‖k − s‖22 + (r − ψ(x, x))2

subject to kT (K?)† k − r ≤ 0,(
I −K?(K?)†

)
k = 0,

which can be solved very efficiently.

3.3. Learning the Spectrum Modification

Although (7) is a convex optimization problem, the
scale of the problem, as measured by the number of
variables, grows quadratically with n. Moreover, the
flexibility of (4) may lead to a model that overfits the
data. Therefore, in this subsection, we propose a com-
putationally simpler method that restricts K to be a
spectrum modification of S, inspired by the fact that
both spectrum clip and flip can be represented by a
linear transformation on S, that is, S̃ = AS, where
A = U diag(a)UT (recall S = UΛUT ). For spectrum
clip,

aclip =
[
I{λ1≥0} . . . I{λn≥0}

]T
,

where I{·} is the indicator function, and for spectrum
flip,

aflip =
[
sgn(λ1) . . . sgn(λn)

]T
.

We propose to treat a as a variable such that the sur-
rogate kernel matrix Ka can be written as a linear
transformation of S, that is,

Ka = AS = U diag(a)UTS = U diag(a)ΛUT ,

and we formulate the problem as

minimize
c,b,ξ,a

1
n

1T ξ + ηcTKac+ γh(a)

subject to diag(y) (Kac+ b1) ≥ 1− ξ,
ξ ≥ 0, Λa ≥ 0,

(10)

where h(a) is a convex regularizer of a. As in Sec-
tion 3.1, let z = diag(a)ΛUT c. We note that the LMI
constraint on z can be simplified to

z2
i ≤ λiaiui, i = 1, . . . , n, (11)

where ui ≥ 0, i = 1, . . . , n, are slack variables. As (11)
can be expressed as SOC constraints (Boyd & Vanden-
berghe, 2004, p. 197), we can write (10) as

minimize
z,b,ξ,a,u,v

1
n

1T ξ + η1Tu+ γv

subject to diag(y)(Uz + b1) ≥ 1− ξ,
ξ ≥ 0, Λa ≥ 0, u ≥ 0, h(a) ≤ v,∥∥∥∥[

2zi
λiai − ui

]∥∥∥∥
2

≤ λiai + ui, i = 1, . . . , n,

(12)
with variables z ∈ Rn, b ∈ R, ξ ∈ Rn, a ∈ Rn, u ∈ Rn
and v ∈ R. Since here we only learn the spectrum
modification, the number of variables grows linearly
with n. If one chooses h(a) to make h(a) ≤ v an SOC
constraint, then (12) is a second-order cone program
(SOCP), and can be efficiently solved by algorithms
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such as the primal-dual interior-point method (Ander-
sen et al., 2003).

Let z?, b? and a? denote the optimal solution to (12).
Then, one can recover the optimal c? by

c? = U (diag(a?)Λ)† z?.

Solving (10) produces a linear transformation

A = U diag(a?)UT

on S. For a test sample x, we propose to apply the
same linear transformation A on s such that in (9)
we use k? = As. This method for modifying the test
similarities is low-cost and is also consistent in the
sense that if any training sample is taken as a test
sample, its similarities will be modified in the same
way during training and during test, in line with the
spirit of empirical risk minimization.

3.4. Regularizer Selection

In (4), we regularize the search for K toward S. Since
‖Ka − S‖F = ‖Λ(a − 1)‖2, ‖Λ(a − 1)‖2 could be a
reasonable option for h(a) in (10). As described be-
fore, when the regularization parameter γ is set large,
this is very close to training an SVM with Sclip, and
we expect that using h(a) = ‖a − aclip‖2 will achieve
similar results, which we have verified experimentally.

In fact, instead of searching in the vicinity of S, one
might want to regularize the search for Ka toward
other approximations of S. For example, one can use
other regularizers such as h(a) = ‖a− aflip‖2.

We suggest that in practice one should select the reg-
ularizer by cross-validation. Specifically, we propose
to select the regularizer from three choices based on
the cross-validation error of the SVMs using spectrum
clip and flip. If the SVM using spectrum clip has lower
cross-validation error, we use h(a) = ‖a−aclip‖2; if the
SVM using spectrum flip has lower cross-validation er-
ror, we use h(a) = ‖a−aflip‖2; if they have equal cross-
validation error, we use h(a) = ‖a−aclip‖2+‖a−aflip‖2.

4. Experiments

We compare the SVM proposed in Section 3.3 (for
learning the spectrum modification) using the regular-
izer selection procedure detailed in Section 3.4 with six
other algorithms: k-NN on the similarities, the SVMs
using the similarities as a kernel via spectrum clip, flip,
and shift, a linear SVM acting on the similarities as
features, and the robust SVM given in (2), which we
have shown is equivalent to the method we consider in
Section 3.1 that learns the full kernel matrix.

4.1. Data Sets

We ran the experiments on six real data sets3 repre-
senting a diverse set of indefinite similarities. Figure 1
shows the similarity matrices for all the samples for
each data set. The spectra of these similarity matrices
are shown in Figure 2.

The Amazon data set, created for this paper, consists
of 96 fiction and nonfiction books, by 23 different au-
thors, including some authors who write both fiction
and nonfiction. The problem is to correctly classify
each book as one of the 36 nonfiction books or one
of the 60 fiction books based on its similarities to the
training books. The similarity between book A and
book B is 1

2 (P (A,B) + P (B,A)), where P (A,B) is
the percentage of customers who bought book A after
viewing book B, as reported by amazon.com. The sim-
ilarity matrix is very sparse and has integer similarities
between 0 and 100.

The Aural Sonar data set was developed to investi-
gate the human ability to distinguish different types
of sonar signals by ear (Philips et al., 2006), and con-
sists of 100 samples. Each pairwise similarity is the
sum of the similarity scores of two human subjects for
that pair. The problem is to classify the 50 target-of-
interest signals from the 50 clutter signals.

The Protein data set has sequence-alignment similari-
ties for 226 proteins from 9 classes (Hoffmann & Buh-
mann, 1997). Here, we treat the problem as classifying
the two most confusable classes, each of which has 72
samples.

The Voting data set comes from the UCI Reposi-
tory (Asuncion & Newman, 2007). It is a binary classi-
fication problem with 435 samples, where each sample
is a categorical feature vector with 16 components and
three possibilities for each component. We compute
the value difference metric (Stanfill & Waltz, 1986)
from the categorical data, which is a dissimilarity that
uses the training class labels to weight different compo-
nents differently so as to achieve maximum probability
of class separation. We normalize the dissimilarities
such that d(x, x′) ∈ [0, 1] and convert them to simi-
larities by letting ψ(x, x′) = 1 − d(x, x′). Though the
magnitude of the negative eigenvalues of its similarity
matrix is very small as seen in Figure 2, those negative
eigenvalues do cause different spectrum modifications
to perform differently.

For the Yeast-5-7 and Yeast-5-12 data sets (Lanck-
riet et al., 2004), the problem is to predict the func-

3These data sets are available at
http://idl.ee.washington.edu/similaritylearning/.
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tions of yeast proteins. The original Yeast data set
contains 3588 samples and each sample is a yeast pro-
tein sequence. There are 13 classes and some samples
belong to more than one class due to their multiple
roles. To simplify the problem, we choose a subset
of 200 samples, called Yeast-5-7, by selecting the first
100 samples that exclusively belong to class 5 and the
first 100 samples that exclusively belong to class 7.
We select another subset called Yeast-5-12 by repeat-
ing the same procedure on class 5 and class 12. The
Smith-Waterman E-value is used here to measure the
similarity between two protein sequences.

4.2. Experimental Setup

We normalized the entries of all the similarity matrices
to the range of [0, 1]. For each data set, we randomly
partitioned the data 20 times into 20% test and 80%
training. For each of the 20 partitions, we selected
parameters by a 10-fold cross-validation on the train-
ing set. The regularization parameters η and γ for the
proposed method, the hyperparameter C for the tradi-
tional C-SVM, the regularization parameter ρ for the
robust SVM, and the neighborhood size k for k-NN
were cross-validated from the following sets:

η ∈ {10−4, 10−3, 10−2, 10−1, 1},
γ, C, ρ ∈ {10−3, 10−2, 10−1, 1, 10, 102, 103},

k ∈ {1, 2, 3, . . . , 16, 32}.

All the convex optimization problems for the proposed
SVMs were solved by the semidefinite-quadratic-linear
program solver SDPT3 (Tütüncü et al., 2003).

4.3. Results

The test errors averaged over the 20 randomized
test/training partitions along with the standard devi-
ations (in parentheses) are shown in Table 1. For each
data set, the bold results denote the classifier with the
lowest average error and those not statistically signifi-
cantly worse according to a one-sided Wilcoxon signed-
rank test at a significance level of 5%. One can see that
the proposed SVM with spectrum modification learn-
ing is among the top performers on five out of the six
data sets. The performance of the robust SVM, which
learns the full kernel matrix, is very close to the pro-
posed SVM except on the Amazon and Protein data
sets. The robust SVM preforms poorly on the Protein
data set, but on the Amazon data set, it is obviously
a winner. We conjecture this is because the rank-one
update given by (4) in Luss & d’Aspremont (2007)
makes the kernel matrix of the Amazon data set less
sparse and helps infer some hidden relationships be-
tween samples. The results indicate that on some data

sets, the proposed SVM with spectrum modification
learning can achieve statistically significant improve-
ment over the SVMs with simple spectrum modifica-
tion such as clip, flip and shift.

Our experiments also verify the necessity of treating
training and test similarities consistently.4 For exam-
ple, on the Protein data set, if unmodified s is used, the
errors of the proposed SVM, the SVM with spectrum
flip and the robust SVM would increase from 2.93%
to 48.10%, 4.14% to 41.38%, and 18.28% to 38.62%,
respectively.

5. Discussion and Conclusions

For learning from indefinite similarities, we framed the
problem as finding a surrogate RKHS, and investi-
gated two methods to simultaneously learn the kernel
matrix and minimize the empirical risk with regular-
ization. Experimental evidence suggests that learning
a spectrum modification provides an effective trade-
off between increased model flexibility and overfitting.
We consider it worthwhile to investigate other forms
of regularizers for learning the kernel matrix from in-
definite similarities.

We showed that these kernel learning ideas can be
formulated as convex optimization problems. In fact,
there exist general algorithms to solve (12) efficiently.

For supervised learning, the test similarities may have
to be modified in a second step as shown in Section 3.2,
but these kernel-learning methods would not need this
second step if applied to transductive or local SVMs
because the new regularization term can be used to
solve for an augmented kernel matrix that includes
the test sample(s). The focus here was on SVMs, but
we hypothesize that this research might be useful for
other kernel methods.
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Figure 2. Eigenvalue spectra of the similarity matrices shown in Figure 1.
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Table 1. Mean and standard deviation (in parentheses) of the test errors (in percentage) across the 20 test/training
partitions. For each data set, the lowest mean error and those not statistically significantly worse are boldfaced. The
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