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This paper addresses the problem of classifying signals that have been corrupted by noise and
unknown linear time-invariant �LTI� filtering such as multipath, given labeled uncorrupted training
signals. A maximum a posteriori approach to the deconvolution and classification is considered,
which produces estimates of the desired signal, the unknown channel, and the class label. For cases
in which only a class label is needed, the classification accuracy can be improved by not committing
to an estimate of the channel or signal. A variant of the quadratic discriminant analysis �QDA�
classifier is proposed that probabilistically accounts for the unknown LTI filtering, and which avoids
deconvolution. The proposed QDA classifier can work either directly on the signal or on features
whose transformation by LTI filtering can be analyzed; as an example a classifier for subband-power
features is derived. Results on simulated data and real Bowhead whale vocalizations show that
jointly considering deconvolution with classification can dramatically improve classification
performance over traditional methods over a range of signal-to-noise ratios.
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I. INTRODUCTION

Many signal processing applications require classifying
a signal z�t� that has been corrupted by an unknown linear
time-invariant �LTI� filter h�t�,

z�t� = h�t� � x�t� + w�t� , �1�

where x�t� is the signal of interest, w�t� is additive noise, and
� denotes convolution. For example, the LTI filter h�t� could
model seismic reflections of an impulsive source, blurring of
celestial bodies observed through the Earth’s atmosphere, or
the effects of an underwater channel on sound propagation.
We assume that n labeled training pairs �xi�t� ,yi�, i
=1, . . . ,n, are available to classify the observed signal z�t�.
As is standard in classifier theory, we assume each xi�t� and
its class label yi are drawn independently and identically
�i.i.d.� from the same joint distribution as the test signal x�t�
and its unknown label y. This paper presents joint deconvo-
lution and classification methods, in which the existence of
training data can inform an otherwise blind-deconvolution
problem. From a classification perspective, the challenge is
to deal with the mismatch between training pairs �xi�t� ,yi�
provided in signal space �“x�t� space” or x-space� and the
observed signal z�t� in measurement space �z-space�.

The framework developed in this paper will apply to any
random LTI filtering, but our emphasis will be on multipath,
which can be modeled by an impulse response with sparse
coefficients that generally decay with time. Multipath affects
many sensing modalities �e.g., ultrasound, radar, terahertz
imaging�; in this work we present experiments for classify-
ing passive acoustic signals corrupted by multipath in a shal-
low ocean channel using a single hydrophone at low signal-
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to-noise ratios �SNRs�. For the passive sonar problem, z�t�
represents the in-channel received signal, h�t� represents the
multipath, and x�t� is the free-field signal. Underwater mul-
tipath channels are generally time-varying, that is, the mul-
tipath h�t� in Eq. �1� changes between successive transmis-
sions, but not during the transmission. Multipath is highly
sensitive to the locations of the source and receiver, making
it difficult to model effectively.1,2 In this paper, we account
for the uncertainty in the channel by treating h�t� as a ran-
dom process.

The main contributions of this paper include: �1� a uni-
fied maximum a posteriori �MAP� framework for deconvo-
lution and classification for multipath, �2� a quadratic dis-
criminant analysis �QDA� classifier that probabilistically
takes into account unknown LTI filtering, �3� and a compari-
son of feature-based classifiers for marine mammal identifi-
cation using real whale vocalizations in an acoustically ac-
curate multipath environment.

First, we review related research in Sec. I A. Then in
Sec. II, we unify deconvolution and classification in a joint
MAP framework. This method jointly estimates a clean sig-

nal x̂�t�, a channel estimate ĥ�t� and a class label y*. In Sec.
III, we argue that if signal estimate x̂�t� is not needed, better
classification performance can be achieved by not commit-
ting to a particular signal or channel estimate. We show how
a QDA classifier can be designed to incorporate the effects of
uncertain h�t�. The joint MAP deconvolution/classification
�joint MAP� and joint QDA deconvolution/classification
�joint QDA� methods presented in Secs. II and III classify
z�t� based on the entire time signal. We show in Sec. IV how
to extend the joint QDA classifier for use with subband
power features of z�t�. We demonstrate the importance of
taking into account the second-order statistics using simu-

lated multipath with mock signals and with real marine
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mammal vocalizations. We conclude in Sec. V with a discus-
sion about the techniques presented and suggest directions
for future research.

A. Related work on classifying signals corrupted by
unknown LTI filtering

Signal processing researchers in underwater passive
acoustics have considered the problem of classifying signals
corrupted by multipath for over 30 years.3 Ehrenberg et al.
demonstrated in an ocean acoustic propagation experiment
that multipath effects generally cannot be ignored, and that
simple time-gating of the received signal can discard too
much of the signal information for classification.4,5 Multipath
induced by a shallow ocean channel presents an additional
challenge in that the multipath propagation is generally time
varying and the structure of h�t� is sensitive to spatial loca-
tion, making it difficult to estimate or model effectively.1,2

A review of the literature reveals four general strategies
for classifying signals corrupted with multipath. The first is
to extract features from training signals �xi�t�� and the re-
ceived signal z�t� that are invariant to multipath distortion,
then classify based on the multipath-invariant features. Shin
et al. consider a number of time-frequency features for clut-
ter rejection.6 Strausberger et al. compare different distance
measures for 1-nearest-neighbor �1-NN� classification of sig-
nals passed through Rician channels for over-the-horizon
radar.7 Recently, Okopal and Loughlin developed features
invariant to channel dispersion and dissipation and demon-
strated superior classification performance compared to tem-
poral and spectral moment features.8 In general, classifica-
tion using channel invariant features can provide good
results inasmuch as the classes are well-separated in the des-
ignated feature space.

Blind deconvolution is the basis for a second commonly
used approach for classifying z�t�: a clean signal x̂�t� is esti-
mated from z�t�, then a classifier is used on features of x̂�t�.
There are many examples of trying to remove multipath by
blind deconvolution in order to classify.9–15 Some research-
ers exploit the sparseness of the unknown h�t� for producing
an estimate x̂�t�.13–15 Broadhead and Pflug report13 excellent
correlation between true signals and signals blindly decon-
volved by the minimum entropy method with Cabrelli’s spar-
sity criterion,16 but did not consider classification. We have
shown that these blind deconvolution estimates can be highly
correlated to out-of-class training signals, so that nearest
neighbor classification on correlation scores performs poorly,
particularly at low signal-to-noise ratios.17,18

A third approach is to predict the z-space representation
of the training signals �xi�t�� using a forward model for the

multipath ĥ�t�. This has the advantage of avoiding deconvo-
lution. A classifier is built using estimated training signals

zi�t�=xi�t�� ĥ�t� for i=1, . . . ,n to classify z�t�. The forward

model ĥ�t� has been based on geometry or physical
assumptions.9,19 Liu et al. first proposed an in-channel clas-
sifier based on free-field training data.9 They build a classi-
fier by assuming a finite number of multipath reflections for

near-bottom target classification. Dasgupta and Carin classify
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after accounting for multipath via time-reversal imaging,
which requires the geometry and sound speed profile of the
channel.19

We first proposed that to classify a signal corrupted by
unknown multipath, jointly considering deconvolution and
classification can lead to better performance than traditional
approaches that deconvolve then classify in independent
steps.17 Our method leveraged training data to produce a

multipath channel candidate ĥi�t� for each training signal
xi�t� given z�t�. Then, a nearest-neighbor classifier chose the

class y*=yi for which the estimated filter ĥi�t� was most
multipath-like, according to Cabrelli’s sparsity criterion.16

The resulting joint deconvolution and classification method
yields the best signal estimate x̂�t�=xi�t� and filter estimate

ĥ�t�= ĥi�t� that may have produced z�t�, as well as the opti-
mal class label y*=yi. Classification performance was mark-
edly better than minimum entropy blind deconvolution fol-
lowed by classification, particularly at low signal-to-noise
ratios. However, the performance of that joint deconvolution/
classifier relied on several conditions.17 First, it required a

good criterion for evaluating how well a given ĥ�t� repre-
sented a multipath filter. Although Cabrelli’s sparsity crite-
rion is an intuitive and convenient choice, real multipath fil-
ters can violate the maximal sparsity assumption.9 Second,
the proposed nearest-neighbor approach required that the
training signals �xi�t�� be plentiful and that the true x�t� be
close to a training sample of the correct class in terms of
�x�t�−xi�t��. Third, the deconvolution estimate x̂�t� was al-
ways restricted to be a member of the set �xi�t��. Last, it is
not straightforward to incorporate features in classification.

II. JOINT MAP DECONVOLUTION AND
CLASSIFICATION

A joint deconvolution and classification estimate of the
signal, filter, and class label can be constructed using the
MAP criterion. Let vectors z, x, h, and w be critically
sampled versions of signals z�t�, x�t�, h�t�, and w�t�. In this
section, we assume that x and w are realizations of random
vectors drawn from independent Gaussian distributions. Real
signals x certainly may possess non-Gaussian characteristics
but the Gaussian assumption is critical to keeping an other-
wise formidable deconvolution problem tractable. We as-
sume that the distribution of w is zero-mean with diagonal
covariance matrix �w

2 I, where I is the identity matrix; that the
probability of x conditioned on the class label y has mean
�x�y and covariance �x�y; and that the distributions of x, h,
and w are mutually independent. We model h using a multi-
variate Laplacian distribution with independent dimensions,
so that the ith element of the random multipath has mean
�h�i� and scale parameter b�i�. The Laplacian distribution is
an appropriate prior model for multipath since it yields
sparse realizations. Let �= ��x�y ,�x�y ,�h ,b ,�w� be the set of
parameters for these three distributions, where � is assumed
to have been modeled or estimated a priori.

Then, the proposed joint MAP class estimate y* solves

y* = arg max�max p�x,h,y�z,��� �2�

y x,h

S. Anderson and M. R. Gupta: Joint deconvolution and classification



=arg max
y

�max
x,h

�p�z�x,h,y,��p�h���p�x�y,���p�y�� �3�

=arg min
y
	min

x,h

�z − h � x�2 + �w

2 �x − �x�y��
x�y
−1

2

+ 2�w
2 �

i

�hi − �i�
bi

� + �w
2 log��x�y� − 2�w

2 log p�y�
 , �4�

where Eq. �3� follows from Eq. �2� using Bayes’ rule, the
chain rule, and independence assumptions; and Eq. �4� fol-
lows from Eq. �3� by taking the negative logarithm of the
pdfs, removing constants that do not depend on x, h, or y
from the arg min, and scaling each term by 2�w

2 . Throughout
the paper, we use the notation �x� to denote the �2 norm and
�x�A

2 for xTAx. The �z−h�x�2 term in Eq. �4� drives the esti-
mated filter h and test signal x to be consistent with the
received signal z in terms of squared error. The next two
terms in Eq. �4� drive x to match the a priori expected signal
via the �2 norm and drive h to match the a priori expected
filter via the �1 norm. Note that these latter two terms are
regularized by the noise variance—the greater the noise
power, the more the estimate relies on the a priori expecta-
tions and less on matching the received signal z�t�. The
fourth term penalizes classes that exhibit high variance, and
the fifth term is the class membership prior. Since the noise
determines the degree of regularization, a curious behavior
of this approach is that it performs poorly for high SNR: the
first term will dominate as �w

2 goes to zero, and solutions for
x and h will no longer depend on �x�y and �h, respectively.

The objective function in Eq. �4� is not convex since it
involves a product of variables in the convolution integral
h�x. However, the problem is jointly convex in h and x in
the limit as �w→�, and is marginally convex in x or h for all
�w. Therefore, we opt to solve Eq. �4� using an alternating
minimization approach as a heuristic for finding the true so-
lution. Using H for the Toeplitz matrix representation of dis-
crete convolution with fixed h,20 and for fixed y, the objec-
tive as a function of x can be written in the form of
generalized Tikhonov regularization �Hx−z�2+�w

2 �h−�h�
�h

−1
2 .

The solution21 is

x̂ = �HTH + �n
2�x�y

−1�−1�HTz + �w
2 �x�y

−1�x�y� .

Next, we solve Eq. �4� for those terms depending on h by
fixing x and rewriting as

ĥ = arg min
h

�Xh − z�2
2 + �w

2 �D−1�h − �h��1, �5�

where X is the Toeplitz matrix representation of discrete con-
volution of x with h, D is a diagonal matrix with entries bi /2,
and � · �1 is the �1 norm. Equation �5� can reformulated as a
quadratic program with linear constraints.22

Since the optimization problem in Eq. �4� is non-convex,
the alternating minimizations strategy is not guaranteed to
converge to the global minimum.23 A common approach is to
optimize starting from several initial points, then choose the
overall minimizer. The initial guesses could be drawn i.i.d.

from the class-conditional distribution N��x�y ,�x�y�. We use
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a slightly different approach to take advantage of the fact that
we have examples from each class: convex combinations of
the training signals are initial guesses.

Experiments and results for the joint MAP classifier are
presented in Sec. III.

A. A related MAP deconvolution approach

MAP deconvolution has been explored previously by
Lam and Goodman for blind image deblurring �without
classification�.24 In that work, Lam and Goodman estimate
the point spread function h and the image covariance �x by
maximizing p�z �h ,�x�p�h�p��x�. The prior p��x� is replaced
with a heuristic smoothness constraint on the covariance, and
the prior p�h� is replaced with the hard constraint h�H for
some convex set H. They propose an EM algorithm imple-
mentation that alternates between estimating �x �the E-step�
and h �the M-step� in the Fourier domain. The image is fi-
nally estimated by Wiener deconvolution using the estimated
h and �x. The algorithm results in high-quality deblurred
image estimates.24

The Lam and Goodman MAP blind deconvolution may
be extended to the multipath problem by applying a Laplac-
ian prior for p�h� as we have done in Eq. �4� instead of their
hard constraint h�H. However, their approach cannot be
extended to fit in the joint deconvolution/classification para-
digm by simply conditioning on the class label y and adding
the prior p�y� in the optimization. First, Lam and Goodman
assume that the image x �and therefore, z� is a realization of
a zero-mean Gaussian distribution. In our framework, the
class-conditional mean is an important discriminating feature
of the class. Second, their method must estimate �x, but in
our framework the class conditional covariance �x�y is esti-
mated a priori from training pairs. Naively replacing �x with
�x�y renders their E-step useless so that iterating does not
improve the initial guess. Thus, the training pairs �xi ,yi� offer
little advantage to their MAP blind deconvolution technique.

III. PROBABILISTIC DECONVOLUTION AND
CLASSIFICATION USING QDA

Estimating the true signal is difficult and unnecessary if
only a class label is required. In this section, we explore
classifying signals jointly with probabilistic deconvolution,
in which a statistical characterization of x�t� and h�t� are
used without ever choosing a particular, deterministic signal
or channel estimate. Specifically, we consider the maximum
likelihood classifier that solves

y* = arg max
y

p�z�y�

�6�

=arg max
y
� � p�z�x,h,y�p�x�y�p�h�p�y� dx dh .

Assuming a uniform prior, the classifier in Eq. �6� differs
from the joint MAP classifier in Eq. �2� in that the maxx,h

operator in Eq. �2� is replaced by expectation over x and h
in Eq. �6�. For the remainder of this paper, we will
assume uniform prior p�y� such that arg maxyp�y �z�

=arg maxyp�z �y�.
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QDA is a popular classification rule that models each
class-conditional distribution in Eq. �6� as Gaussian.25–27

This assumption can be motivated by the central limit theo-
rem and the fact that the Gaussian is the maximum entropy
�least assumptive� distribution given first and second mo-
ments. Here, we build a QDA classifier in z-space by assum-
ing p�z �y� in Eq. �6� is Gaussian, and we show that one can
calculate the sufficient statistics �z�y and �z�y of p�z �y� from
the estimated mean and covariance of the channel h�t� and
the estimated means and covariances of the training signals
from each class. Note that we do not make any assumptions
on the distributions of h or x given y other than that they
have finite first and second moments; in fact, the result of the
convolution h�x would not be Gaussian if h and x were
assumed to be realizations of Gaussian processes. This sec-
tion expands on a recent workshop paper.18

A. QDA classification of signals corrupted by LTI
filtering

Let x be a realization of a random process with finite
class-conditional mean �x�y and finite covariance �x�y; let the
noise w be a realization of a zero-mean random process with
covariance �w

2 I; and let h be a realization of a random pro-
cess with mean �h and covariance �h. Given these statistics,
the full derivations of the first and second moments of the
distribution of z are given in the Appendix. In summary, the
first moment �z�y can be written in terms of the mean class-
conditional signal and mean filter as

�z�y = �x�y � �h. �7�

Likewise, the covariance �z�y conditioned on class y can be
expressed in terms of the class-conditional signal and filter
statistics as

�z�y = ��x�y + �x�y�x�y
T � �� ��h + �h�h

T� + �w
2 I − �z�y�z�y

T ,

�8�

where �� denotes two-dimensional discrete convolution.

B. Experiments with signal-based joint QDA and joint
MAP classification

We tested the proposed methods with two experiments
that differ in how we generate the simulated multipath. In the
first we use a Laplacian random process to generate realiza-
tions of multipath channels. In the second, a random
K-sparse model is used. In both experiments the clean,
x-space signals are drawn from class-conditional Gaussian
distributions, which means that the received signals in
z-space are not actually Gaussian distributed.

1. Signal classification experiment: Laplacian
multipath

Each coefficient of a multipath filter was drawn indepen-
dently from a Laplacian random process with parameters

��n�, b�n�,

2976 J. Acoust. Soc. Am., Vol. 124, No. 5, November 2008 H.
p�h�n����n�,b�n�� =
1

2b�n�
e−��x−��n���/b�n�,

for n=0, . . . ,99, where we set the expected filter to be
�h�n�=� �n�−0.6�n−49�+0.1� �n−99�, and the scale param-
eter b�n� decays as n grows: b�n�=0.2e−0.024n. The decay
parameter coefficients for this experiment were chosen to
model oceanic multipath filtering of sonar signals.

Test and training signals were drawn i.i.d. from a Gauss-
ian distribution N��x�y ,�x�y� where the class y was drawn
uniformly between two classes. We considered two classifi-
cation scenarios to test performance: classes whose mean
vectors are well-separated, and close. The mean signals are
composed of square and sine waves, and the covariance ma-
trices are Toeplitz with smooth covariance structure. The
specific values of �x�y and �x�y for each experiment are
shown in Table I. Each test signal z was created by convolv-
ing a randomly drawn signal x with randomly drawn multi-
path h, and adding Gaussian white noise w to achieve differ-
ent SNRs, where the SNR is with respect to the multipath
signal, 20 log �x*h� /�w.

We compared the joint QDA classifier to a matched filter
that ignores multipath. For the matched filter, the received
signal z is tested against �x�y for each class. The joint MAP
classifier in Eq. �4� is compared to a matched filter on a blind
deconvolution signal estimate. For deconvolution, the re-

ceived signal z is first denoised by Wiener filtering, then ĥ is
estimated using Cabrelli’s blind deconvolution method for
signals that have undergone unknown multipath filtering.16

The estimate x̂ is then computed via deconvolution in the
Fourier domain. The true signal length was used as a re-
quired input to Cabrelli’s method. Each of the methods used
the true signal and channel statistics, and the true SNR where
needed.

2. Signal classification experiment: K-sparse
multipath

The K-sparse experiments are the same as described in
the previous subsection, except the multipath filters were

TABLE I. Simulation parameters for joint MAP/joint QDA experiments.
Note that square�n�=sgn�sin�n��.

Parameter Class 1 Class 2

Well-separated means
�x�y�n� 1

4
square�6�n /100�

1

4
square�12�n /100�

�x�y�m ,n� 1

100
�� �m−n�+e−�m−n�/20�

1

100
�� �m−n�+e−�m − n�2/10�

Close means
�x�y�n� 1

4
square�6�n /100�

1

4
sin�6�n /100�

�x�y�m ,n� 1

100
�� �m−n�+e−�m−n�/20�

1

100
�� �m−n�+e−�m − n�2/10�
generated using a sparse model:
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h�n� = �
i=1

K

�i� �n − di� ,

with K=15 nonzero coefficients, delays di drawn uniformly
on �0,99�, �i= 	e−
di with randomly chosen sign, and decay
parameter 
=0.0240 chosen to mimic real underwater
acoustic channels. An example realization of a filter h drawn
from this model is shown in Fig. 1. The diagonal covariance
matrix �h is estimated from 1000 samples of the impulse
response.

C. Signal-based joint QDA and joint MAP results

Figure 1 shows a reconstructed multipath estimate pro-
duced by the joint MAP deconvolution/classifier correspond-
ing to the chosen class for the well-separated means experi-
ment at 10 dB SNR. In this case, joint MAP correctly

FIG. 1. �Color online� Example multipath realization from the K-sparse
model �stem�, and the deconvolution estimate produced by the joint MAP
deconvolution/classifier �solid� at 10 dB SNR.

−10 −8 −6 −4 −2 0 2 4 6 8 10

50

60

70

80

90

100

SNR (dB)

C
or

re
ct

cl
as

si
fic

at
io

n
(%

)

Joint QDA
Matched Filter
Joint MAP
Blind Deconv + MF

(a)

−10 −8 −6 −4 −2 0 2 4 6 8 10

50

60

70

80

90

100

SNR (dB)

C
or

re
ct

cl
as

si
fic

at
io

n
(%

)

(c)

FIG. 2. �Color online� Classification accuracy for four experiments using m

in �c� and �d�. The results are averaged over 1000 i.i.d. test signals for each SNR
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identified the class label. The recovered filter is a reasonable
reconstruction of the true filter, but generally underestimates
the amplitude of the first coefficients, and does not reliably
reconstruct the tail of h. The gross errors can be ascribed to
the fact that the optimization problem in Eq. �4� is not con-
vex, and to the mismatch between the Laplacian prior and
K-sparse model.

Classification results in Fig. 2 show that the proposed
joint QDA classifier dominates the matched filter classifier
for both Laplacian multipath in �a� and �b�, and for multipath
generated by the K-sparse model in �c� and �d�. The means
for each class used for �a� and �c� �well-separated means� are
orthogonal, so the matched filter performs well despite ignor-
ing the multipath. However, for �b� and �d� the means are
similar, and the matched filter performs poorly compared to
joint QDA. The joint MAP classifier performs well at low
SNR, but as predicted, performance degrades as SNR in-
creases. For truly sparse multipath in �c� and �d�, the joint
MAP approach is unaffected for well-separated means in �c�,
and affected moderately at high SNR for close means in �d�
compared to results using Laplacian multipath. Evidently, the
�1 is an appropriate heuristic for the K-sparse multipath
model; using �1 criteria to obtain sparse solutions is a popu-
lar approach.28

IV. QDA CLASSIFICATION OF SIGNALS CORRUPTED
BY LTI FILTERING USING FEATURES

Blind signal deconvolution and the proposed joint MAP
and signal-based joint QDA methods are computationally
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prohibitive for signals captured at high sample rates. For
M-length sampled signals, Cabrelli’s method requires the in-
version of an M �M Toeplitz matrix, which at best is of
complexity O�M log M�. The joint MAP deconvolution re-
quires more iterations to converge as M increases, and re-
quires �as does joint QDA� inversion of an M �M covari-
ance matrix, which in general is complexity O�M3�. To
decrease the computational burden and possibly increase
classification performance, an alternative is to classify based
on features that represent important characteristics of the sig-
nals and provide good class discrimination.29 The hope is
that classes can be well-discriminated by features of signifi-
cantly smaller dimensionality d�M.

Unless multipath-invariant features are used, a classifier
trained on x-space features will not generally be applicable to
classify the features of z�t� directly. However, if a functional
relationship can be found that relates x-space features to their
images in z-space, then a suitable classifier can be trained
and applied in z-space. We show that such a relationship can
be derived for subband power features, which represent an
important class of discriminating features for many remote-
sensing applications. Extending the proposed joint QDA
classifier to subband features in z-space requires expressing
the mean and covariance of the subband power feature vector
for z�t� in terms of statistics of the subband power features of
the channel and training data.

Let the d-dimensional feature vector Pz

= �Pz�f1�¯Pz�fd��T be composed of the subband powers of
z�t� at frequencies �f i� for i=1, . . . ,d. Then for any frequency
f , because Pz�f�=Z�f�Z*�f�, and Z�f�=X�f�H�f�+W�f�, the
subband power can be expressed as

Pz�f� = Px�f�Ph�f� + Pw�f� + 2 Re�X�f�H�f�W*�f�� , �9�

where Px�f�, Ph�f�, and Pw�f� denote the power of the signal,
the channel, and the noise for frequency f , respectively.
Based on Eq. �9�, derivations for the mean and covariance of
the feature vector Pz are given in the Appendix. For these
derivations, it is assumed that w�t� is a realization of a
Gaussian white noise process. The class-conditional mean
feature vector �Pz�y

can be expressed in terms of the noise
power �w

2 and mean vectors of the clean signal features and
channel features, �Px�y and �Ph

, respectively, as

(a)

FIG. 3. �Color online� �a� Simulated ocean bathymetry with a single receive

a source located at �460,250,−70� m, generated by the Sonar Simulation Toolse
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�Pz�y
= �Px�y · �Ph

+ �w
2 1 , �10�

where · denotes Hadamard �Schur or element-wise� multipli-
cation, and 1 is a vector of ones. The class-conditional cova-
riance �Pz�y

can be expressed in terms of �w
2 and second-

order statistics of Px �y and Ph as

�Pz�y
= �Px�y · �Ph

+ �w
4 I + �Ph

· �Px�y�Px�y
T + �Px

· �Ph
�Ph

T

+ 2�w
2 diag��Px�y · �Ph

� . �11�

It is assumed that �Ph
, �Ph

, and �w
2 can be estimated from the

channel. The statistics �Px�y and �Px�y are estimated from
training data for each class. Together, these statistics are used
to compute class-conditional QDA model parameters �Pz�y
and �Pz�y

from Eqs. �10� and �11� and, hence, build a QDA
subband power feature classifier in the z-space.

A. Informed and blind classifiers using features

To evaluate the proposed z-space joint QDA using
power features, we consider two alternate approaches to clas-
sification from power features. First, an “informed” x-space
classifier approach uses the expectation of the channel’s sub-
band power response E�Ph� and the noise power �w

2 to trans-
form the z-space features to x-space by subtracting the noise

power and deconvolving by E�Ph�: P̂x�f i�= �Pz�f i�
−�w

2 � /E�Ph�f i��. This approach uses the mean but not cova-
riance of the channel.

Second, a “blind” x-space classifier approach uses
x-space features, and simply ignores statistics of the channel
and noise altogether. Training signals are first normalized by
their total power before a classifier is trained. Then, a re-
ceived signal z�t� is also normalized by its total power before
extracting features.

We compare joint QDA to both blind and informed ap-
proaches for QDA, 1-NN, and a support vector machine
�SVM�.25

B. Simulated classification experiments using joint
QDA with power features

We consider the task of classifying narrow-band signals
corrupted by unknown multipath due to propagation in a
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shallow ocean channel. To simulate two classes of narrow-
band signals with two subband power features, training and
test signals are generated i.i.d. using the z-domain model

X�y�z� =
�z − 1��z + 1�


�=1
2 �z − p��y��z − p

��y
* �

, �12�

where the location of each class-conditional pole p��y, �
� �1,2� is drawn randomly from the model a��y exp�j���,
where �� is fixed, and a��y = �a1�y ,a2�y�T is multivariate Gauss-
ian distributed with mean �a�y and covariance matrix �a�y.
Although the vector a for each class is Gaussian distributed,
the signals in feature space are not, as per Eq. �12�. Figure 4
shows an example pole-zero plot and corresponding log-
feature space scatterplot for a well-separated case. We con-
sider three instances of the experiment for choices of �a�y
that result in different class separation. The parameters �a�y
and �a�y for each instance of the experiment are shown in
Table II, and �1= 1

50 and �2= 1
5 . Note that since all poles and

zeros lie within the unit circle, for each case the selected
parameters correspond to a realization of a minimum phase
signal, which could be produced from natural sources.

Test and training signals were generated by taking i.i.d.
draws of poles as described above, and taking 5000 evenly
spaced samples around the unit circle of the complex
z-plane, so that the length of each signal corresponds to

TABLE II. Pole magnitude distribution for feature-based classification ex-
periments.

Parameter Class 1 Class 2

�a�y �1.00 0.99

0.99 9.00 ��10−6 � 6.00 −0.80

−0.80 1.00 ��10−4

Close poles
�a�y �0.945 0.905� �0.909 0.948�

Moderately-separated poles
�a�y �0.945 0.875� �0.879 0.948�

Well-separated poles
�a�y �0.965 0.875� �0.875 0.948�
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FIG. 4. �Color online� �a� Pole-zero plot showing the mean location of the

scatter-plot of the classes in log-feature space.
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1.25 s, sampled at 4 kHz. At frequencies �1 and �2 the sub-
band power is extracted from each signal and used as clas-
sification features. The parameters in Table II were chosen
such that the generated test and training signals were linearly
separable in the subband power feature space.

Channel impulse responses h were drawn i.i.d. in the
following manner. A receiver is placed at a depth of 50 m in
a simulated shallow water channel, as shown in Fig. 3.
Source locations were drawn uniformly from the cube 2 km
across north and east and 150 m deep; locations falling be-
low the ocean floor are discarded and redrawn. Channel im-
pulse responses h were generated by propagating an impul-
sive source from the random source locations to the receiver
using the CASS Eigenray routine provided in the Sonar
Simulation Toolset.30 Impulse responses were sampled at
4 kHz. The ocean environment is set up to be fairly extreme,
but static. We have imposed a prototypical sound speed pro-
file �ranging from 1477 to 1492 m /s�, and have modeled the
ocean bottom to contain sandy gravel with mean grain size
2 mm. Surface roughness is governed by the wind speed,
which is set to 15 km /h. The channel geometry and a sample
channel impulse response are shown in Fig. 3.

Maximum likelihood estimates of �Px�y and �Px�y were
computed from 1000 randomly drawn training signals, and
maximum likelihood estimates of �Ph

and �Ph
were com-

puted from 1000 randomly drawn channel impulse re-
sponses. The test samples were corrupted with randomly
drawn multipath, and then i.i.d. white noise with variance �w

2

was added, where the multipath-corrupted-signal to noise ra-
tio was varied between −10 and 10 dB. Classification results
were averaged over 5000 trials for each SNR.

We compare the proposed z-space joint QDA classifier
to x-space QDA, SVM with a linear kernel, and 1-NN clas-
sifiers using both the informed and blind approaches de-
scribed in Sec. IV A. In each of the three simulations, the
training and test data were linearly separable. Therefore, we
set the regularization term C in the linear SVM �Ref. 32� to
a large value, C=107. Then, none of the classifiers requires
cross-validation.
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C. Simulation results

Results for each experiment are shown in Fig. 5. The
joint QDA method using features �QDA in z-space� performs
markedly better than the other approaches when the classes
are difficult to separate. As class separation increases, the
performance of the z-space QDA and informed SVM and
1-NN become similar.

D. Classifying bowhead whale songs in multipath
channel

We employ the feature-based joint QDA method to iden-
tify individual Bowhead whales in a multipath environment
by classifying the end notes of their songs. Several end notes
of Bowhead whale vocalizations for two individuals were
extracted from the MobySound archive.33 Fifteen vocaliza-
tions are available for whale 1, and nine vocalizations are
available for whale 2. According to the metadata, the end
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FIG. 5. �Color online� Results for feature-based classification on simulated
data for the experiments where classes are �top� close in feature space,
�middle� moderately separated in feature space, and �bottom� well-separated
in feature space.
notes of Bowhead whale songs are relatively stable from
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year to year. Therefore, we hope to be able to acoustically
discriminate between two individuals based on previously
recorded vocalizations. Our experimental setup simulates a
shallow ocean channel �in comparison to the observation dis-
tances�, and low SNR. Each of the signals has non-negligible
interfering noise from bearded seals, sea ice and banging
hydrophone cables.33 The vocalizations were recorded in
April 1988 near the coast of Point Barrow, Alaska, but for
these experiments, we inject the signals into randomly drawn
locations in the simulated bathymetry shown in Fig. 3�a�.
Example vocalizations for each whale are shown in Fig. 6.

Classifiers were trained on five training signals drawn at
random for each class. The remaining 14 signals were propa-
gated from a random source location in the bathymetry to the
receiver using the CASS Eigenray routine. Gaussian white
noise is added to the multipath signal to achieve a specified
SNR. To increase the statistical significance of the results,
classification results were averaged over 1000 iterations of
the random training/test partitioning with random source lo-
cations.

For classification, four peak power features were se-
lected: the two largest amplitude peaks averaged over signals
in class 1 �163 and 258 Hz� and the two largest amplitude
peaks for class 2 �588 and 207 Hz�. Features do not corre-
spond to strong interfering noise, and result in classes that,
prior to the channel effects, are 100% linearly separable. As
before, we compare the z-space joint QDA classifier to
x-space QDA, linear SVM, and 1-NN classifiers using both
informed and blind approaches.

E. Bowhead whale song results

Results for the Bowhead whale songs are shown in Fig.
7. The z-space joint QDA classifier using power features
consistently achieves roughly 4% higher accuracy than other
methods across the range of SNRs. This can be ascribed to
the fact that the multipath channel distorts the relative cova-
riance structures of class 1 and class 2 whale vocalizations.

V. CONCLUSIONS AND OPEN QUESTIONS

We have presented classification methods that jointly
consider the effects of multipath distortion with classifica-
tion. In particular, we have investigated a joint MAP
deconvolution/classifier that incorporates first- and second-
order statistics of the channel and yields a MAP solution for

the recovered signal x̂, the recovered filter ĥ, and the class
estimate y*. Two drawbacks of the joint MAP algorithm are
that it is not convex, and that it theoretically performs poorly
at high SNR. The first problem might be addressed by maxi-
mizing the marginal p�h ,y �z� which yields a convex expres-
sion, but requires more complicated optimization ap-
proaches. The second problem arises since regularization
scales with the noise power �w

2 , which may be replaced by a
fixed penalty that can be chosen via cross-validation.

We hypothesized that better classification performance
can be gained by marginalizing over x and h. To that end, we
presented a joint QDA classifier that accounts for the LTI
corruption probabilistically. Experiments showed that the

joint QDA classifier outperformed the joint MAP classifier
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t 800
and a classifier based on blind deconvolution. Further, we
derived a joint QDA classifier that classifies based on sub-
band power features. Experiments on both simulated signals
and real Bowhead whale vocalizations demonstrated the ef-
ficacy of the joint QDA classifier using features. Although
we have derived the joint QDA classifier for subband power
features, there are many other important classes of features
for signal processing including real cepstrum, wavelets, and
wavepacket decomposition.12 In cases where the features are
linear functions of the data, such as the shift invariant wave-
packets described in Ref. 12, the derivation of a joint QDA
classifier is straightforward. However, features that are non-
linear functions of the received signal �e.g., real cepstrum�
may require low-order approximate solutions.

We compared the joint QDA classifier on subband fea-
tures to other classifiers that also took into account the mean
multipath using subband power features. We showed that us-
ing this first-order multipath information significantly im-
proved performance over ignoring the multipath altogether,
except in the simulation experiment with well-separated
classes and low noise. An open question in this line of re-
search is how to take advantage of further information about
the multipath for other classifiers, such as the nearest-
neighbor and support vector machine classifiers.
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FIG. 6. �Color online� Spectrograms of whale song-endnotes for �a� the fir
second whale tend to be more variable, cover a greater dynamic range, a
vocalization in �a� contains interfering calls from a bearded seal from abou
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FIG. 7. �Color online� Classification results for identifying Bowhead whales
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APPENDIX: DERIVATIONS

In the Appendix, we use x, h, w, and z �and hence, all
functions of them, for example Px� to denote random signals,
not their realizations as done in the main body.

Derivation of the first and second moments of z„t…

This section details the derivation of Eqs. �7� and �8�.
Since the noise is zero-mean, the nth component of the mean
time signal �z�y is

�z�y�n� = E��x � h��n� + w�n��y� = E	�
k

x�k�h�n − k��y

= �

k

E�x�k��y�E�h�n − k�� = �
k

�x�y�k��h�n − k� ,

and thus �z�y =�x�y ��h.
The covariance matrix is derived:

�z�y = E�zzT�y� − E�z�y�E�z�y�T

=
�a�

E��x � h��x � h�T�y� + E�wwT� − �z�y�z�y
T

=
�b�

E��xxT� �� �hhT��y� + �w
2 I − �z�y�z�y

T

=
�c�

E�xxT�y� �� E�hhT� + �w
2 I − �z�y�z�y

T ,

where the expectations are taken with respect to the appro-
priate distributions. In the above, �b� follows from �a� be-
cause the �m ,n�th component of the outer product �x�h�
��x�h�T can be expressed as


�
k

x�k�h�n − k��
�
i

x�i�h�m − i��
= �

k
�

i

x�k�h�n − k�x�i�h�m − i�

= �
k

�
i

�x�k�x�i���h�n − k�h�m − i�� ,

and thus �x�h��x�h�T= �xxT����hhT�. Then, �c� follows from
�b� due to the linearity of both expectation and convolution.
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Derivation of the first and second moments of Pz„f…

This section details the derivation of Eqs. �10� and �11�.
Let �Pz�y

=E�Pz �y�, �Px�y =E�Px �y�, �Ph
=E�Ph� and E�Pw�

=E�WW*�=�w
2 1 by assumption, where 1 is a vector of ones.

The first moment given by Eq. �10� follows from Eq. �9�
since E�Re�a��=E� 1

2 �a+a*��= 1
2 �E�a�+E�a�*�=Re�E�a��,

and X�f�, H�f�, and W*�f� are independent, so
E�Re�X�f�H�f�W*�f���=0 because E�W*�f��=0. The fact
that E�W*�f��=0 follows from E�w�t��=0 and the indepen-
dence of the noise random process over time.

For the class-conditional covariance �Pz�y
, we derive the

second moment and cross-correlation separately. For nota-
tional simplicity, we denote E�x �y� by E�x�, that is, the class-
conditional membership is implied in the expectation. For
the second moment, it follows from Eq. �9� that

E�Pz�f�2� =
�a�

E�Px
2Ph

2 + Pw
2 + 4 Re�XHW*�2

+ 4�PxPh + Pw�Re�XHW*� + 2PxPhPw�

=
�b�

E�Px
2�E�Ph

2� + E�Pw
2 � + 4E�Re�XHW*�2�

+ 2E�Px�E�Ph�E�Pw�

=
�c�

E�Px
2�E�Ph

2� + E�Pw
2 � + 2E�XX*HH*WW*

+ Re��XHW*�2�� + 2E�Px�E�Ph�E�Pw�

=
�d�

E�Px
2�E�Ph

2� + E�Pw
2 � + 4E�Px�E�Ph�E�Pw�

+ 2 Re�E�XX�E�HH�E�W*W*��

=
�e�

E�Px
2�E�Ph

2� + E�Pw
2 � + 4E�Px�E�Ph�E�Pw� . �A1�

In the above, �b� follows from �a� because 4E��PxPh

+ Pw�Re�XHW*�� can be expanded into the sum of two terms
containing E�W*� and E�W*WW*�, and since these terms
equal zero, 4E��PxPh+ Pw�Re�XHW*��=0. For �c�, we em-
ployed the identity �Re�c��2=1 /2�cc*+Re�c2��. Then �d� fol-
lows from �c� by the definition of power and the interchange-
ability of expectation and the real operator, explained earlier
in this section. The step from �d� to �e� holds because the
Fourier transform W�f�=F�w�t�� of a zero-mean Gaussian
white noise process is a complex zero-mean Gaussian white
process with Re�W� and Im�W� uncorrelated, E�Re�W��
=E�Im�W��=0, and E�Re�W�2�=E�Im�W�2�= 1

2�w
2 , so that

E�W*W*�=E�Re�W�2−2j Re�W�Im�W�−Im�W�2�=0.34

Last, we derive the cross-correlation using as short-hand
Pzi

to denote Pz�f i�, Phi
to denote Ph�f i�, Hi to denote H�f i�,

etc. From Eq. �9�, for i� j,

E�Pzi
Pzj

� = E�Pxi
Phi

Pxj
Phj

� + E�Pxi
Phi

Pwj
�

+ E�Pxj
Phj

Pwi
� + E�Pwi

Pwj
� + 2E�Re�XjHjWj�

��Pxi
Phi

+ Pwi
�� + 2E�Re�XiHiWi��Pxj

Phj

+ Pwj
�� + 4E�Re�XiHiWi�Re�XjHjWj�� , �A2�
Consider the fifth term of Eq. �A2�,
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2E�Re�XjHjWj��Pxi
Phi

+ Pwi
�� = E��XjHjWj + X

j
*H

j
*W

j
*�

��XiXi
*HiHi

* + WiWi
*�� .

After multiplication, the above consists of four terms, each
containing a single Wj. Since Wj is uncorrelated with every
other random variable and E�Wj�=0, each of the four terms
in the expansion has zero mean, and thus the entire expres-
sion is zero. By the same logic, the sixth term of of Eq. �A2�
is

2E�Re�XiHiWi��Pxj
Phj

+ Pwj
�� = 0.

The last term of Eq. �A2� can be rewritten

4E�Re�XiHiWi�Re�XjHjWj�� = E��XiHiWi + X
i
*H

i
*W

i
*�

��XjHjWj + X
j
*H

j
*W

j
*�� .

Taking the product results in four terms which each have a
single Wi and Wj. Since Wi and Wj are uncorrelated and each
has zero-mean, each of the four terms is zero. Thus, the
cross-correlation of any two frequencies f i� f j is

E�Pzi
Pzj

� = E�Pxi
Pxj

�E�Phi
Phj

� + E�Pxi
�E�Phi

�E�Pwj
�

+ E�Pxj
�E�Phj

�E�Pwi
� + E�Pwi

�E�Pwj
� . �A3�

Conditioning on the class label y, Eqs. �A1� and �A3�
can be combined into a single covariance matrix, where the
�i , j�th element is

�Pz�y
�i, j� = ��Px�y�i, j� + �Px�y�i��Px�y�j����Ph

�i, j�

+ �Ph
�i��Ph

�j�� + ��Pw
�i, j� + �Pw

�i��Pw
�j��

+ ��Px�y�i��Ph
�i��Pw

�j�

+ �Px�y�j��Ph
�j��Pw

�i���1 + �ij�

− �Pz�y
�i��Pz�y

�j�

= �Px�y�i, j��Ph
�i, j� + �Pw

�i, j�

+ �Px�y�i��Px�y�j��Ph
�i, j�

+ �Px�y�i, j��Ph
�i��Ph

�j�

+ 2�Px�y�i��Ph
�i��Pw

�i��ij

= �Px�y�i, j��Ph
�i, j� + �w

4 �ij

+ �Px�y�i��Px�y�j��Ph
�i, j�

+ �Px�y�i, j��Ph
�i��Ph

�j�

+ 2�w
2 �Px�y�i��Ph

�i��ij ,

where �ij =1 if i= j or 0 otherwise. The last step in the deri-
vation holds since E�Pw�f i�Pw�f j��=E�WiWi

*WjWj
*� is 2��w

2 �2

for i= j or is ��w
2 �2 for i� j by Isserlis’ Gaussian moment

theorem,35 and �Pw
�i�=�w

2 . The result is rewritten in compact
form in Eq. �11�.
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