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ABSTRACT

We consider the problem of assigning a class label to the noisy
output of a linear system, where clean feature examples are
available for training. We design a robust classifier that op-
erates on a linear estimate, with uncertainty modeled by a
Gaussian distribution with parameters derived from the bias
and covariance of a linear estimator. Class-conditional distri-
butions are modeled locally as Gaussians. Since estimation
of Gaussian parameters from few training samples can be ill-
posed, we extend recent work in Bayesian quadratic discrimi-
nant analysis to derive a robust local generative classifier. Ex-
periments show a statistically significant improvement over
prior art.

Index Terms— noisy features, robust estimation, MAP
classification, pattern classification, supervised learning

1. INTRODUCTION

The problem of classifying a noisy feature vector using clean
training features arises often in practice. The cost associated
with obtaining quality test data may be prohibitive, or the test
environment may not be characterized as well as the training
environment. For example, an inexpensive sensor deployed
in a sensor network may compare less precise test features to
higher quality training features obtained in a laboratory set-
ting. In automatic speech recognition, acoustic conditions
during testing are typically much noisier than during training
[1, 2]. In remote sensing, training features may be extracted
from free-field signals, while test features are extracted from
signals that have propagated through an unknown channel [3].

Consider a test feature vector x ∈ Rd and linear observa-
tion model z = Hx+w for z ∈ Rn, knownH ,E[w] = 0 and
Cov[w] = σ2

wI . We denote vectors in boldface and matri-
ces in uppercase; to preserve this distinction, random vectors
will also be boldface, but distinguishable from their realiza-
tions by context. Having observed z, it is common to form an
estimate x̂ ∈ Rd of the clean test feature vector x and clas-
sify x̂ using labeled training examples X = {(xi, yi)}Mi=1 for
classes yi ∈ G; since x̂ is inherently noisy, this is commonly
referred to as the noisy features problem [4]. We assume that

the training features {xi}Mi=1 are noise-free, or at least con-
tain significantly less noise than the test feature vector x̂ so
that they may be treated as noise-free.

Although physical models often include a linear system
H , much of the prior work in this area has focused on the case
where H = I , and x̂ = x + w where w is i.i.d. noise. For
example, Papandreou et al. recently demonstrated a Gaussian
mixture model and hidden Markov model for environment-
robust audio-visual speech recognition [5]. Pawlak and Siu
proposed a modified smoothing kernel classifier that achieves
provably lower risk than ignoring the noise [6]. Ahmad and
Tresp adapted a Gaussian basis function network classifier for
noisy features in computer vision [7]. In robust speech recog-
nition, researchers have modeled a convolutional system as
additive noise in the cepstral domain; Buera, et al. provide a
summary of compensation methods [1].

In fact, for z = Hx + w the optimal approach to dealing
with noisy observations is to maximize p(g|z) ∝ p(z|g)p(g)
over classes g ∈ G, which does not rely on an estimate x̂
[4]. For example, we have developed a quadratic discriminant
analysis (QDA) classifier that models p(z|g) as Gaussian and
accounts for the disparity between corrupted test and clean
training features [3]. A related approach is to train a classifier
on artificially corrupted training data, or acquire training data
that emulate test conditions. However, classifying z rather
than x̂ may not be viable, e.g., due to high dimensionality of
z or system design issues; this is the premise of this paper.

In Sec. 2, we review a strategy for solving the noisy fea-
ture MAP rule whenH = I and x̂ = x+w, where p(x̂|x) and
p(x|g) are modeled as Gaussian distributions. We investigate
generalizing this strategy for a linear estimator x̂ = Gz when
H 6= I , and consider an alternative approach by defining an
expected MAP rule for noisy features. In Sec. 3, we cou-
ple the MAP rules for noisy features with a locally Gaussian
class-conditional likelihood p(x|g) to form the robust local
Bayesian quadratic discriminant analysis (R-BDA) classifier,
which is the chief contribution of this paper. In Sec. 4 and
5, we compare the proposed R-BDA classifier to the robust
classifier proposed by Pawlak and Siu in [6] and to several
standard non-robust classifiers.



2. NOISY FEATURES AND EXPECTED MAP RULE

The maximum a priori (MAP) rule for noisy features [4, 5, 7]
chooses class g that maximizes

p(g|x̂) ∝
∫
p(x|g)p(g)p(x̂|x) dx, (1)

where the pdfs in the integrand are assumed to be known.
Although the integral in (1) is generally intractable, a closed
form solution exists for the case when p(x̂|x) can be rewritten
as a Gaussian with argument x and p(x|g) = N (x; x̄g,Σg).
Commonly (e.g., [5]), it is assumed that x̂ = x+w with w ∼
N (w; 0,Σw) so that p(x̂|x) = N (x̂; x,Σw) = N (x; x̂,Σw),
and one uses the product of Gaussians identity to rewrite the
integrand in (1) as a single Gaussian in x times a constant:

N (x; a, A)N (x; b, B) = N (a; b, A+B)N (x; c, C) (2)

where c = C
(
A−1a +B−1b

)
and C =

(
A−1 +B−1

)−1
.

SinceN (x; c, C) integrates to one, the integral in (1) reduces
to p(g|x̂) ∝ N (x̄g; x̂,Σg + Σw). Besides mathematical con-
venience, Gaussians are also motivated by the fact that the
Gaussian is the maximum entropy (least assumptive) distri-
bution for fixed mean and covariance.

For z = Hx + w and given that x̂ = Gz = GHx +
Gw is some linear estimator with mean E[x̂|x] = GHx
and covariance Cov[x̂|x] = σ2

wGG
T , we model p(x̂|x) as

N (x̂;GHx, σ2
wGG

T ). As above, we may also obtain a closed-
form solution for (1) by re-expressing p(x̂|x) as a Gaussian
with argument x. Rewriting p(x̂|x) generally requires an ap-
proximation when GH 6= I , but is exact when GH = I , as
we will now show.
Proposition. If GH = I , then for a linear estimator x̂ = Gz
and invertible GGT , Gaussian p(x̂|x) can be rewritten as

p(x̂|x) = N
(
x;Gz, σ2

w

(
HTH

)−1
)
4
= p(x|z;G).

Proof. Since E[x̂|x] = GHx and Cov[x̂|x] = σ2
wGG

T ,
rewrite the exponent of N (x̂;GHx, σ2

wGG
T ) as

− 1
2

(Gz−GHx)T (σ2
wGG

T )−1(Gz−GHx) (3)

=− 1
2

(x−Gz)T
HTH

σ2
w

(x−Gz), (4)

where (4) follows from (3) by the assumption that GH = I
and by noting that

(σ2
wGG

T )−1 = HTGT (σ2
wGG

T )−1GH =
HTH

σ2
w

.

To illustrate the proposition, consider the least squares
(LS) estimate x̂ = Gz with G = (HTH)−1HT . Then, since
GH = I , we have p(x̂|x) = N (x;Gz, σ2

w(HTH)−1). Com-
monly GH ≈ I . For example, for small σ2

w and invertible

HΣHT the linear minimum mean squared error (LMMSE)
estimator has G = ΣHT (HΣHT + σ2

wI)−1 where Σ =
Cov[x], so that (4) only approximates (3).

Rather than reformulate p(x̂|x) as p(x|z;G) for partic-
ular G, we introduce an alternative decision rule in which
we model p(x|z) directly. This may be interpreted as a de-
parture from the traditional MAP paradigm of maximizing
p(z|g)p(g), instead discriminating by the expected MAP rule1:
choose class g that maximizes∫

p (x|g) p(g)p (x|z) dx = Ex|z [p (x|g) p(g)] . (5)

This rule generalizes the traditional MAP rule in the case of
no uncertainty for which p(x|z) = δ(x− z).

We model p(x|z) directly by assuming that x and z are
jointly Gaussian, and thus E[x|z] = Fz and Cov[x|z] =
Σ − FHΣ with F = ΣHT (HΣHT + σ2

wI)−1, where Σ =
Cov[x]. This is not equivalent to having formed the LMMSE
estimator x̂ = Fz and rewriting p(x̂|x) ≈ p(x|z;F ), since
the covariance matrices differ (see Table 1).

3. ROBUST LOCAL BDA

Generally, the likelihood p(x|g) in (1) or (5) is unknown; we
estimate it from the training samples for each class. Here,
we propose modeling the gth class-conditional likelihood as
locally Gaussian. Localizing QDA reduces model bias and
also generalizes the local nearest-means classifier [8]. Given
a random test sample x ∼ p(x|z), we fit p(x|g) to the k near-
est neighbor training vectors that belong to class g. Since x
is random, the nearest neighbor to x is defined in terms of ex-

pected distance. Let x̂
4
= E[x|z] and Λ

4
= Cov[x|z], then the

nearest neighbor to x is xi∗ , where i∗ solves

arg min
i
Ex|z

[
(x− xi)T (x− xi)

]
≡ arg min

i
xTi xi − 2xTi x̂ + tr Λ + x̂T x̂

≡ arg min
i
‖xi − x̂‖22.

Thus, the k nearest neighbors to random x are the k near-
est neighbors to x̂. If fewer than k samples are available
for class g, then we use all available training samples for the
class, so that number of samples used for the gth class is kg =
min

{∣∣{xi s.t. yi = g}
∣∣, k}.

Estimating the mean and covariance of a Gaussian using
a small number of feature vectors can be ill-posed. Srivas-
tava et al. addressed the problem of ill-posed Gaussian esti-
mation by using a Bayesian estimate with a data-dependent
inverted Wishart prior [9]. The Bayesian estimate is formed
by marginalizing the unknown (random) Gaussian pdf over all

1The form in (5) is preferred to Ex|z[p(g|x)] since the latter reduces to
maximizing p(g|z)—the very problem we are trying to avoid.



Table 1. Estimation methods used to form N(x; x̂,Λ) and the corresponding x̂ and Λ.
method x̂ Λ

LS: rewrite p(x̂|x) = N (x; x̂,Λ) (HTH)−1HT z σ2
w(HTH)−1

LMMSE : rewrite p(x̂|x) ≈ N (x; x̂,Λ) ΣHT (HΣHT + σ2
wI)−1z σ2

w(HTH)−1

joint Gauss: p(x|z)
4
= N (x; x̂,Λ) ΣHT (HΣHT + σ2

wI)−1z
(

Σ−1 + HTH
σ2

w

)−1

assuming x and z are jointly Gaussian

Gaussians that could describe the data. The resulting distribu-
tion is, in fact, not Gaussian. Rather, the Bayesian quadratic
discriminant analysis (BDA) class-conditional likelihood is of
the form [9, eq. 15]

p(x|g) = αg

(
1 + λ (x− x̄g)

T
R (x− x̄g)

)−γ
, (6)

where x̄g is the sample mean of the Mg features in class
g, R = (Sg +B)−1, Sg = MgΣ̄g is a scaled version of
the maximum likelihood covariance estimate Σ̄g , B is a ma-
trix parameter for the inverted Wishart prior with q degrees
of freedom, γ = Mg+q+1

2 , λ = Mg

Mg+1 , and αg is a class-
dependent normalizing constant. Srivastava et al. showed good
results for a data-dependent scale matrixB that pegs the max-
imum of the inverted Wishart prior (B/q) at a rough esti-
mate of the class covariance [9]. In that work, Srivastava et
al. cross-validate between seven different rough estimates of
the class covariance.

We apply the estimator in [9] to the local samples for each
class so that p(x|g) is given in (6) with Mg = kg . For sim-
plicity, rather than cross-validating over class covariance es-
timates, we propose to always use the (local) diagonal pooled
sample covariance matrix, regularized slightly by the iden-
tity matrix to ensure numerical stability. Let the local pooled
sample covariance matrix be denoted Σ̄pool, then

B = q
(
0.95 diag Σ̄pool + 0.05 I

)
,

where diag discards the off-diagonal elements. We let q =
d + 3, a choice for which the inverted Wishart prior reduces
to the inverted gamma distribution in the scalar case.

Using a Taylor series expansion, we have found a series
solution for (1) and (5) with p(x|g) as in (6), but it exhibits
poor convergence properties and is omitted for brevity. Rather,
following [9], we approximate (6) by a Gaussian using the
fact that eε ≈ 1 + ε. For ε = λ (x− x̄g)

T
R (x− x̄g), (6) be-

comes p(x|g) ∝ N (x; x̄g, Σ̂g), where Σ̂g = kg+1
kg+q+1

(
Sg+B
kg

)
.

Given that p(x|g) and p(x|z) are Gaussian, by using (2)
and the fact that theN (x; c, C) integrates to one, the decision
rules in (1) and (5) reduce to

arg max
g∈G
N
(
x̂; x̄g, Σ̂g + Λ

)
p(g). (7)

4. EXPERIMENTS

The optical benchmark dataset contains 8 × 8 images of
handwritten digits “0” through “9”: 3823 training and 1797
test. Prior to experiments, training and test are normalized
by the mean and variance of training data. Test data are cor-
rupted by Gaussian blur (std σ = 0.5 with 4 × 4 pixel sup-
port) then adding zero mean Gaussian white noise with stan-
dard deviation σw. We compare three different estimation ap-
proaches listed in Table 1 to classify each test image z: evalu-
ate (1) with x̂ as the LS estimator (LS), evaluate (1) by rewrit-
ing p(x̂|x) with x̂ as the LMMSE estimator (LMMSE), and
evaluate (5) assuming x and z are jointly Gaussian (joint
Gauss). Note that LS differs from LMMSE only by choice
of x̂, whereas LMMSE differs from joint Gauss only by
Λ. For each of these estimators, we compare the proposed
R-BDA classifier in (6) (r-bda) to the smoothing kernel in-
troduced by Pawlak and Siu in [6] (pawlak):

arg max
g∈G

M∑
i=1

Iyi=gW

(
x̂− xi√

b

)
N (xi; x̂,Λ),

where W is a Gaussian kernel with bandwidth parameter b.
Both r-bda and pawlak use x̂ and Λ, and Σ = Cov(x) is
estimated using the pooled sample covariance matrix.We also
compare to non-robust classifiers that use only x̂; an SVM
with radial basis function (RBF) kernel (svm), the k-NN clas-
sifier (knn) and the BDA classifier (bda) in (6) localized to
k nearest neighbors.

We vary σw to observe the sensitivity of each classifier
to uncertainty in the test data. For each choice of σw, classi-
fier parameters for each classification scheme are determined
via 5-fold cross-validation on a holdout set of training images
that are artificially corrupted using the same blur and noise
model as the test images. Parameter choices are listed in Ta-
ble 2. Results shown in Fig. 1 were averaged over 100 runs
of i.i.d. test noise per image for each choice of σw.

We perform a second experiment by varying the band-
width of Gaussian blur σ for fixed σw = 0.3.

5. RESULTS AND CONCLUSIONS

Incorporating the test sample uncertainty using the covariance
Λ greatly improves performance as seen by comparing the
solid and dashed lines, especially for LS in both experiments.
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Fig. 1. Classification error as a function of (top row) the noise std σw and (bottom row) the blur standard deviation σ. Results
for svm, knn and bda are identical for LMMSE and joint Gauss since x̂ is the same.

Table 2. Cross-validation parameters for each point in Fig. 1.
parameter cross-validation set

RBF bandwidth (svm) {5, 10, 20, 40, 80, 160, 320}
k (knn, bda, r-bda) {1, 3, 5, 9, 17, 33, 65}
bandwidth b (pawlak) {1, 2, 5, 10, 20, 50, 100}

Although pawlak also incorporates Λ, it generally performs
poorly when σw or σ are small, but increases in relative per-
formance with increasing uncertainty. Among the non-robust
classifiers, bda is the best performer for LMMSE (equiva-
lently, joint Gauss), and all classifiers perform objec-
tionably for LS. For high noise and high blur, the r-bda
classifier performs better with LMMSE and joint Gauss
than with LS.

For the first experiment at σw = 0, bda and r-bda both
chose the same neighborhood size k = 17 in cross-validation,
thus, any discrepancy should be ascribed to the Gaussian ap-
proximation used in r-bda, but according to a one-sided
Wilcoxon rank test with 95% confidence, the methods are sta-
tistically tied.
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