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ABSTRACT

The expected kernel for missing features is introduced and
applied to training a support vector machine. The expected
kernel is a measure of the mean similarity with respect to
the distribution of the missing features. We compare the ex-
pected kernel SVM with the robust second-order cone pro-
gram (SOCP) SVM, which accounts for missing kernel val-
ues by estimating the mean and covariance of missing simi-
larities. Further, we extend the SOCP SVM to utilize the ex-
pected kernel by deriving the expected kernel variance. Re-
sults show that the expected kernel—used with a traditional
SVM solver—shows competitive performance on benchmark
datasets to the SOCP SVM at a far-reduced computational
burden.

Index Terms— missing features, support vector machine,
kernel, expected kernel

1. INTRODUCTION

Data with missing features is a common problem encounted
in signal processing, statistics and machine learning. A stan-
dard solution is to impute the missing values, for example
by replacing the values with the average of all other related
data instances, or using k nearest neighbors (k-NN) of each
instance to fill in missing values (also called hot deck imputa-
tion). Farhangfar et al. recently analyzed the effect of imput-
ing missing features in training data using several standard
imputation strategies, and found that classification accuracy
of support vector machine (SVM) and k-NN classifiers gen-
erally benefit from imputation [1].

In multiple imputation, each missing value is replaced by
a list of m > 1 plausible values, producing m plausible al-
ternative versions of the complete data [2]. Classification or
regression algorithms can be run independently on each of
the m datasets, then averaged Monte-Carlo style to form an
output and a variance that reflects missing-data uncertainty.

1Sandia National Laboratories is a multi-program laboratory managed
and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

Multiple imputation has been used to compute support vector
machines (SVM) kernels to handle missing features [1].

Rather than form a discrete set of multiple imputation
candidates, we propose using the expected kernel—the mean
similarity value over the distribution of possible candidates—
with an SVM. Expected kernels have been used to incorporate
uncertainty due to additive and channel noise on test signals
[3], and the same formulation has also been termed marginal-
ized kernel and used to marginalize out hidden variables when
computing kernels between graphs [4]. Here we show that the
expected kernel is an effective and efficient approach to the
missing features problem.

In related work, Shivaswamy et al. introduced a gener-
alization of the SVM so that the margin-maximization takes
into account the uncertainty due to missing features or noise
[5]. The resulting second-order cone program (SOCP) SVM
is discussed in more detail in section 2.3. The expected kernel
and kernel variance—which we introduce in Sec. 2.3—are
naturally suited for use in the SOCP SVM.

We compare the proposed expected kernel and the ex-
pected kernel SOCP SVM to the SOCP SVM [5] on bench-
mark datasets with features missing completely at random.
We find that the three methods demonstrate similar perfor-
mance, although training the expected kernel SVM is a simple
quadratic program (QP) that can be trained with a fast SVM
solver, whereas the robust SVM requires an SOCP solver.

2. EXPECTED KERNEL

We model each feature vector with missing components as a
random vector Xi distributed as pXi

with finite mean mi and
covariance Σi. Given any kernel K : Rd × Rd → R that
measures the similarity between its inputs, the corresponding
expected kernel Kexp is defined to be the following functional
of two distributions [3]:

Kexp(pXi
, pXj

)
4
= EXi,Xj

[K (Xi, Xj)] (1)

=

∫∫
pXi

(xi)pXj
(xj)K(xi, xj)dxidxj .

The expected kernel averages the similarity of all possible
values of xi and xj , weighted by their respective probability



densities. The expected kernel is positive definite since it is
a weighted average of positive definite (PD) functions K(·, ·)
on the convex PD cone. Note that when Σi = 0 and Σj = 0
for i = 1, . . . , n (that is, there is no uncertainty in the two fea-
ture vectors, s.t. Xi = mi and Xj = mj), then the expected
kernel reduces to the user-defined kernel K(xi, xj).

2.1. Example Expected Kernels

The expected kernel is actually a family of kernels parame-
terized by the practitioner’s choice of K(·, ·), pXi and pXj .
Next, we show that for two standard kernel choices the ex-
pected kernel has a closed-form solution that depends only on
the means and covariances of pXi

and pXj
.

Expected Inner Product Kernel. For the inner product ker-
nelK(xi, xj) = xTi xj (used in the linear SVM), the expected
kernel depends only on the mean and covariance of the distri-
butions pXi

and pXj
:

K lin
exp(pXi

, pXj
) = mT

i mj + δi=jtr Σi, (2)

where tr A is the trace of matrix A and δi=j = 1 if i = j and
0 otherwise.
Proof. For independent random vectors Xi and Xj , (2) fol-
lows directly from application of (1). For the case that i = j,
(1) becomes
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]
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[
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(
EXi

[
XiX
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])
= tr Σi +mT

i mj .

The proof holds for any pXi
and pXj

. �
Expected RBF Kernel. Assuming independent Gaussian
random vectors Xi and Xj and radial basis function (RBF)
kernel K(xi, xj) = exp

(
−γ2 ‖xi − xj‖

2
)

with bandwidth γ,
the expected RBF kernel is given by

K rbf
exp(pXi

, pXj
) = (3)

exp
(
− 1

2 (mi −mj)
T (

Σi + Σk + γ−1I
)−1

(mi −mj)
)

∣∣γΣi + γΣj + I
∣∣ 12 .

Proof. Follows from (1) since
∫
N (x; a,A)N (x; b, B) dx =

N (a; b, A+B), whereN (x; a,A) is a normal distribution in
x with mean a and covariance A. �

Anderson et al. showed that ignoring the scaling term
for the RBF expected kernel in (3) also results in a PD
kernel Kurbf

exp (·, ·) which has the satisfying property that
Kurbf

exp (pXi
, pXi

) = 1 (identity along the diagonal of the
kernel matrix) [3].

Key to the missing features problem is that the expected
kernel adapts the notion of similarity between two feature
vectors by accounting for the covariance of the imputation

estimate: the expected inner product kernel in (2) increases
self-similarity by tr Σi, and the expected RBF kernel in (3)
elongates the standard spherical RBF kernel according to
the covariance of the inputs. For both kernels, Kexp is a
non-decreasing function of the eigenvalues of Σi and Σj—
similarity generally increases with uncertainty.

2.2. Use in an SVM

The expected kernel can be used in a standard SVM [3],
which is trained by solving the QP:

minimize
c,b,ξ

1

2
cTKexpc+ C

n∑
i=1

ξi

s.t. yi
(
cT kexp,i + b

)
≥ 1− ξi (4)

ξi ≥ 0,

where kexp,i
4
= [Kexp(pX1 , pXi), . . . ,Kexp(pXn , pXi)]

T is the
ith column of the expected kernel matrix Kexp; and c, b, ξ,
and C are respectively the standard weights, bias and slack
variables and soft margin regularization parameter.

2.3. The SOCP SVM and Kernel Covariance

Shivaswamy et al. proposed a generalized form of the SVM to
account for missing features [5]. Their approach incorporates
the probabilistic uncertainty due to the missing features into
the maximization of the margin:

minimize
c,b,ξ

1

2
cT K̂c+ C

n∑
i=1

ξi

s.t. yi
(
cT k̂i + b

)
≥ 1− ξi + τi‖c‖Σk

i
(5)

ξi ≥ 0

where k̂i (ith column of K̂) and Σki are the mean and covari-
ance (in kernel space) of the ith column of a random kernel
matrix whose randomness is a result of missing entries. The

presence of the covariance-weighted norm ‖c‖Σk
i

4
=
√
cTΣkj c

makes (5) an SOCP problem that generalizes the standard
SVM: if Σki = 0 for i = 1, . . . , n (no uncertainty in train-
ing data), then (5) reduces to the standard primal SVM for-
mulation, a QP problem. The user-specified parameter τi is
related to the probability of correctly classifying the ith train-
ing point; in [5], the authors use τi = τ for all i.

However, Shivaswamy et al. do not specify a feasible
method to estimate the mean and covariance of missing ker-
nel entries1. In their experiments they set K̂ij = K(x̂i, x̂j),
where x̂i is an imputed estimated of xi; furthermore, they as-
sume spherical covariance, Σki = I for i = 1, . . . , n [5, 6].

1A different SOCP problem is provided for the linear SVM, in which
case the training data are imputed using expectation-maximization [5], but
we focus here on the more general kernelized SOCP SVM.



The expected kernel in (1) is precisely the mean similar-
ity in kernel space, and is theoretically well-suited to replace
K̂ in (5). However, this approach would not capture the vari-
ance Σki of the ith column of the random kernel. Using the
proposed expected kernel for K̂ and setting τi = 0 in (5) re-
sults precisely in the proposed (QP) SVM given in (4). For
τi > 0 we can calculate the variances of the random kernels,
and use it for a diagonal Σki in (5). We provide formulas
for variances of the the inner product and RBF kernels be-
low. To form a full covariance matrix Σki requires computing
Cov [K(Xi, Xj),K(Xk, Xj)], which we do not consider in
this paper.
Inner Product Kernel Variance. Assuming independent
Xi ∼ N (xi;mi,Σi), i = 1, . . . , n, the variance of the inner
product kernel Var

[
XT
i Xj

]
is given by{

tr (ΣiΣj) +mT
j Σimj +mT

i Σjmi if i 6= j,
2 tr (ΣiΣi) + 4mT

i Σimi if i = j.
(6)

Proof. Falls directly from equations (5) (for i 6= j) and (6)
(for i = j) due to Brown and Rutemiller [7]. The Gaussian
assumption is necessary for the i = j case.
RBF Kernel Variance. Assuming independent Xi ∼
N (xi;mi,Σi), i = 1, . . . , n, the variance of the RBF ker-
nel Var

[
Krbf(Xi, Xj)

]
is given by

(πγ−1)d/2N (a; b, A+B + (2γ)−1I)

− γd/2
∣∣4π(A+B + γ−1I)

∣∣−1/2×

N
(
a; b,

1

2

(
A+B + γ−1I

))
. (7)

Proof. Given in Appendix A.

3. EXPERIMENTS

We compare (i) the standard SVM with the expected kernel;
(ii) the SOCP SVM using the expected kernel and the ker-
nel variance given above; and (iii) the SOCP SVM as imple-
mented by its authors [5, 6] with K̂ij = K(x̂i, x̂j) where x̂i
is an imputed estimated of xi using expectation maximization
(EM) [8] and Σki = I .

We consider two benchmark datasets—Ionosphere
and Heart—each randomly partitioned 9:1 into disjoint
training and test sets. For each dataset, we randomly set
as missing 5% to 40% of the entries of each training vec-
tor. Results are averaged over 10 independent runs of the
experiment. The parameters γ (for RBF kernel), C (for the
SVM and SOCP SVM), and τi = τ are determined via 5-fold
crossvalidation.

4. RESULTS

Classification error as a function of missing feature fraction
is plotted for each kernel type and dataset in Figure 1. The

error rate of the SVM if there had been no missing features
is shown for comparison. The results show that using the
expected kernel by itself (without the SOCP form) provides
roughly the same performance as using the more complicated
SOCP formulation, and was dramatically faster to train; 20
times faster on the small (Heart dataset, n = 240) using
a Intel Core 2 machine. Further experiments are needed to
judge whether there are practical circumstances where the
SOCP is worthwhile, with either the pre-imputed implemen-
tation provided by Shivaswamy et al. [5, 6] or with the ex-
pected kernel as considered here.

A. DERIVATION OF VARIANCE OF RBF KERNEL

Let X and Y be independent Gaussian random vectors with
X ∼ N (x; a,A) and Y ∼ N (y; b, B). Express the RBF
kernel as

Krbf(X,Y ) = (2πγ−1)d/2N (X;Y, γ−1I),

and note that

[N (x; y,R)]
2

= |4πR|−1/2N (x; y,
1

2
R).

Compute the second moment

E
[
Krbf(X,Y )2

]
=

∫∫
x y

N (x; a,A)N (y; b, B)Krbf(x, y)2

=(2πγ−1)d
∫∫
x y

N (x; a,A)N (y; b, B)
[
N (x; y, γ−1I)

]2
=(πγ−1)d/2

∫∫
x y

N (x; a,A)N (y; b, B)N (x; y, (2γ)−1I)

=(πγ−1)d/2N (a; b, A+B + (2γ)−1I). (A)

Then from (3), compute the square of the expected value

E
[
Krbf(X,Y )

]2
=
(
γd/2N (a; b, A+B + γ−1I)

)2

=γd/2
∣∣4π(A+B + γ−1I)

∣∣−1/2×

N
(
a; b,

1

2

(
A+B + γ−1I

))
. (B)

Then, the variance of the RBF kernel in (7) is the difference
of equations (A) and (B).
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