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Abstract

A semi-automated gamut expansion method is proposed
for transforming the colors of video and images to take ad-
vantage of extended-gamut displays. In particular, a cus-
tom color transformation is learned from an expert’s en-
hancement of a single image on an extended gamut display.
This methodology allows for the gamut-expansion to be de-
fined in a contextually appropriate way. From the user-
enhanced image, we compare defining the gamut expansion
by one linear transformation, or by a multi-dimensional
LUT which we learn via local linear regression. We show
that using the estimated multi-dimensional LUT with tri-
linear interpolation (a standard workflow for ICC profiles
and color management modules) leads to significantly more
pleasant reproduction of skin tones and bright saturated
colors.

1 Introduction

Several new advances in display technology have led
to increased display color gamuts. For example, a re-
cently adopted multimedia specification called the High-
Definition Multimedia Interface (HDMI) version 1.3 in-
cludes support for the xvYCC color standard, which can
support 1.8 times as many colors as the sRGB color space
[5]. Multiprimary displays are commercially available that
have color gamuts with more saturated colors than the
sRGB color space. Media encoded in sRGB and other stan-
dard colorspaces will require gamut expansion in order to
take advantage of these larger display gamuts.

A simple approach to gamut extension is to map the
sRGB extreme primaries to the extended gamut extreme pri-
maries, and linearly transform the color space given these
sample color pairs. However, linearly stretching the sRGB
colors to better fit an extended gamut leads to oversaturation
of skin tones, pastels, and neutrals [9]. Instead, we show in
this paper that a more pleasing gamut expansion can be im-
plemented using the flexible multidimensional look-up ta-

ble (LUT) ICC profile architecture, which enables different
parts of the colorspace to be enhanced differently. Multi-
dimensional LUT ICC profiles are standard for character-
izing printers, and have been shown to be a flexible archi-
tecture for implementing a wide range of color enhance-
ments [1–3, 10].

We propose a gamut-expansion method in which an ex-
pert provides native-to-extended gamut sample color pairs
from which a scene-specific color transformation is learned
using regularized local linear regression (LLR). The learned
color transformation is then applied to each image frame
comprising the scene via a multidimensional LUT. More
generally, one LUT for a multi-scene video could be learned
based on a few different user-enhanced scenes, or one LUT
for a set of images could be learned based on a subset
of user-enhanced images. This user-enhanced method is
a compromise between frame-by-frame user-enhancement
and fully-automated methods. It is expected that this semi-
automated method will provide a balanced trade-off be-
tween expert interaction and color enhancement quality, and
provide further insights into automating gamut expansion.

2 Related Work

The objective of gamut-mapping can be summarized by
two main motivations: accurate reproduction and pleasant
reproduction [9]. Partly to preserve the perception of skin
colors, MacDonald et al. have explored methods involving
a core gamut that remains unchanged by gamut mapping,
however explicitly defining such a core gamut is a challenge
[8].

Although there has been considerable research in gamut
compression [9], little work has been published about color
gamut expansion. Kang et al. developed a computer-
controlled interactive tool with which observers adjusted
color characteristics to make images more pleasant [6]. A
global linear fit to the average of the user-defined transfor-
mations formed the basis for a gamut expansion algorithm.
That approach aims at a universal gamut expansion method,
and its broad focus and globally linear model are restrictive.



3 Proposed User-trained Gamut Expansion

We propose to learn a gamut expanding transform based
on a single user-enhanced frame. The user begins with
an N × M sRGB image rendered as an sRGB image on
the extended gamut display, then enhances the colors to
use a greater portion of the extended gamut colorspace
(EGC). The result is a user-defined mapping from the orig-
inal sRGB image colors to EGC image colors that is appro-
priate to apply to similar images, e.g., in the movie scene.

Manually enhancing a video frame allows the user to en-
hance the sRGB colors in the context of the image, as op-
posed to choosing input and output colors without spatial or
semantic context. Enhancing the image can be done with
standard tools such as Adobe Photoshop. We hypothesize
that a user enhancing an image is a faster method that will
yield more consistent sample color pairs than asking a user
to gamut-expand a large set of colors. For example, enhanc-
ing one 720 × 480 image results in 345,600 sample color
pairs that can be used to train the gamut-enhancement. Mo-
rovic discusses the importance of image context to gamut
mapping in [9].

The user-enhanced frame and its pre-enhanced counter-
part provide NM sample color pairs that define a mapping
from sRGB to EGC. We convert all colors to CIELab and
all color processing is done in the CIELab space. We form
a baseline gamut expansion by fitting the hyperplane that
minimizes the squared-error to the NM training sample
color pairs.

We also form a multi-dimensional LUT gamut expan-
sion by estimating the gamut-enhanced colors for regularly
spaced grid points in CIELab space. Given NM sam-
ple color pairs {xi, yi}i=1,...,NM that map the compressed
gamut color xi to the extended gamut color yi, estimate the
extended gamut color ŷ for each grid point g of a 3D LUT
by fitting a hyperplane to the neighboring sample pairs of g.
For each gridpoint in the LUT, local ridge regression [4] fits
a least-squared error hyperplane to a set of neighbors while
penalizing the slope of this hyperplane. This regulariza-
tion reduces the variance of the estimate and has the effect
of smoothing the estimated function. Regularizing using
ridge regression has been shown to work well in estimating
color transformations [3], as it avoids steep extrapolations
that can lead to clipping at the gamut boundaries.

For a given LUT grid point g, local ridge regression is
used to estimate each of the three CIELab components of
the extended gamut color separately. For example, let ŷL

denote the L∗ component of our estimate ŷ, and let yiL
de-

note the L∗ component of the ith training extended gamut
color yi. Then the local ridge regression estimate based on
a neighborhood Ng of g is given by ŷL = β̂T g + β̂0, where(

β̂, β̂0

)
= arg min

(β,β0)

∑
i∈Ng

(
yiL

− βT xi − β0

)2
+ λβT β.

The enhanced grid points form a LUT that can be stored
in an ICC profile and used by any standard color manage-
ment module to enhance the gamut of a new image. Each
pixel of an image is enhanced by finding the closest LUT
values and interpolating them to estimate an enhanced color
for that pixel. Color management modules may use dif-
ferent methods to interpolate the LUT values; in this work
we use trilinear interpolation, which is a standard choice in
color management [7].

Two factors control the accuracy of the estimated LUT:
the size of the neighborhood and the resolution of the LUT.
If the neighborhood size used to estimate the enhancement
for each grid point is small compared to the density of train-
ing sample colors, then some training colors would not be
included in the neighborhood of any grid point, and hence
would not be taken into account in the estimation of the
gamut-expansion LUT. On the other hand, too large a neigh-
borhood relative to the density of training sample colors will
fit hyperplanes to large sections of the colorspace, poten-
tially smoothing desired nonlinearities in the gamut expan-
sion. The second factor is the resolution of the LUT. If the
desired gamut expansion is highly non-linear, then using a
LUT with large spacing between grid points will not make
it possible to capture the desired nonlinearities.

4 Experiments

To validate our approach, we designed two experiments
to evaluate the possible pleasantness and accuracy of the
proposed gamut expansion. In both experiments, we com-
pared the LLR LUT proposed above against the baseline
globally-linear transformation. Based on preliminary ex-
periments, we used a neighborhood size of k = 100 for the
local linear regression and a grid resolution of 21×21×21.
(We found the results to be fairly robust to neighborhood
size and grid resolution, but neighborhoods of size k = 10
or smaller led to a few objectionably-enhanced pixels in
some video sequences due to ill-posed local hyperplane
fits.)

In the first experiment, an artist used Adobe Photoshop to
enhance the first frame of a video, increasing the saturation
of various colors, while preserving the natural color of the
skin tones. The enhanced image was used to learn the color
transformation and a LUT was generated and applied to all
the images in the video. This experiment was applied to
the 1080p test sequence Walking Couple. We compared the
subjective quality of the gamut-expanded images produced
by the LUT and linear transform methods; a representative
frame is shown in Fig. 1.

In the second experiment, to alleviate the need for ar-
tistically enhancing every frame to create ground truth (for
which consistency is infeasible), an original video was
taken as truth data for an expanded gamut. Compressed



gamut images were generated artificially from the origi-
nal video sequence by applying a color selective desatu-
ration filter that nonlinearly desaturated all colors except
skin tones. Then, the gamut expansion transforms (linear
and LUT) were estimated using sample color pairs that map
the first gamut-compressed frame to the first original frame.
The two estimated gamut-expansion transforms were then
applied to all frames in the sequence. The enhanced frames
were qualitatively compared to the original sequence by
the authors looking for objectionably-enhanced colors, and
quantitatively compared to the original sequence by com-
puting the ∆E CIELab metric, ∆E =

√
L∗2 + a∗2 + b∗2,

where roughly 2.5 ∆E is considered “just noticeably dif-
ferent.” This experiment was applied to the 1080p test se-
quence Pedestrian Area and the 720p test sequence Night.

5 Results

Results from the artist-enhanced experiment are shown
in Fig. 1. The LLR method closely reproduces the greens
and yellows of the artistically enhanced image but less ac-
curately reproduces the magenta. The linear method also
cannot capture this bright magenta, though it also yields in-
sufficiently vibrant greens and yellows and gives the entire
image a slight yellow color cast.

Results from enhancing a gamut-compressed video are
shown in Fig. 2 and 3. Fig. 2 demonstrates that LLR pre-
serves skin tones while saturating other colors. The linear
method tints the faces towards red and does not reproduce
the saturation of the blue shirt in the foreground. Fig. 3
shows a bike that was not present in the frame used to train
the LUT. The LLR method reproduces the bright saturated
red of the bike where the linear method fails.

Quantitative results from the gamut-compressed images
are shown in Fig. 4. The median and 95% worst ∆E CIE
errors as a function of image number are shown for both
LLR and linear methods in Fig. 2 and 3. Notably, on both
sequences, median error of the colors produced by the LLR
method are less than one ∆E unit apart from truth data. In
Night, 95% of the colors are less than five ∆E units for all
frames, while in Pedestrian Area these are within three ∆E.
The jump in the 95% error for the linear method near frame
175 in Pedestrian Area corresponds to the appearance of a
man in bright red.

6 Discussion

We have demonstrated that a LUT transformation
can produce significantly better gamut-expansion than a
globally-linear transformation, while still being compati-
ble with ICC standardized color workflows. The proposed
semi-automated method may be appropriate for off-line re-

mastering of digital video intended for extended-gamut dis-
plays. Video-specific gamut enhancements would allow dif-
ferent movies to best retain their specific color feel. We ex-
plored learning one LUT for each scene, and further work is
required to determine how broadly a particular LUT can be
applied to different scenes within a movie. We hypothesize
that one LUT learned from a few different scenes would be
suitable to gamut-expand all episodes of a television sitcom,
but that preserving the artistic feel of a movie might require
multiple LUTs. The proposed semi-automated method
could also be used for gamut-compression. For example,
a film may be created in an EGC, but an sRGB gamut ver-
sion may be desired for those viewers with only sRGB dis-
plays. We hypothesize that one gamut-expansion ICC pro-
file could be estimated for general use from a diverse set of
user-enhanced images.

While we have presented one method (k Nearest Neigh-
bor LLR) for estimating the multidimensional LUT, we
would expect other regression methods to also perform
well for this application, though some empirical-risk mini-
mization methods might have difficulty processing the large
number of training samples.
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Original Gamut Extended Gamut Linear Transform Locally Linear LUT
Figure 1. Frame 0 from Walking Couple for the original frame, the artist’s gamut-enhanced frame, and
the estimated gamut-enhanced frame using both the linear transformation and the locally linear LUT.

Compressed Gamut Original Full Gamut Linear Transform Locally Linear LUT
Figure 2. Frame 222 from Night for a compressed gamut version, the original full gamut frame, and
estimates of the full gamut frame using the linear transform and the locally linear LUT. The estimates
were trained on Frame 0 of Night. A key difference between the estimates is the artificial reddening
of the skin tones with the linear transform.

Compressed Gamut True Full Gamut Linear Transform Locally Linear LUT
Figure 3. Frame 96 from Pedestrian Area for a compressed gamut version, the original full gamut frame,
and estimates of the original full gamut frame using the linear transform and the locally linear LUT.
The estimates were trained on Frame 0 of Pedestrian Area, the bike pictured here was not present in
Frame 0.

Figure 4. Error plots generated for Night (left) and Pedestrian Area (right). The light blue lines repre-
sents the median (solid) and 95% (dashed) errors for the locally linear LUT and the heavy red lines
represent median (solid) and 95%(dashed) errors for the linear transformation.


