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Abstract—A key assumption underlying traditional supervised
learning algorithms is that labeled examples used to train a
classifier are drawn i.i.d. from the same distribution as test
samples. This assumption is violated when classifying a test
sample whose statistics differ from the training samples because
the test signal is the output of a noisy linear time-invariant
system, e.g., from channel propagation or filtering. We assume
that the channel impulse response is unknown, but can be
modeled as a random channel with finite first and second-order
statistics that can be estimated from sample impulse responses.
We present two kernels, the expected and projected RBF kernels,
that account for the stochastic channel. Compared to the strategy
of virtual examples, an SVM trained with the proposed kernels
requires dramatically less training time, and may perform better
in practice. We also extend the joint quadratic discriminant anal-
ysis (joint QDA) classifier, which also accounts for a stochastic
channel, to a local version that reduces model bias. Results show
the proposed methods achieve state-of-the-art performance and
significantly faster training times.

I. INTRODUCTION

THERE are many applications in which the operating en-
vironment of a classifier differs from the environment in

which training samples are acquired. For example, the acoustic
environment in which automatic speech recognition systems
operate may differ drastically from training conditions, and
methods must be employed to ensure robustness to the test
environment [1], [2]. In underwater acoustics, training features
may be acquired in deep ocean water where multipath is
negligible, but the classifier may be deployed on test signals
that are corrupted by propagating through a shallow-water
multipath environment [3], [4]. Face recognition methods may
be trained on a database of high-resolution training images,
but used on test images from blurred or low-quality video
stills [5]. These examples violate a fundamental assumption
in traditional machine learning, that a test sample x and its
true label y are drawn independently and identically (i.i.d.)
from the same joint distribution pXY as the training pairs
{(xi, yi)}Ni=1. A mismatch between the test distribution and
training distributions is known as dataset shift.

The above scenarios can be modeled as an unknown linear
time-invariant channel and additive noise inducing a different
distribution at test time than at training time. Training samples
{xi}Ni=1 are extracted from sampled time signals {xi[n]}Ni=1,
but a test sample z is extracted from the signal

z[n] = h[n] ∗ x[n] + w[n], (1)
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where ∗ denotes convolution, h[n] is the unknown impulse
response of a corrupting channel, x[n] is the unknown signal
of interest, and w[n] is a realization of a zero-mean Gaussian
white noise process with known variance. Features x of x[n]
are unknown, however, it is assumed that x and its true label
y are drawn i.i.d. from the same distribution as the training
pairs {(xi, yi)}Ni=1. In addition, we assume that a finite set of
auxiliary channel samples {hi}Mi=1 are available, and that the
unknown features h of h[n] are drawn i.i.d. from the same joint
distribution as {hi}Mi=1. Clearly, though, the test feature vector
z is in general not drawn i.i.d. from the same distribution
as {(xi, yi)}Ni=1. Throughout, bold-face x denotes a vector,
regular-face x denotes a scalar; random vectors and scalars are
uppercase, X and X , respectively; see Table I for notation.

This paper proposes and compares algorithmic solutions to
this problem. We adapt the support vector machine (SVM)
to account for the stochastic noisy channel by constructing
channel-robust kernel functions. We propose two kernel defi-
nitions that account for dataset shift (the expected kernel and
the projected kernel), and provide closed-form derivations of
these kernels for the cases in which the features of interest
are either the discrete-time signal itself or the energy in
certain frequency subbands. We also investigate an approach
to make it possible to train a classifier once for many different
environments, in which an SVM discriminant function trained
with a standard (not channel-robust) kernel is modified at
test time to incorporate a channel-robust kernel by retraining
only the bias of the discriminant function. We propose a
local extension of the joint QDA classifier in [3], which also
adapts for a stochastic channel. Experimental comparisons
with real and simulated data demonstrate the effectiveness of
the proposed algorithms. The proposed expected kernel was
first presented in a conference publication [6]; this manuscript
provides a richer development and expanded results.

Section II introduces basic notation for SVMs, kernels and
features used throughout the paper II. We review related
work on invariant classifiers in Section III. The proposed
channel-robust kernels are presented in Section IV, including
derivations for RBF kernels for discrete-time and subband
energy features. The local joint QDA classifier is presented
in VIII. We describe simulated and real-data classification
experiments in Sec. IX, discuss the results in X, and conclude
in Section XI with observations and open questions.

II. BACKGROUND AND NOTATION

The SVM classifies a feature vector x based on the sign of
the discriminant function

f(x) = b+
N∑
i=1

αiyiK(x,xi), (2)
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where the label of the ith training sample is yi ∈ {−1, 1},
K(·, ·) is a kernel function, and the weights {αi}Ni=1 and
bias b are chosen to minimize regularized training error over
{(xi, yi)}Ni=1 [7], which is an O(N3) time computation1. The
support vectors are those xi’s for which 0 < αi ≤ C, where
C is the maximum penalty assigned for misclassifying xi.

A kernel K(xi,xj) measures the similarity of its two argu-
ments, and any kernel can be formulated as an inner product of
an implicit mapping φ(·) such that K(xi,xj) = φ(xi)Tφ(xj)
[7]. In this paper, we focus on the popular Gaussian radial
basis function (RBF) :

Krbf(xi,xj) = N
(
xi; xj , γ−1I

)
, (3)

where N (·) denotes the Gaussian function, and γ is the
bandwidth parameter. The RBF kernel is commonly defined as
Krbf(xi,xj) = exp

(
− 1

2γ‖xi − xj‖2
)

so that Krbf(x,x) = 1
and since the Gaussian normalization factor represents an arbi-
trary global scaling of similarity measure, but for mathematical
convenience, we use the definition in (3).

In some applications (e.g., image classification), it is conve-
nient to train a classifier using the sampled signal (e.g., pixels)
as features. Let x, h, w and z be vectors whose elements
contain the samples of the discrete-time signals x[n], h[n],
w[n] and z[n], respectively. Then, (1) can be written concisely
as z = h ∗ x + w, where ∗ denotes discrete convolution.

In other applications, features extracted from the discrete-
time signals better discriminate the different classes. In par-
ticular, subband energy features are a useful and frequently
utilized feature choice in many signal processing classification
applications. Let xf [k] denote the kth bin of the discrete
Fourier transform of x[n], and let wf [k] be a realization of a
zero-mean proper complex Gaussian white noise process with
known variance. The subband energy of uz[k] =

∣∣zf [k]
∣∣2 is

given by

uz[k] = uh[k]ux[k] + uw[k] + 2 Re
{
xf [k]hf [k]wf

∗
[k]
}
,

where wf
∗[k] is the complex conjugate of wf [k]. Consider

a feature vector of subband energies at d frequency bins
k ∈ {k1, k2, . . . , kd}. The relationship of the observed vector
uz ∈ Rd and the (unknown) vector ux ∈ Rd can be written
concisely as

uz = uh · ux + uw + 2 Re
{
xf · hf ·wf ∗

}
, (4)

where · denotes the Hadamard (element-wise) product.

III. RELATED WORK

A standard signal-processing approach for classifying a
channel-corrupted signal z[n] is to first estimate a clean test
signal x̂[n] via blind deconvolution, then apply a standard clas-
sifier [8], [9], [10]. However, blind deconvolution is ill-posed,
and in practice the prior knowledge on which a deconvolution
scheme is based may not match real-world conditions, for
example, the sparsity of multipath channel impulse responses
[3]. Alternatively, classifiers can be made robust to the effects

1Theoretically, solving the SVM problem is O(N3), but empirically,
performance with fast SVM solvers often approaches O(N2).

TABLE I
NOTATION

x[n] discrete-time signal
x vector

xf [k] DFT of x[n]
xf DFT signal vector

ux[k] subband energy |xf [k]|2
ux subband energy vector
X random vector
X̄ mean of X
N # of training samples
M # of auxiliary channel examples
d # of feature dimensions

N (x; m, A) Gaussian in x with parameters m, A
A ∗ ∗B two-dimensional convolution of A with B
A ·B Hadamard (component-wise) product of A and B

[A]
[B]

Hadamard division

of the channel by using one of three general strategies that we
discuss in the following subsections: using invariant features,
creating virtual examples that model the conditions at test time,
and designing classifiers that have robustness to test conditions
built in.

A. Invariant Features

One technique to building a classifier to be robust to channel
propagation effects is to select features that are invariant to the
channel [11], [12], [13]. For example, Okopal and Loughlin
derived damping-invariant and dispersion-invariant features in
[12]. However, the utility of channel-invariant features for
discrimination depends heavily on the classification task.

B. Virtual Examples

The idea of augmenting a training set with “virtual exam-
ples” (VEs) dates back to at least 1990 [14]. For example, to
build a handwritten digit classifier that is robust to various
rotations, one can augment the original training set with
artificial examples of rotated digits [15]. The transformed VEs
are included with the original training examples to form an
expanded training set. The choice of transformation applied
to generate the VEs is based on prior knowledge about the
perturbations that may be expected in the test features. Typi-
cally, the VEs are generated from a discrete and deterministic
set of transformations, for example, single pixel translations
in the four principal directions of the image plane.

Lorens et al. have employed virtual examples to train SVMs
to classify targets from their acoustic signatures [4]. High
quality recorded signatures are artificially corrupted by simu-
lating their propagation through an acoustic channel to produce
virtual examples that better represent the test distribution pZY .
Since the original training examples are not representative of
the test distribution, they are discarded.

Like Lorens et al., we implement the VE method by
propagating each of the N training signals through M example
channels, resulting in a training data set size of M ×N . This
approach has the disadvantage of O

(
M3N3

)
complexity in

training an SVM.
A variant of VEs is the method of virtual support vectors

(VSV), which trains an SVM on an uncorrupted training
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set, then generates virtual examples from only the support
vectors [16]. While the VSV method has been shown to reduce
the overall cost of training an SVM, we found that for the
RBF kernel—which is known to select many training points
as support vectors—the VSV method did not substantially
decrease training time, and often exhibited worse performance
in preliminary experiments on our datasets.

C. Prior Robust Classifiers

Classifiers can be designed to be invariant to conditions one
would expect at test time. Decoste and Schölkopf employed
jittering kernels in an SVM to build a classifier robust to
slight translations and rotations of handwritten digits and
showed previously unmatched error rates on the MNIST
benchmark dataset of handwritten digits [15]. A jittering ker-
nel Kjitter(x,xi) takes some some kernel function K(·, ·), and
measures similarity as the maximum similarity K(t(x), t̃(xi))
over t, t̃ ∈ T where T is a finite set of perturbations (jitters)
that one might expect at test time. Jittering kernels for SVMs
have the advantage over VEs for SVM in that the jittering
kernel SVM scales linearly with the number of jitters |T |,
whereas the VE SVM is cubic in the number of jitters.
However, jittering kernels assume there exists a finite set of
complete-invariances T , and do not take into account the
relative probability of transformations in the set, and thus
are not applicable to the kind of probabilistic transformations
imposed by random channels or additive noise. Invariant
kernels have been further studied by Haasdonk and Burkhardt
[17].

Anderson and Gupta proposed taking channel and noise
statistics into account when building a generative classifier
from clean training samples [3]. They derived a quadratic
discriminant analysis (QDA) classifier termed joint QDA for
two cases: classifying a discrete-time signal z[n], or subband
energies uz[k] at several frequency bins. Joint QDA learns a
Gaussian approximation for each p(z|y) from clean training
pairs {(xi, yi)}Ni=1 and second-order statistics of a stochastic
channel. For several sonar-related binary classification prob-
lems, joint QDA showed superior performance over other
approaches.

IV. CHANNEL-ROBUST KERNELS AND SVMS

Given stochastic models for the linear time-invariant chan-
nel and noise in (1), the VE method may be used to train a
channel-robust SVM. However, as previously noted, training
an SVM using the VE method has O(M3N3) complexity.
Rather than increase the dataset by a factor of M , we introduce
two approaches—the expected kernel and the projected RBF
kernel—that incorporate a stochastic channel model into the
kernel definition. For both approaches, we map the ith training
sample xi to a probability distribution pZi|xi

over the domain
of noisy channel-corrupted signals. Then we define a kernel
that acts on two probability densities in the noisy domain.
The two approaches differ in how the samples are mapped to
probability densities, and how the kernels are defined on the
densities.

In the following sections, we derive closed-form solutions
for the proposed kernels for discrete-time features and for sub-
band energy features by employing Gaussian assumptions. We
also show how to create analytic kernels for any feature using
VEs and a Gaussian assumption. The Gaussian assumption
is motivated by the fact that the Gaussian distribution is the
maximum entropy distribution over Rd given only the mean
and covariance. For non-negative subband energy features, it
may seem more suitable to instead consider the maximum
entropy distribution over the positive orthant Rd+. However,
the maximum entropy distribution over Rd+ is the multivariate
truncated normal distribution, which requires cumbersome
multi-dimensional lookup tables of the cumulative distribution
function [18]. Another option for modeling the distribution of
subband energy features is the multivariate Rayleigh model,
but that is analytically and computationally even more chal-
lenging. Conversely, Gaussian functions are mathematically
tractable.

V. EXPECTED KERNELS

Consider the random signal resulting from propagating
the features xi of the ith training signal through a random
noisy channel, and let the feature vector computed from that
random signal be the random feature vector Zi ∼ pZi|xi

.
Then the channel can be taken into account by training an
SVM with a kernel that acts on the random feature vectors
{Zi}Ni=1 as training examples. Specifically, given any kernel
K : Rd × Rd → R, we define the expected kernel Kexp to be
the following functional of two distributions:

Kexp(pZi|xi
, pZj |xj

)
4
= EZi,Zj |xi,xj

[K (Zi,Zj)] , (5)

=
∫∫

pZi|xi
(zi)pZj |xj

(zj)K(zi, zj)dzidzj .

The expected training kernel can be interpreted as averaging
the similarity of all possible channel corruptions of xi and xj
weighted by their probability density. To compute the kernel
between a training sample and a test sample, let the probability
density of the test sample be a Dirac delta distribution with
all of its support on the feature vector z computed from the
test signal z[n], that is, pZ|z(z′) = δ(z′ − z). The expected
kernel given in (5) is a legitimate kernel because it is an inner
product between its two inputs, where the inner product is
weighted by the positive definite function K(·, ·), analogous
to a discrete inner product of the form < a, b >K= aTKb for
some positive definite matrix K.

Since the distribution pZi|xi
is a function of the training

point xi, for notational simplicity, we write Kexp(xi,xj) for
(5), and Kexp(z,xi) for the corresponding kernel between
δ(z′ − z) and pZi|xi

.

A. Expected Kernel SVM Compared to VE SVM

Let {(zij , yij)}N,Mi,j=1 be VE training pairs generated from
the powerset of {(xi, yi)}Ni=1 and {hj}Mj=1. Let L(f(x), y) =
(1 − yf(x))+ be the hinge loss, and λ be a regularization
parameter. In the noiseless case (so that EH [·] = EZ|x [·]),
and ignoring the bias b, take the limit of the VE SVM objective
function as the number of auxiliary channel samples M tends
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TABLE II
TRAINING AND TEST RBF KERNELS FOR SUBBAND ENERGY FEATURES

Training Kernel K(uxi ,uxj ) Test Kernel K(uz ,uxi )

Expected RBF N
(
Ūzi ; Ūzj ,Σuzi

+ Σuzj
+ γ−1I

)
N
(
uz ; Ūzi ,Σuzi

+ γ−1I
)

Expected RBF (clean) N
(
uxi ; uxj , γ

−1I
)

N
(
uz ; Ūzi ,Σuzi

+ γ−1I
)

Projected RBF N
(
Ūzi ; Ūzj , Ruzi

+Ruzj

)
N
(
uz ; Ūzi , Ruzi

+ R̃uz

)
Projected RBF (clean) N

(
uxi ; uxj , γ

−1I
)

N
(
uz ; Ūzi , Ruzi

+ R̃uz

)
where,
Ūzi = uxi · Ūh + σ2

w1

Σuzi
= Σuh · uxiu

T
xi

+ σ4
wI + 2σ2

w diag
(
Ūh · uxi

)
Ruzi

=
γ−1

2
diag

(
Σuh + ŪhŪT

h

)
+ Σuzi

R̃uz =
γ−1

2
diag

(
Σuh + ŪhŪT

h

)
+ Σuh ·

([
uz − σ2

w1
][

Ūh

] )([
uz − σ2

w1
][

Ūh

] )T

+ σ4
wI + 2σ2

w diag
(
uz − σ2

w1
)

lim
M→∞

arg min
{αij}

1
MN

N∑
i=1

M∑
m=1

L

 N∑
j=1

M∑
m′=1

αjm′yjm′K(zim, zjm′), yi

+

λ

N∑
i=1

M∑
m=1

N∑
j=1

M∑
m′=1

αimyimαjm′yjm′K(zim, zjm′), (6)

p→ lim
M→∞

arg min
{αij}

1
N

N∑
i=1

EZi|xi

L
 N∑
j=1

M∑
m′=1

αjm′yjm′K(Zi, zjm′), yi

+

λ

N∑
i=1

M∑
m=1

N∑
j=1

M∑
m′=1

αimyimαjm′yjm′K(zim, zjm′). (7)

arg min
{αi}

1
N

N∑
i=1

L

 N∑
j=1

αjyj EZi,Zj |xi,xj
[K(Zi,Zj)] , yi

+ λ

N∑
i=1

N∑
j=1

αiyiαjyj EZi,Zj |xi,xj
[K(Zi,Zj)] . (8)

towards infinity, as in (6), which converges in probability by
the law of large numbers to (7). However, the expected kernel
SVM solves the objective function in (8). A comparison of
(7) and (8) shows that the VE SVM is not asymptotically
equivalent to an SVM using the expected kernel: the VE SVM
asymptotically minimizes expected loss, while the expected
kernel SVM minimizes the loss with respect to the expected
similarities. The regularization terms also differ.

B. Expected RBF Kernel for Discrete-time Signals

Model the impulse response of a stochastic channel as the
random vector H with mean H̄ and covariance Σh, and model
random vector W as zero mean with covariance σ2

wI . Then,
a deterministic vector x propagated through the stochastic
channel results in a random observation Z = H ∗ x + W.
Model Z ∼ pZ|x(z|x) as Gaussian distributed with mean Z̄

and covariance Σz:

Z̄ = H̄ ∗ x, (9)

Σz = Σh ∗∗
(
xxT

)
+ σ2

wI, (10)

where A ∗∗B denotes two dimensional convolution of matri-
ces A and B.

To derive the expected RBF training kernel, map xi and xj
to Zi and Zj , which are modeled as independent Gaussians
with means and covariances as prescribed in (9) and (10).
Then, evaluate the integral in (5) for the RBF kernel in (3)
using the product-of-Gaussians rule given in (25) twice to
produce

Kexp(xi,xj) = N
(
Z̄i; Z̄j ,Σzi

+ Σzj
+ γ−1I

)
.

Similarly, the expected RBF test kernel is also derived using
the product-of-Gaussians rule in (25):

Kexp(z,xi) =
∫
p(zi|xi)K(z, zi) dzi

= N
(
z; Z̄i,Σzi + γ−1I

)
.
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C. Expected RBF Kernel with Subband Energy Features

Model the subband energy feature vector ux after propaga-
tion through a stochastic channel as a Gaussian random vector
Uz , where, from (4)

Uz = Uh · ux + Uw + 2 Re
{
xf ·Hf ·Wf ∗

}
.

Model Wf as a proper Gaussian complex random vector with
p(wf ) = N

(
0, σ2

wI
)
, and random subband energy vector

Uh as having mean Ūh and covariance Σuh
(no additional

assumptions are needed about the distribution of Hf ).
The expected RBF kernel for subband energy features (with

test kernel as a special case) is given by:

Kexp(uxi ,uxj ) = N
(
Ūzi ; Ūzj ,Σuzi

+ Σuzj
+ γ−1I

)
,

Kexp(uz,uxi
) = N

(
uz; Ūzi

,Σuzi
+ γ−1I

)
where

Ūzi
= uxi

· Ūh + σ2
w1,

Σuzi
= Σuh

· uxi
uTxi

+ σ4
wI + 2σ2

w diag
(
Ūh · uxi

)
.

The covariance Σuzi
is derived from (48) in the appendix by

substituting Ūx = uxi
and Σux

= 0, since we condition on
Ux = uxi

.

D. Expected Kernel for Arbitrary Features

In the previous two subsections, we analytically derived the
Gaussian distribution pZi|xi

(zi), but such analytic derivations
do not exist for all possible feature definitions that may be use-
ful in classification problems. One solution is to approximate
the expected kernel using Monte Carlo sampling. Alternatively,
one can use the VE methodology and a Gaussian assumption
to easily compute an expected RBF kernel for any feature:
For each sample xi, a Gaussian distribution can be fit to
its M VE’s {zij}Mj=1 to form a Gaussian approximation for
pZi|xi

(zi). For the RBF kernel, the product of Gaussians rule
given in (25) can then be used to compute a closed-form
solution to (5).

This approach still requires computing the features for each
of the MN VE’s, however, the SVM is trained on N samples
rather than the MN samples used for the VE SVM, drastically
reducing the SVM training time. Unlike the traditional VE
SVM, in computing the expected kernel using VE’s, we need
not assume that all VE’s {zij}MN

i=1 are i.i.d. samples of a single
distribution—a poor assumption. Rather, only the original
training samples {xi}Ni=1 are assumed to be i.i.d. samples, and
the the VE’s {zij}Mi=1 corresponding to each xi are assumed
to be i.i.d. samples of the Gaussian density pZi|xi

(zi).

E. Unscaled Expected RBF Kernel

Commonly, the standard RBF kernel is implemented with-
out the Gaussian normalization factor, as Krbf(xi,xj) =
exp

(
− 1

2γ‖xi − xj‖2
)

so that Krbf(x,x) = 1. The inclusion
of the Gaussian normalization factor

(
γ
2π

)d/2
is arbitrary, since

it represents a global scaling of the similarity measure. The
expected RBF kernels, however, have a bandwidth and scaling

that are data-dependent, so that it is necessary to include the
scaling factor.

The unscaled expected RBF kernel Kuexp is defined to
be the expected RBF kernel without Gaussian normalization,
that is, as only the exponential part of the Gaussian. This
has the appeal that Kuexp(x,x) = 1, and does not require
calculating the matrix determinant. Moreover, we have found
experimentally that the entries of the kernel matrix are more
sensitive to small errors in the scale factor than in small
errors in the exponent, which has practical implications. For
example, we found that the performance of the expected RBF
kernel (with Gaussian normalization factor) degrades quickly
when channel statistics are poorly estimated; in contrast, the
unscaled expected RBF kernel was more robust to channel
estimation errors. For precisely these reasons, the experiments
in Section IX use the unscaled expected RBF kernel, and
unless specifically stated when referring to the “expected RBF
kernel” we mean specifically the unscaled version.

The unscaled expected RBF kernel Kuexp(xi,xj) =
1

S(xi,xj)
Kexp(xi,xj), where S(xi,xj) is the Gaussian scale

factor, is in fact positive definite since 1
S(·,·) and Kexp(·, ·)

are both positive definite. To verify that 1
S(·,·) is positive

definite, note that the Gaussian scale factor S(·, ·) is positive
definite, since it can be written as the inner product in (5) with
pZi|xi

(zi)
4
= N (zi; 0,Σzi

) and pZj |xj
(zj)

4
= N (zj ; 0,Σzj

),
resulting in

S(xi,xj) =
1

(2π)
d
2 |Σzi + Σzj + γ−1I| 12

,

where Σzi
depends on xi and Σzj

depends on xj . For a
set of any N samples, let S be the N × N positive definite
matrix produced by evaluating the kernel S(·, ·) for all pairs
of the N samples. Since S is positive definite, the Hadamard
inverse S◦−1 =

[
1
Sij

]
is also positive definite [19, p. 397].

The positive definite matrix S◦−1 precisely corresponds to
the kernel matrix formed by 1

S(xi,xj)
. Then, we conclude that

since the Hadamard product of two positive definite matrices
is also positive definite [19], the unscaled expected RBF kernel
matrix Kuexp = S◦−1 ·Kexp is positive definite.

F. Modeling Channel Dependency

The definition (5) assumes that the random feature vectors
Zi and Zj are independent, which implies that xi and xj
are corrupted by different random channels and noise. An
alternative model is to treat them as being corrupted by
the same random channel and noise, which produces a joint
distribution pZi,Zj |xi,xj

(zi, zj), and then the expectation in (5)
becomes ∫∫

pZi,Zj |xi,xj
(zi, zj)K(zi, zj) dzi dzj . (11)

Unfortunately, it is not clear under what conditions (11) will be
a legitimate kernel. We compared the resulting classifier with
the expected kernel classifier for the experiments detailed in
Section IX and found no statistically significant differences
between the two in any of the experiments.
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VI. PROJECTED RBF KERNELS

We propose another channel-robust kernel that is moti-
vated by a recent interpretation of the RBF kernel. Jebara et
al. introduced the probability product kernel, which essentially
replaces training samples with random variables, xi 7→ X′ ∼
p(x′|xi), and defines a positive definite kernel as the inner
product of these distributions [20]:

Kprob(xi,xj)
4
=
∫
p(x′|xi)p(x′|xj) dx′. (12)

Jebara et al. noted that the standard RBF kernel with band-
width parameter γ in (3) can be derived as a special case of
(12) by letting p(x′|xi) = N

(
x′; xi, γ

−1

2 I
)

and p(x′|xj) =

N
(
x′; xj , γ

−1

2 I
)

, and applying the product of Gaussians
identity in (25). In order for the RBF kernel to have have same
bandwidth parameter γ at test time, the test feature vector x
must also be replaced with a random variable with density
p(x′|x) = N

(
x′; x, γ

−1

2 I
)

.
To extend (12) to account for a stochastic channel, we also

consider xi to be mapped to a Gaussian random feature vector
X′, and then propagate X′ through the stochastic channel,
resulting in the random vector Z′. The resulting distribution
p(z′|xi) of Z′ is not necessarily Gaussian; however, for
mathematical tractability we project p(z′|xi) to the nearest
Gaussian using the following lemma whose proof is given in
the appendix.

Lemma. Let random vector Z ∈ Rd be drawn from a
distribution that has a probability density function pZ , finite
mean Z̄ ∈ Rd and covariance Σ ∈ Sd++. Then, the Gaus-
sian distribution that uniquely minimizes KL-divergence with
respect to pZ is given by N (z; Z̄,Σ).

Let N (z′|xi) be the projection of p(z′|xi) to the nearest
Gaussian distribution using the lemma. Then, analogous to
(12), we define the projected RBF kernel as

Kproj (·,xj)
4
=
∫
N (z′|·)N (z′|xj) dz′. (13)

When evaluating the kernel between a test sample and train-
ing sample Kproj (z,xj), we define the distribution N (z′|z)
needed for (13) to be the projection of a random variable Z′

to the nearest Gaussian, where Z′ results from propagating
X′ ∼ N (X̄′, γ

−1

2 I) through the stochastic channel, and X̄′

is chosen such that the mean E [Z′] = z is the observed
test sample (see Sections VI-A and VI-B for examples). The
kernel Kproj is a legitimate kernel because it is always an inner
product of two distributions in z′.

We next present the analytic forms of the projected RBF test
and training kernels for the same two cases as the expected
RBF kernel: discrete-time signal features and subband energy
features.

A. Projected RBF Kernel for Discrete-Time Signals

Model the random vector X′ ∼ N (x, γ
−1

2 I), then Z′ =
H ∗X′ + W has mean and covariance given by

Z̄′ = H̄ ∗ x, and

Σz′ =
γ−1

2
I ∗∗

(
Σh + H̄H̄T

)
+ Σh ∗∗xxT + σ2

wI. (14)

Then by the lemma, the projection p(z′|xi) to the nearest
Gaussian distribution N (z′|xi) yields

N (z′; H̄ ∗ xi,
γ−1

2
I ∗∗

(
Σh + H̄H̄T

)
+ Σh ∗∗xixTi + σ2

wI).

Substituting into (13), and simplifying with the product of
Gaussians rule given in (25) yields

Kproj (xi,xj) =
N (H̄ ∗ xi; H̄ ∗ xj ,
γ−1I ∗∗

(
Σh + H̄H̄T

)
+ Σh ∗∗

(
xixTi + xjxTj

)
+ 2σ2

wI
)
.

To construct N (z′|z), we assume that a test sample is
the mean of the distribution, z = E [Z′], where the random
variable Z′ is the projection through the stochastic channel
of a random variable X′ with covariance γ−1

2 I . Therefore,
N (z′|z) has covariance given by (14) with x substituted with
Fourier deconvolution H̄−1 ∗ z.

B. Projected RBF Kernel for Subband Energy Features

For subband energy features, let U′x ∼ N (uxi ,
γ−1

2 I). Then
project the distribution of the random variable U′zi

= Uh ·
U′x + Uw + 2 Re

{
Xf ′ ·Hf ·Wf ∗

}
to the nearest Gaussian

N (u′z|uxi) = N (u′z; Ū
′
zi
, Ruzi

), where

Ū′zi
= Ūh · uxi

+ σ2
w1, (15)

Ruzi
=
γ−1

2
diag

(
Σuh

+ ŪhŪT
h

)
+

Σuh
· uxiu

T
xi

+ σ4
wI + 2σ2

w diag
(
Ūh · uxi

)
, (16)

which follows from (48) in the appendix with Σux = γ−1

2 I
and Ūx = uxi .

Then, solving the integral in (13), the projected RBF train-
ing kernel takes the form

Kproj
(
uxi ,uxj

)
= N

(
Ūzi ; Ūzj , Ruzi

+Ruzj

)
.

At test time, given an observation uz , the distribution
p(u′z|uz) = N

(
uz, R̃uz

)
, where R̃uz is Ruzi

in (16) with
ûx substituted for uxi

; ûx satisfies uz = ûx · Ūh + σ2
w1:

ûx =

[
uz − σ2

w1
][

Ūh

] ,

where [a]
[b] denotes Hadamard (element-wise) division of a and

b. Then, solving the integral in (13), the projected RBF test
kernel for subband energy features is

Kproj (uz,uxi
) = N

(
uz; Ūzi

, Ruzi
+ R̃uz

)
.

C. Projected RBF vs. Expected RBF Kernels for Subband
Energy Features

The projected RBF and expected RBF kernels differ in the
way that the statistics of the channel features are incorporated,
and in the way that the bandwidth parameter γ is used.
Comparing the covariance terms in Table II, we observe that
covariance of the expected RBF kernel is given by

Σuzi
+ Σuzj

+ γ−1I,
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whereas the covariance of the projected RBF kernel is given
by

Ruzi
+Ruzj

= Σuzi
+ Σuzj

+ γ−1 diag
(
Σh + ŪhŪT

h

)
.

Therefore, the training kernels differ only by the diagonal
matrix weighted by γ−1; they are identical as γ → ∞.
Since for the projected RBF SVM, γ−1 acts as a weight on
the channel statistics diag

(
Σh + ŪhŪT

h

)
, we expect that the

projected SVM may be more sensitive to channel estimation
errors when γ−1 is large.

Another key difference between the two kernels is that the
projected RBF kernel, in order to be consistent with prior
work, treats the test vector uz as a realization of a random
vector with nonzero covariance. Conversely, in defining the
expected RBF kernel we treat the test point as deterministic.

D. Projected Kernel for Arbitrary Features

Analogous to Section V-D, projected kernels can be com-
puted for arbitrary features, and in particular, it is straightfor-
ward to compute an RBF projected kernel by fitting a Gaussian
distribution to the VE’s for each training sample xi.

E. Unscaled Projected RBF Kernel

Similar to the discussion of the unscaled expected RBF
kernel in V-E, we found that the unnormalized version of the
projected RBF kernel was computationally more efficient and
more robust to poor estimation of the channel statistics, and
did not change the performance if the channel statistics were
accurately estimated. Thus, we used the unscaled projected
RBF kernel in our experiments in Section IX and unless
specifically stated, when referring to the “projected RBF
kernel” we mean specifically the unscaled version. Using the
same arguments given in V-E, one can show that the unscaled
projected RBF kernel is positive definite.

VII. ADAPTING SVMS TRAINED ON CLEAN DATA TO
CORRUPTED TEST FEATURES

The presented expected and projected RBF kernels require
that statistics (e.g., sample mean and covariance) of the auxil-
iary channel samples {hi}Mi=1 are available to train the SVM.
For each new environment, the SVM must be re-trained using
the statistics of the stochastic channel. While we believe that
it is optimal to train the SVM for the particular environment,
as a practical question we considered whether we could train
an SVM without knowing the environment, and only adapt the
SVM for the environment at test time.

When training an SVM, one solves for coefficients {αi}Ni=1

which determine the contribution of each training sample as
shown in (2). Notably, some αi’s are set to zero in the training
process, removing certain training samples from influencing
the classifier.

Suppose that a kernel function K(·, ·) is selected for SVM
classification. For cases in which re-training the SVM for each
new environment is undesirable, we propose the following
approach:

1) Train an SVM on the dataset {(xi, yi)}Ni=1 with kernel
K to obtain the weights {αi}Ni=1 and bias b in Eq. (2);

2) For a new propagation environment, collect auxiliary
channel samples {hi}Mi=1 and compute relevant statis-
tics;

3) Calculate a bias term for the new environment using the
KKT conditions of the SVM [7, p. 374]:

b′ =
1
N

N∑
i=1

1− ξi
yi

−
N∑
j=1

αjyjKte(xi,xj),

where ξi are the SVM slack variables, and Kte(·, ·) is
the channel-robust test kernel function. The new bias
b′ minimizes the average label prediction error over all
support vectors.

4) Classify the test sample as the sign of

f(z) = b′ +
N∑
i=1

αiyiKte(z,xi).

This approach is theoretically sub-optimal, since the weights
{αi}Ni=1 that minimized empirical risk using the kernel K
are not optimally suited to the test kernel Kte. Note that
the role of the {αi}Ni=1 is to weight how important each
training sample is in determining a decision boundary, and
these relative importance may not change much for the test
conditions. Further, re-calculation of the bias term b′ grossly
adjusts the decision boundary so that at least the label of the
support vectors are, on average, predicted accurately.

VIII. LOCAL JOINT QDA

Anderson and Gupta proposed a joint QDA classifier that
accounts for a convolution channel, and derived the classi-
fier for use with subband energy features [3]. Joint QDA
classifier is simple to train and was shown to yield good
results. Joint QDA is a maximum a posteriori (MAP) classifier
that solves arg maxg p(z|g)p(g). Traditional QDA assumes
that p(x|g) is Gaussian; joint QDA assumes that p(z|g) =∫
p(z|x)p(x|g) dx is Gaussian. To compute p(z|g), one first

estimates the mean and covariance of p(x|g) as in standard
QDA. When the number of features is small relative to the
number of training samples, maximum likelihood estimation
may suffice. When the number of features is relatively large,
one can use Bayesian QDA to compute the expected Gaussian
[21] and then compute the best Gaussian approximation for
p(z|g) using the lemma above.

As with the channel-robust kernels in Sec. IV, the Gaussian
assumption for joint QDA is motivated by the maximum
entropy principle and by mathematical convenience, but does
admit model bias. To reduce the model bias of QDA, we relax
the assumption that p(z|g) is globally Gaussian. Reducing the
model bias of QDA is commonly done using a Gaussian mix-
ture model (GMM) [7], but GMM’s can have high estimation
variance due to local maxima of the likelihood and the need
to choose the number of Gaussian components. Instead, we
use another approach that has recently been shown to work
well, which is to apply the Gaussian model locally to the
nearest-neighbors of the test sample, an approach aptly termed
local QDA [22]. We propose local joint QDA where given an
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observation z, the Gaussian is learned only for the expected
nearest neighbors for each class, defined as follows.

Definition. Expected Nearest Neighbors. Model random
training vector Zi as Gaussian with mean Z̄i and covariance
Σzi

. Given a test feature vector z, the expected nearest
neighbor of z is the random vector Z`, where

` = arg min
i

E
[
‖z− Zi‖2

]
= arg min

i
zT z− 2zT E [Zi] + E

[
ZTi Zi

]
= arg min

i
zT z− 2zT Z̄i + tr Σzi

+ Z̄Ti Z̄i

= arg min
i
‖z− Z̄i‖2 + tr Σzi

. (17)

Note that the nearest neighbor depends on both the mean Z̄i
and covariance Σzi

of a random training vector Zi. The second
nearest neighbor is found in similar fashion, after Z` has been
excluded from the set of candidate neighbors, and so on for
the subsequent nearest neighbors.

For class g, let Xg = {xi : yi = g}. Given observation z,
let Kg be the set of k nearest neighbors of z in Xg , using the
expected nearest neighbors definition in (17). Then, the mean
and covariance of Gaussian likelihood p(z|g) is calculated as
the sample mean and covariance, respectively, of Kg . In this
manner, Gaussian likelihoods p(z|g) are computed for each
class g.

For discrete-time signal features, parameters of the distri-
bution p(z|g) = N (z; Z̄,Σz) are given by

Z̄ = H̄ ∗ X̄, Σz = Σh ∗∗Σx + σ2
wI,

where X̄ and Σx are taken as the sample mean and covariance
of the elements of Kg , and H̄ and Σh are the sample mean
and covariance of {hj}Mj=1.

When using subband energy features, the distribution
p(uz|g) = N (uz; Ūz,Σuz

) is specified by parameters

Ūz = Ūh · Ūx + σ2
w1,

Σuz
=
(
Σuh

+ ŪhŪT
h

)
· Σux

+ Σuh
· ŪxŪT

x

+ σ4
wI + 2σ2

w diag
(
Ūh · Ūx

)
[from (48)],

where Ūx and Σux are estimated from Kg , and Ūh and Σuh

are estimated from auxiliary set {uhi
}Mi=1.

IX. EXPERIMENTS

We compare the expected RBF SVM, the expected RBF
SVM trained on uncorrupted training pairs, projected RBF
SVM, projected RBF SVM trained on uncorrupted training
pairs and local joint QDA to VE RBF SVM, VE k-NN
and to a channel agnostic RBF SVM. All RBF kernels were
unscaled. We report classification accuracy for three separate
experiments in which subband energies were used as fea-
tures: simulated narrowband signals in a simulated multipath
environment, real Bowhead whale vocalizations in the same
simulated multipath environment, and trumpet/cornet sounds
recorded in an anechoic chamber and a reverberant room.

A. Algorithmic Experimental Details

Given N subband energy feature vectors {uxi}Ni=1 and M
auxiliary samples {uhi

}Mi=1, we generate VEs for VE RBF
SVM and VE k-NN as follows. For each uxi

, we generate M
VEs by taking uxi

with every element of {uhj
}Mj=1 to form

uzij
= uhj

· uxi
+ σ2

w1, j = 1 . . .M. (18)

For VE RBF SVM, an SVM is then trained from the M ×N
VEs; for VE k-NN, k nearest neighbors are chosen among
the VEs. We chose to use the noise power σ2

w in (18) instead
of generating Gaussian noise draws, since to incorporate a
noise draw wf , the VE method would also require the Fourier
coefficients xfi and hfj as in (4), which are not assumed to be
provided for any of the classifiers we compare.

The agnostic RBF SVM is trained on {uxi
}Ni=1; auxiliary

channel feature vectors {uhi
}Mi=1 are ignored.

For the standard machine learning problem, the training and
test data are normalized using the sample means and standard
deviations of the training samples. However, in this research
the training and test features are related by the expression in
(4), so that normalizing would not properly center and scale
the test data. If m and s are the mean and scale, respectively,
of the training data, and Ũx = [Ux−m]

[s] is the random variable
describing the normalized training data, then scaling the test
data and taking the expectation over Wf and Uh yields

Ũz =

[
Uz − Ūh ·m

]
[s]

expectation→
[
Ux · Ūh + σ2

w1− Ūh ·m
]

[s]

= Ũx · Ūh +

[
σ2
w1
]

[s]
6= Ũx · Ūh + σ2

w1,

so that data normalization distorts the relationship between the
test and training data when the noise power is non-negligible.

Though we cannot normalize the data, we can achieve a
similar effect by adjusting the RBF kernel bandwidth param-
eter. For each dataset, the RBF bandwidth parameter γ is
cross-validated over a range of length-scales that are related
to the inter-sample distances between points. As a heuristic to
choosing reasonable values for γ, we introduce a parameter β
that chooses γ−1 as a multiple of the minimum inter-neighbor
distance according to a logarithmic scale:

γ−1 =
(
dmax

dmin

)β
dmin,

where dmin and dmax are respectively the minimum and
maximum inter-sample distances of the training set. Thus,
for β = 0, γ−1 = dmin, for β = 1, γ−1 = dmax, and
so on. For cross-validation, we cross-validate β over the set
β ∈ {−1.5,−1.25, . . . , 2.25, 2.5}. We allow γ−1 to be greater
than the maximum inter-neighbor distance (for β > 1) or
less than the minimum inter-neighbor distance (for β < 0)
since γ−1 plays the role of a regularization parameter in (16),
and these larger and smaller values are sometimes chosen.
The SVM margin penalty C is cross-validated over the set
{1, 101, 102, 103, 104}. The k-NN classifier cross-validates
over a single parameter k ∈ {1, 3, 5, 9, 17, 33, N} (goes like
2n + 1). Since local joint QDA estimates a class-conditional
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mean and covariance from ky training samples per class, the
role of ky differs from that of k. For local joint QDA, we
cross-validated over the number of class-specific neighbors
ky ∈ {5, 9, 17, 33, |Xy|} and whether to use the maximum-
likelihood estimate of the full covariance or assume a diagonal
covariance.

For each of the classifiers, a tie for the parameter pairs
(or single parameter for k-NN) that achieved the best cross-
validation score was settled by choosing among the best
performing parameter pairs randomly with equal probability.

B. Simulated Signals and Bathymetric Environment

This dataset simulates narrowband signals propagating in
a shallow water sonar environment. Realistic sonar channel
impulse responses were generated using the CASS Eigenray
routine in the Sonar Simulation Toolset (SST) [23]. This
dataset is the same as used in Anderson et al. [3], except that
we partition the training and test data differently. There are
N = 200 narrowband training signals from two classes (100
from each class), which were generated by varying the place-
ment of poles in the z-transform domain. Each signal is a two
zero, four pole (2 conjugate pairs) real signal model, where
the poles are placed at fixed angles, but their distance from the
origin is drawn from a multivariate Gaussian distribution. The
class-conditional means and covariances of the pole placement
model were selected to provide three binary classification
problems of varying difficulty: easy, medium and hard.
Subband energies at two frequencies (corresponding to the
pole placement angles) were used as features. In addition,
M = 20 channel impulse responses were generated by first
randomly picking a source location in a simulated bathymetry,
then simulating with SST the propagation of a pulse from that
random source location to a fixed receiver location. We then
computed M = 20 channel subband energy feature vectors
{uhi
}Mi=1, which were provided to each of the classifiers as

training data. The 1800 test signals were formed by convolving
an i.i.d. set of narrowband signals with 1800 i.i.d. randomly
drawn channel impulse responses, generated i.i.d. as the train-
ing channel impulse responses. Then i.i.d. Gaussian noise was
added in varying amounts to each test signal to achieve SNRs
of -10dB, -5dB, 0dB, 5dB, and 10dB.

Results averaged over 10 runs of each of the experiments
hard, medium and easy are shown in Fig. 1 (a), (b), and
(c), respectively.

We note that the experimental setup for the simulated and
Bowhead data differs in a few ways from previous publications
with these datasets [6] and [3]. Jamieson et al. [6] compared
performance of classifiers for a fixed training time, which
necessitated utilizing a smaller number M of auxiliary samples
for VE than for expected RBF SVM. In this paper, the
experiment is set up to compare performance of algorithms
when the same data is available to each, regardless of training
time. In addition, in [6], leave-one-out-crossvalidation was
performed for each combination of M auxiliary features and
N training features. We employ ten-fold cross-validation to
determine the values of both γ and C (for SVM) over a
classifier-agnostic set of values. In [3], we note a mistake in

the labeling of SNR in the results, so that the actual SNR is
roughly 10 dB higher than the SNR as labeled.

C. Classifying Whales in Bathymetric Environment

The whale classification dataset is the same as used in
Anderson and Gupta [3]. The data consists of recordings of
song endnotes from two distinct Bowhead whales in deep
water: 15 calls from one whale and 9 calls from another whale.
The goal is to identify each whale from its vocalizations when
located in a shallow-water environment. We employ the same
bathymetry as in [3], so that the experimental setup follows
that of Section IX-B. For each run, we randomly split the 24
whale calls into 10 and 14 signals: N = 10 training signals,
and 14 signals from which we generate multipath-corrupted
noisy test signals. The results shown in Fig. 2 were averaged
over 1000 such i.i.d. training / test partitions.

D. Classifying Trumpeters

The third experiment uses real signals with real multipath
corruption. The classifier must discriminate between two pro-
fessional musicians, based on how they play the same note
on either a trumpet or cornet in a reverberant environment.
The training dataset consists of subband energy features ex-
tracted from recordings of two different professional trum-
pet players, Matthew Swihart (Matt) and Edward Castro
(Ed), playing concert F in an anechoic chamber (Fig. 3)
twenty times on both their own trumpet and cornet. Using
the four datasets we constructed six different classification
problems: Ed Cornet vs Ed Trumpet, Matt Cornet vs
Matt Trumpet, Matt Trumpet vs Ed Trumpet, Matt
Cornet vs Ed Cornet, Matt Trumpet vs Ed Cornet,
and Matt Cornet vs Ed Trumpet. All six tasks can be
classified with 97.4% accuracy or above by k-NN if anechoic
signal features are used for both training and test.

Test signals were recorded in an outdoor semi-enclosed
breezeway with an audible reverberation length of about 1
second. For a more controlled experiment, we played each
of the anechoic signals in the breezeway through high-quality
speakers in a fixed location, as well as quadratic chirps, which
were used to estimate the reverberation impulse response.
Signals were recorded at four locations in the breezeway with
the same recorder. All recordings were stereo at a 48kHz
sample rate and 16 bits per sample. When classifying a
test signal z[n] that corresponds to an anechoic signal x[n],
features of the stereo pair of x[n] were excluded from the
training set. An example training signal, test signal, impulse
response and classification scatterplot are shown in Figure 4.

Features were taken to be the subband energies at the
frequencies {349, 698, 1048, 1397, 1746, 347, 351} (Hz), cor-
responding to the fundamental frequency f0 = 349 (concert
F), the first four harmonics, and f0−2 and f0+2 to capture the
width of the fundamental. To correct for minor fluctuations in
pitch, the fundamental and harmonic frequencies were adjusted
to correspond to the highest peak within a 10 Hz window
around the desired frequency, but the corrected fundamental
frequency was typically within 2 Hz of 349 Hz. Noise energy
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Fig. 1. Classification accuracy of simulated signals in simulated bathymetry using subband energy features. The datasets easy, medium and hard differ
in how well the classes are separated in feature space. Note that the accuracy axis for each plot is on a different scale in order to highlight the relative
performance of algorithms. RBF SVM (agnostic) achieves an accuracy of 50% for all SNR in each experiment, and is not shown.
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(a) (b)
Fig. 3. (a) Matthew Swihart on trumpet and (b) Edward Castro on cornet in an anechoic chamber.
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Fig. 4. (a) The energy spectrum of concert F played by Ed on the cornet in the anechoic chamber; (b) the energy spectrum of a test signal generated by
playing back the recorded note in an echo chamber; (c) an impulse response estimated by probing the outdoor breezeway with a quadratic chirp; (d) training
(upper right) and test features (lower left)—corresponding to subband energies at fundamental and first harmonic—plotted together on a log-log plot, where
Ed Cornet is denoted by - and Matt Trumpet is denoted by +.

σ2
w was taken to be the median energy level across all

frequency bins.
Results shown in Table III were averaged over the four

locations.

X. RESULTS

First, we consider experimental training times, and then
we discuss the classification results experiment-by-experiment,
and then make some overall notes comparing the classifiers.

A. Training Time

The expected and projected RBF SVM classifiers incur a
training cost of O

(
N3
)
. However, there is also a cost in

populating the N×N kernel matrix, since each entry requires
computing the inverse of a d×d non-diagonal matrix (see Table
II). As noted previously, the VE RBF SVM incurs a training
cost of O

(
M3N3

)
since the dataset has been increased to

a factor of M . A plot comparing the training times for the
simulated signal experiment for the VE RBF SVM, expected
RBF SVM, and agnostic RBF SVM using libsvm [24] on a
3.2 GHz Intel Core i7 CPU is shown in Fig. 5. (Total RAM
was 12GB, so that the SVMs were not memory limited.)

B. Classification Results by Experiment

Classification results for simulated data in the synthetic
bathymetry are shown in Fig. 1. For hard, clean-train ex-
pected SVM is the best overall performer with 95% con-
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TABLE III
TRUMPET PLAYBACK RESULTS AVERAGES. BOLDED ITEMS IN EACH COLUMN ARE STATISTICALLY TIED WITH 95% CONFIDENCE ACCORDING TO A

ONE-SIDED WILCOXON SIGN RANK TEST.

Matt Cornet v. Matt Trumpet v. Matt Cornet v. Ed Cornet v. Matt Cornet v. Matt Trumpet v.
Ed Cornet Ed Trumpet Matt Trumpet Ed Trumpet Ed Trumpet Ed Cornet

Expected RBF SVM 74.8 72.0 82.9 60.3 82.3 60.4
Expected RBF SVM (clean) 68.6 52.0 57.9 52.4 57.3 60.4
Projected RBF SVM 57.6 56.4 73.7 57.4 68.0 59.1
Projected RBF SVM (clean) 55.2 63.9 76.9 57.1 69.8 58.1
Joint QDA 73.2 72.0 80.7 61.2 81.1 65.4
VE RBF SVM 73.0 68.0 72.5 51.0 66.9 61.1
VE k-NN 71.0 56.4 77.7 60.4 73.8 60.4
RBF SVM (agnostic) 51.2 49.7 57.7 51.3 52.5 62.8
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Fig. 5. SVM training time vs. training set size N for fixed M = 20
used in the simulation experiment. Timing results include the time required
to populate the kernel matrix.

fidence, followed closely by expected SVM and projected
SVM, which are statistically tied. VE SVM gives slightly
better performance than local joint QDA. A similar trend
holds for medium: clean-train expected SVM clean is the
best overall performer, followed by projected SVM and VE
k-NN (statistically tied overall). For easy, VE SVM is the
best overall performer, followed closely by expected SVM
clean, then VE k-NN and local joint QDA. In all of these
experiments, the agnostic SVM, which treats the corrupted
test data as though it were not corrupted, produces almost
exactly a 50% classification rate, which is as poor as random
guessing.

Classification results for the whale endnotes experiment are
shown in Fig. 2. Local joint QDA is clearly the best performer.
Though close, VE SVM is a slightly better overall performer
for this case than clean-train expected SVM with statistical
significance greater than 95%.

For the trumpet classification, Table III shows that in all
datasets except Matt Trumpet v. Ed Cornet, expected
SVM is the best performer or statistically tied with the best
performer, and in Matt Trumpet v. Ed Cornet, it is the
second best performer. Likewise, local joint QDA is the best
(or tied for best) performer in all tests except Matt Cornet
v. Matt Trumpet, for which it is the second best classifier.
VE SVM is tied with expected SVM as the best performer in
Matt Cornet v. Ed Cornet. Projected SVM and clean-

train projected SVM—which yield similar results in most
experiments—perform better than VE SVM in 3 experiments.
The clean-train expected SVM classifier does not perform well
on the trumpet/cornet experiments.

C. Classification Results by Classifier

First, we note that the agnostic RBF SVM, which ignores
the channel, fails miserably for almost all of these experiments,
and thus some form of channel-adaptation should be used.
However, given how poor the channel estimates were for
these experiments (especially for the trumpet classification),
the classification gains produced by the adapted methods were
pleasantly surprising.

The clean-train expected/projected SVM classifiers have the
least channel adaptation. They use the SVM coefficients {αi}
trained on the clean training data, and only adapt the kernel
at test time to attempt to better model similarity between
the test sample and training sample. Both clean-train SVMs
do significantly better than the agnostic over the datasets,
suggesting that adapting only the kernel is worthwhile. The
clean-train projected SVM generally performs worse than the
clean-train expected SVM. We hypothesized that the expected
SVM would always do better than its clean-train counterpart
because its coefficients were trained for the test-environment.
Surprisingly, for both experiments using the bathymetry to
generate sonar impulse responses, the expected RBF SVM
clean consistently does better than the expected RBF SVM.
However, the expected RBF SVM clean does not do well at
the trumpet identification. We suspect that this is because the
channels were more corrupting for this experiment, and it was
more important to take them into account at training time.

Overall, the expected and projected kernels performed sim-
ilarly, with very comparable performance on the simulation
results, a win for projected on the real whale data, and a win
for expected on the real trumpet data. Based on comparing the
mathematical formulas of the expected and projected RBF,
we hypothesize that the projected RBF kernel will be more
sensitive to the quality of the channel estimation errors. This
hypothesis is supported by the experimental results showing
that projected RBF SVM performs comparatively worse than
other algorithms with the poor-quality estimates of the rever-
beration channels in the breezeway, whereas it was competitive
in experiments with simulated multipath.

The VE methods performed poorly on the trumpet data
relative to the expected SVM, but comparably when given
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the simulated bathymetry channels. This may be because
the regularization inherent in expected SVM by aggregating
the example channels into a channel mean and covariance
is more helpful when the channel examples are poor, as in
the case of the trumpet data. Further, the VE methods do
better relative to the proposed expected/projected kernels on
problems where the classes are easier to separate: such as the
easy simulation and the whale problem. But the VE methods
do worse relative to the proposed expected/projected kernels
on problems where the classes are harder to separate: such
as the hard simulation and the trumpet problem. The clean-
train expected SVM performs comparably to the VE SVM for
all the simulated channel problems despite taking orders of
magnitude less training time, but performs slightly worse on
the trumpet datasets.

We found local joint QDA to be the most robust classifier.
Its mean performance on the trumpet data is second-best,
it is the clear winner in distinguishing the whales, and it
performs fairly well with the narrowband signal experiment.
Also, compared to the SVM classifiers, we found the local
joint QDA method to be much more robust to the choice of
its cross-validation parameters.

XI. CONCLUSIONS

We have presented and compared several classifiers to
address the dataset shift problem that occurs in signal classifi-
cation problems when the differences between training and test
conditions can be modeled by a linear time-invariant channel
and additive Gaussian white noise.

The contributions of this paper can be summarized as
follows. Given a kernel function K(·, ·), the expected kernel is
defined as the expectation of the similarity of random variables
Zi and Zj according to the corruption model pZi|xi

. Similarly,
motivated by a recent interpretation of the RBF kernel in
[20], we presented the projected RBF Kernel that accounts
for a stochastic channel and additive noise. We derived the
expected RBF and projected RBF kernels for discrete-time
signal features and subband energy features. We noted that the
kernels can be computed for arbitrary features using Monte
Carlo approximations, and that RBF kernels for arbitrary
features can be computed without Monte Carlo by fitting a
Gaussian distribution to the VE’s for each training sample.
Unscaled expected and projected RBF kernel functions were
defined and also shown to be positive definite functions. As
a practical consideration, we considered a theoretically sub-
optimal procedure for the expected and projected RBF SVMs
that do not require re-training the SVM for each new envi-
ronment characterized by {hi}Mi=1 and σ2

w. In the clean-train
expected and projected RBF SVMs, the coefficients {αi}Ni=1

are learned from {(xi, yi)}Ni=1 once using a standard RBF
kernel; at test time, only the SVM bias term is recalculated
for a channel-robust kernel. To reduce model bias, the local
joint QDA classifier was presented as a generalization of the
joint QDA classifier [3].

Experiments with simulated and real data revealed the
following trends. On easier problems, where the classes were
well-separated and the channels were realistic but simulated,

the VE methods performed well. On harder problems, where
the classes are less well-separated and the channel estima-
tion was poorer, the expected and projected kernel SVMs
performed better. In particular, the expected kernel seemed
most robust to non-idealistic conditions, but less able to take
advantage of good conditions. In addition, not only are the
expected/projected kernels theoretically much faster to train
due to the O(N3) complexity of the SVM training procedure,
we found that in practice with even relatively small sample
sizes they were significantly faster to train.

Under cleaner conditions, we were surprised to see that
the clean-train expected SVM outperformed the expected
SVM, and was often the best performer of all the considered
methods. Notably, clean-train SVMs are the fastest SVMs to
train. Throughout, the local joint QDA method performed con-
sistently well, was robust to parameter choices and estimates,
and is trivial to train. Modifying local joint QDA for the
problem of estimating Gaussian parameters in high dimensions
with few training samples is straightforward by applying the
results in [21].

While further experimental studies with a wider variety of
channels and data are needed, our advice to practitioners based
on the experimental evidence we have is to use the clean-train
expected SVM or local joint QDA if the channels are not
considered too severe, and to use the expected SVM if the
channels are thought to be highly corrupting.

Because of their popularity, we have derived robust RBF
kernels for discrete-time signal features and subband energy
features. However, it would be beneficial to derive expected
kernels for other popular kernels (e.g., polynomial, triangu-
lar, hyperbolic) and other standard features (e.g., cepstral or
wavelet coefficients).

APPENDIX

Identities

We frequently use the following identities.
For any vectors a,b ∈ Cd and scalar β ∈ C,

(a · b) (a · b)T =
(
aaT

)
·
(
bbT

)
(19)

abT · (βI) = β diag (a · b) , (20)

which can be verified by writing the relationships in summa-
tion form.

Let V ∈ Cd be a complex Gaussian vector that is zero mean,
white, and proper. By definition of proper complex vectors
[25],

E
[
VVH

]
= E

[
V∗VT

]
= σ2

vI (21)

E
[
VVT

]
= 0. (22)

Since V is zero-mean and Gaussian,

E
[
(V ·V∗) VT

]
= E

[
(V ·V∗) VH

]
= E

[
V (V ·V∗)T

]
= E

[
V∗ (V ·V∗)T

]
= 0. (23)

From Isslerlis’ Gaussian moment theorem [26],

E
[
(V ·V∗) (V ·V∗)T

]
= σ4

vI + σ4
v11T , (24)
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where 11T is a matrix of all ones.
Lastly, for x,a ∈ Rn, A ∈ Sn++, P ∈ Rm×n, b ∈ Rm and

B ∈ Sm++,

N (x; a, A)N (Px; b, B) =

N
(
b;Pa, B + PAPT

)
N (x; c, C) , (25)

where c = C
(
A−1a + PB−1b

)
and C =(

A−1 + PTB−1P
)−1

.

Derivation of Covariance of Uz

Let Xf , Hf and Wf be mutually independent random
vectors in the subband energy relationship in (4), and let Wf

be a complex Gaussian vector that is zero mean, white, and
proper. Then,

Cov [Uz] = Cov
[
Uh ·Ux + Uw + 2 Re

{
Xf ·Hf ·Wf ∗

}]
= E

[
(Uh ·Ux) (Uh ·Ux)T

]
+ E

[
UwUT

w

]
+ 4 E

[
Re
{
Xf ·Hf ·Wf ∗

}
Re
{
Xf ·Hf ·Wf ∗

}T]
(26)

+ E
[
(Uh ·Ux) UT

w

]
+ E

[
Uw (Uh ·Ux)T

]
(27)

+ 2 E
[
(Uh ·Ux) Re

{
Xf ·Hf ·Wf ∗

}T]
(28)

+ 2 E
[

Re
{
Xf ·Hf ·Wf ∗

}
(Uh ·Ux)T

]
(29)

+ 2 E
[
Uw Re

{
Xf ·Hf ·Wf ∗

}T]
(30)

+ 2 E
[

Re
{
Xf ·Hf ·Wf ∗

}
UT
w

]
(31)

−
(
Ūh · Ūx

) (
Ūh · Ūx

)T − ŪwŪT
w

− Ūw

(
Ūh · Ūx

)T − (Ūh · Ūx

)
ŪT
w, (32)

where additional terms involving E
[

Re
{
Xf ·Hf ·Wf ∗

}]
are zero because Wf is zero mean and independent of Xf and
Hf . Line (27) cancels with (32). Lines (28) and (29) are zero
since Wf is zero mean and uncorrelated with Xf and Hf .
Since Wf is proper and Uw = Wf ·Wf ∗, lines (30) and (31)
are zero by property (23). By expanding Re {a} = 1

2 (a + a∗)
and multiplying, line (26) can be rewritten as

E
[(

Xf ·Hf ·Wf ∗
)(

Xf ·Hf ·Wf ∗
)T]

(33)

+ E
[(

Xf ·Hf ·Wf ∗
)(

Xf ·Hf ·Wf ∗
)H]

(34)

+ E
[(

Xf ·Hf ·Wf ∗
)∗ (

Xf ·Hf ·Wf ∗
)T]

(35)

+ E
[(

Xf ·Hf ·Wf ∗
)∗ (

Xf ·Hf ·Wf ∗
)H]

(36)

= E
[(

XfXfH
)
·
(
HfHfH

)
·
(
Wf ∗WfT

)]
(37)

+ E
[(

Xf ∗XfT
)
·
(
Hf ∗HfT

)
·
(
WfWfH

)]
. (38)

where properties (19) and (22) can be used to verify that lines
(33) and (36) are zero. Using (19), lines (34) and (35) become

(37) and (38), respectively. This yields

Cov [ Uz] = E
[
(Uh ·Ux) (Uh ·Ux)T

]
(39)

−
(
Ūh · Ūx

) (
Ūh · Ūx

)T
(40)

+ E
[
UwUT

w

]
− ŪwŪT

w (41)

+ E
[(

XfXfH
)
·
(
HfHfH

)
·
(
Wf ∗WfT

)]
(42)

+ E
[(

Xf ∗XfT
)
·
(
Hf ∗HfT

)
·
(
WfWfH

)]
(43)

= E
[
UhUT

h ·UxUT
x

]
− ŪhŪT

h · ŪxŪT
x (44)

+ E
[
UwUT

w

]
− ŪwŪT

w (45)

+ E
[(

XfXfH
)
·
(
HfHfH

)]
· σ2

wI (46)

+ E
[(

Xf ∗XfT
)
·
(
Hf ∗HfT

)]
· σ2

wI, (47)

where property (19) was used to rewrite (39) and (40) as
(44). Then, use (21) to simplify (42) and (43) as, respectively,
(46) and (47). In (46) and (47), E

[(
XfXfH

)]
· σ2

wI =

σ2
w diag

(
E
[
Xf ·Xf ∗

])
= diag

(
Ūx

)
by (20) and by def-

inition of Ux (similarly for terms involving Hf ). Thus, (46)
and (47) simplify to 2σ2

w diag
(
Ūh · Ūx

)
. Applying (24) to

E
[
UwUT

w

]
, and recalling that Ūw = σ2

w1, (45) reduces
to σ4

wI . Finally, E
[
UhUT

h ·UxUT
x

]
− ŪhŪT

h · ŪxŪT
x =(

Σuh
+ ŪhŪT

h

)
· Σux

+ Σuh
· ŪxŪT

x , so that be collecting
terms, we have

Cov [Uz] =
(
Σuh

+ ŪhŪT
h

)
· Σux

+ Σuh
· ŪxŪT

x + σ4
wI

+ 2σ2
w diag

(
Ūh · Ūx

)
. (48)

Proof of Lemma.

Let f(m, R) = KL (pZ ||N (m, R)) for m ∈ Rd and
R ∈ Sd++. By definition, KL (p||q) = EZ [log p(Z)] −
EZ [log q(Z)], and thus the mean m∗ and covariance R∗ we
seek solve

arg min
R�0,m

f(m, R) = arg min
R�0,m

−EZ [logN (Z; m, R)]

= arg min
R�0,m

log |R|+ EZ

[
(Z−m)T R−1 (Z−m)

]
= arg min

R�0,m
log |R|+ tr EZ

[
(Z−m) (Z−m)T R−1

]
.

Since f(m, R) is convex in R, the minimizer m∗ is found by
solving

∇mf(m∗, R) = −2R−1 EZ [(Z−m∗)] = 0,

and therefore m∗ = Z̄ is the unique global minimizer since
m∗ does not depend on R.

However, f(m, R) is not convex in m, but for fixed m = Z̄

arg min
R�0

log |R|+ tr EZ

[
(Z−m) (Z−m)T R−1

]
= arg min

R�0
− log |R−1|+ tr ΣR−1

= arg min
Y�0
− log |Y |+ tr ΣY,

since the change of variables Y = R−1 is a bijection from
Sd++ onto Sd++. The function g(Y ) = − log |Y | + tr ΣY is
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strictly convex [27], so that the unique global minimizer is
found by solving

∇Y g(Y ∗) = −Y ∗−1 + Σ = 0,

so that Y ∗ = Σ−1. We conclude that m∗ = Z̄ and R∗ = Σ
uniquely minimize f(m, R). �
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