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Abstract. We investigate a Wiener fusion method to optimally combine multiple estimates
for the problem of image deblurring given a known blur and a corpus of sharper training im-
ages. Nearest-neighbor estimation of high frequency information from training images is fused
with a standard Wiener deconvolution estimate. Results show an improvement in sharpness
and decreased artifacts compared to either the standard Wiener filter or the nearest-neighbor
reconstruction.
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1 INTRODUCTION
Many applications in which images play a critical role are limited by the effective resolution of
the imagery. For this reason, various approaches exist to estimate high-frequency image con-
tent to increase the level of detail. In this paper we assume that one knows the blurring filter
and image statistics, and we focus on two relevant approaches: Wiener deconvolution for de-
blurring, and single-frame learning-by-example superresolution that estimates high-resolution
detail for the blurred image from a corpus of sharper training images. We present a method that
fuses the Wiener filtering approach and the learning-by-example approach optimally in terms
of minimizing expected squared error.

Consider the imaging model in the Fourier domain

Y (k, l) = H(k, l)X(k, l) + V (k, l), (1)

whereH(k, l), V (k, l),X(k, l) and Y (k, l) represent the discrete Fourier transform of the point
spread function (PSF) h(m,n), additive noise v(m,n), original image x(m,n) and blurred im-
age y(m,n), respectively. We assume that x(m,n) and v(m,n) are stationary random pro-
cesses with corresponding power spectra Sx(k, l) and Sv(k, l). For convenience, we will omit
indices (k, l) and use f to denote a frequency of interest such that Y (f) = Y (k, l).

Given a known PSF and the power spectra of the noise and image, Wiener deconvolution
is the linear minimum mean squared error (LMMSE) estimator of the original image [1]. The
Wiener filter inverts the blur more aggressively for frequencies that have a higher signal-to-
noise ratio. As such, the Wiener deconvolution cannot recover information in the nullspace of
the blur operator, and does little at frequencies for which the signal-to-noise ratio (SNR) is low.

Several recent methods in single-frame superresolution aim at learning high-frequency in-
formation from a corpus of sharp training images [2–6]. These methods implicitly assume that
the lost high-frequency information X(fhi) is correlated with the mid-frequency information
X(fmid). In fact, positive correlation between image frequency bands has been documented
for wavelet filterbanks [7, 8]. Similar learning-by-example methods have also been successful
for other image estimation tasks (see for example [9, 10]).

We contend that Wiener deconvolution and learning-by-example superresolution can be
thought of as complementary tasks. AssumingH(f) represents a low-pass filter, Wiener decon-
volution provides the best LMMSE estimate of X(fmid) from the blurred image, but recovers



little information at fhi. Conversely, single-frame superresolution provides novel information
by estimating X(fhi) from another source, but does not improve the estimate at fmid.

In this work, we provide an optimal (LMMSE) method for fusing Wiener deconvolution
with additional image information provided by a nearest-neighbor single-frame superresolution
approach. Our proposed Wiener fusion could be used with other image estimates instead. We
begin in Sec.2 by reviewing relevant methods in single-image superresolution, and describe our
adaptation of a method presented in [2] to image deblurring. In Sec. 3, we detail the proposed
multiple estimate (ME) Wiener filter. Sec. 4 details experiments, whose results are discussed in
Section 5.
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Fig. 1. Nearest neighbor reconstruction tries to recover X(fhi) from X(fmid). Low frequen-
cies are discarded in the NN comparison.

2 NEAREST-NEIGHBOR SUPERRESOLUTION
We first review some relevant work in single-frame image superresolution, and describe how
we adapt it for deblurring.

Freeman et al. [2] introduced a nearest-neighbor learning approach for upsampling a low-
resolution image. The missing high-frequency information is inferred on a block-by-block basis
by comparing a low-resolution image patch to a set of high-resolution training patches, down-
sampled to match the test image resolution. High-frequency information is taken from the train-
ing patch that yields the best comparison. A boundary condition is included in the distance com-
putation to regularize the nearest neighbor selection and form continuity in the reconstructed
image by selecting high-resolution patches that match previously estimated high-resolution de-
tail. A simple implementation of such a boundary condition is to find the nearest-neighbor
image patches in raster-scan order, and overlap each new patch with previously reconstructed
image pixels. For each patch z, the objective function for selecting the nearest-neighbor training
patch xk is given by

‖Hxj − z‖22 + α
∑

[i,j]∈B

(x̃[i, j]− xk[i− i0, j − j0])2 (2)

where H is the decimation (or here, blurring) operator, x̃ is the current high-resolution esti-
mate for the entire image, B is the set of indices of overlapping pixels, and (i0, j0) is the first
overlap location. Equation (2) can be derived from a maximum a posteriori (MAP) objective
p(z|xk)p(xk) assuming additive white Gaussian noise, and a data-dependent Gaussian prior.
Although Freeman et al. [2] applied the method to image upsampling, it is easily extended to
debluring by choosing H to be the appropriate blur operator, as detailed below.

This nearest-neighbor (NN) reconstruction approach requires a large set of training patches
that can be from images not necessarily similar to the test image. The approach is also sensitive
to noise and image artifacts of the input image z [2]. Chang et al. presented a method which
requires fewer training samples by posing the nearest-neighbor problem similar to manifold
learning [3]. Jiji et al. proposed a method in which high-resolution detail was learned from a
database using contourlet learning [4]. Jiji et al. evaluated various local and global single-frame



superresolution reconstruction techniques [6], and proposed a global PCA-based technique to
remove blur, noise, and aliasing artifacts. Datsenko and Elad used NN patches to form a prior
for a global MAP objective, which they used to superresolve scanned documents containing
text, equations and graphs [5]. In that NN approach, outliers in a group of candidate neighbors
were pruned using a MAP cost function.

Here we adapt Freeman’s method [2] for image deblurring. We assume that the input im-
age is the result of linear time-invariant (LTI) blur of the true image with additive noise. The
NN approach in [2] is sensitive to noise and image artifacts, therefore, we begin by performing
Wiener denoising on the input image as a preprocessing step. (We have explored other prepro-
cessing alternatives, and have found that the NN reconstruction is sensitive to image artifacts
produced by other methods, as shown in Fig. 3.) Next, the denoised image is high-pass filtered,
and the result is contrast normalized using a low-pass filter defined by Freeman et al. in [11].
Overlapping blocks are scanned in raster order, and for each block the nearest neighbor is found
in the training images. The NN match specifies the high-frequency estimate for the test block.
After the NN training path and its corresponding high-frequency information has been found
for each block in the image, the original local contrast is reapplied. The result is an estimate
of the high-frequency content of the image, which must subsequently be combined with the
existing low-res image to form a sharp image. A block diagram is shown in Fig. 2.
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Fig. 2. Block diagram showing the steps used to estimate high-frequency information using a
NN search.
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Fig. 3. NN reconstruction given different choices of pre-processing before selecting the nearest-
neighbor training patches. The original image degradation was rather mild in this case: the
image was blurred with a Gaussian kernel with one pixel standard deviation, and corrupted with
additive noise, with 44 dB PSNR. Wiener denoising before NN results in highest PSNR, and
provides a good tradeoff between detail and image artifacts.

Training images are prepared in an analogous manner to Freeman et al. [11] by forming
low-frequency input and high-frequency output pairs of image patches from a corpus of sharp
training images. In our work, the sharp images are blurred with the known PSF as described in
(2), and everym×m patch is extracted from each image. The output vector consists of the high



frequency information that was discarded by the blur operator. For the NN match, a training
vector is formed by augmenting the column-scanned low-res patch with

√
α times the top row

and left column (raster-scan overlap regions) of high-resolution pixel values. Each test patch
mirrors the same setup, so that the NN objective is precisely (2), whereH encapsulates the blur.

3 MULTIPLE ESTIMATE WIENER FUSION
There are several theoretical motivations for using Wiener deconvolution for image deblurring.
It is well known that the Wiener filter is the LMMSE inverse filter for estimatingX(f) in (1), so
that when E[X|Y ] is linear (for example, when X and Y are jointly Gaussian), it is the MMSE
inverse filter. In fact, for linear E[X|Y ], the Wiener filter minimizes any expected Bregman
divergence E[D(X,Y )], which can be stated as a corollary to the result that the conditional
expectation is the unique minimizer of any Bregman divergence as shown in [12].

Wiener deconvolution given multiple noisy observations (such as from different cameras)
dates back to at least 1980 [13]. In this paper, we propose treating different estimates of the
reconstructed image as multiple noisy observations, and combining the multiple estimates using
the Wiener filter. Given n estimates Y1, Y2, . . . , Yn, we assume that Yi = HiX+Vi, and let the
reconstruction be X̂ = G1Y1 +G2Y2 + · · ·+GnYn. Then the Weiner objective is to minimize

ε = E

[(
X̂ −X

)2
]

. To minimize ε, the partial derivative w.r.t. G∗k is,

∂ε

∂G∗k
= E

[
(H∗kX

∗ + V ∗k )

(∑

i

GiHiX +
∑

i

GiVi −X

)]

= Gk|Hk|2Sx +H∗kSx

∑

i 6=k

GiHi +GkSvk
−H∗kSx.

Equating to zero, and solving for Gk yields

Gk =
H∗k

(
1−

∑
i 6=k GiHi

)

|Hk|2 + Svk

Sx

. (3)

The system of equations defined by (3) must be solved jointly for the n filters G1, G2, . . . , Gn.
The kth filter is given be

Gk =
1
Hk


 |Hk|2

∏n
j 6=k Svj

∑n
i=1 |Hi|2

∏n
j 6=i Svj +

∏n

i=1
Svi

Sx


 . (4)

Thus, the filter Gk weights the estimate Yk by partially inverting the assumed relationship
HkXk, where the amount of inversion of Hk depends on the assumed noise power of each
estimate and on the relative Hi’s.

In our work, we let Y1 be the given blurred image, and Y2 be the (high-pass part only) NN
reconstruction described in Section 2. Note that when H2 = 0 (no high-res detail available),
G1 reduces to the standard Wiener filter. For deblurring, we assume that H1(f) is lowpass
in nature, and that the high-frequency detail estimated using NN reconstruction is such that
H2(f) = 1−H1(f).

4 EXPERIMENTS
We compare the multiple-estimate Wiener deblurring (ME Wiener) given by (4) to the standard
Wiener filter and to the NN reconstruction technique described in Sec. 2. We attempt to re-
store noisy, blurred versions of a benchmark Kodak image and a retinal fundus photograph; the
relevant original snippets are shown in Fig. 4.



The test images were generated from the model in (1): the original test image was convolved
with a Gaussian PSF h1[m,n] = N (0, s2I) with standard deviation s = 1 or s = 2 pixels,
and Gaussian white noise is added, with standard deviation Sv1(f) = σ2

v1
= (0.005)2 or

Sv1(f) = σ2
v1

= (0.02)2 (the noise corresponds to peak SNR of 46 dB and 34 dB with respect
to the sharp image). The luma (Y) and chroma planes (Cb and Cr) are made blurry and noisy, but
only the luma plane is restored, and the noisy blurred chroma planes are added to the estimated
luma plane.

Optimistically, the true blur, and noise and sharp image power spectra are used for Wiener
deconvolution and for the ME Wiener filter, and the actual imaging error power spectrum Sv2

is used for the ME Wiener. We use the parameters specified by Freeman et al. for high-pass
filtering and contrast normalization in the NN reconstruction [11].

5 RESULTS
The first set of results are shown in Figs. 5, 6, 7 and 8: the Kodak image NN reconstructions
were trained on three other clean Kodak benchmark images that are similar to the blurred image
in that they have manmade structures and trees, and the retina reconstruction in 8 was trained
on three similar clean retina images.

The NN estimates are sharpest, but have disturbing artifacts; compare for example the old
woman in the lower-right-hand corner in Fig. 5, the birds in Fig. 6, the edge of the roof in 7,
and the yellow blind-spot in Fig. 8.

The ME Weiner combines the new NN high-frequency information with standard Weiner
deblurring, and this combination reduces the sharpness a little compared to the NN estimate, but
also reduces the artifacts significantly. In all cases the ME Weiner estimate is sharper than the
standard Weiner estimate in terms of greater high-frequency energy, and the ME Weiner also
reduces some of the upper-mid-frequency noise caused by the Weiner.

The peak SNR (PSNR) for each of the figures is shown in Table 1. In every case, the ME
Wiener has highest PSNR. This may be unintuitive, as the Wiener filter is optimal in terms
of MSE (and thus PSNR), but the gains over the Wiener filter are possible because the high-
frequency information is correlated with the mid-frequency information, and the Wiener filter
does not take this into account, whereas this correlation is the basis for the NN reconstruction.
The ME Wiener is able to advantageously combine the two estimation approaches, as designed.

Next, we illustrate that the choice of training images matters. The images in Fig. 9 compare
the results for the NN reconstruction and ME Wiener using either the Kodak images for training
(as before) or using the retina images for training. One sees that different artifacts appear
in both, and that training on the retina images arguably works better. Not shown are results
comparing the reconstructions of the retina image with the two different training sets; those
results show that the retina-trained estimation is also better. We hypothesize this is because
of the relatively distinct edges prevalent in the retina images that have high local correlation
between the corresponding mid and high-frequencies, and thus any edges picked up in the mid-
frequency-based NN match correlate well with high-frequency edge information.

Unfortunately, using a larger corpus training images is not a good solution, as too large
a corpus will have blocks that match well at low-resolution but have incorrect high-frequency
information. (This is the motivation for outlier rejection presented in [5].) In fact, in Table 2, we
show that using only one of the three Kodak training images results in higher PSNR than using
all three training images; the corresponding images are shown in Fig. 10. We hypothesize that it
may be advantageous to generate multiple NN estimates from multiple sets of training images,
then fuse them using the ME Wiener. As a preliminary test of this hypothesis, we present
in Fig. 10 results for using only one Kodak training image versus using two training images
to form a NN estimate, and using two Kodak training images individually to form two NN
estimates which are combined using (4). Evidentally, the ME Wiener formulation is a superior



way to incorporate additional training information. Table 2 provides preliminary support that
this approach can increase PSNR.

Fig. 4. True image snippets used in the experiments cropped from a Kodak benchmark image
of a house (left three) and a retinal fundus photograph (right).

Table 1. PSNR (in dB) of reconstruction estimate for the Kodak house image. Highest PSNR
for each column is in bold.

Low blur Low blur High blur High blur
Low noise High noise Low noise High noise

Figure 4 Estimates:
Blurred/Noisy Original 31.4 28.3 30.2 27.7

Wiener 32.9 31.2 32.5 31.1
NN 32.3 31.2 30.4 29.9

ME Wiener 33.2 31.9 32.8 31.5

Figure 5 Estimates:
Blurred/Noisy Original 28.8 26.9 27.5 26.0

Wiener 29.9 28.6 29.5 28.3
NN 29.8 28.8 27.7 27.2

ME Wiener 30.3 29.4 30.0 28.8

Figure 6 Estimates:
Blurred/Noisy Original 23.3 22.7 22.1 21.6

Wiener 24.1 23.3 23.5 22.7
NN 24.0 23.5 22.2 22.0

ME Wiener 24.6 23.9 24.0 23.1

Figure 7 Estimates:
Blurred/Noisy Original 33.1 29.0 31.9 28.6

Wiener 33.7 32.6 34.1 32.6
NN 33.9 32.8 32.7 31.8

ME Wiener 34.0 33.1 34.6 33.1
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Fig. 5. Results for snippet 1 of Kodak image. The subblocks in each quadrant represent (a) the
original blurred image, (b) the Wiener deconvolution estimate, (c) the NN reconstruction and
(d) the ME Wiener estimate.
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Fig. 6. Results for snippet 2 of Kodak image. The subblocks in each quadrant represent (a) the
original blurred image, (b) the Wiener deconvolution estimate, (c) the NN reconstruction and
(d) the ME Wiener estimate.
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Fig. 7. Results for snippet3 of Kodak image. The subblocks in each quadrant represent (a) the
original blurred image, (b) the Wiener deconvolution estimate, (c) the NN reconstruction and
(d) the ME Wiener estimate.
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Fig. 8. Results for snippet of retina image. The subblocks in each quadrant represent (a) the
original blurred image, (b) the Wiener deconvolution estimate, (c) the NN reconstruction and
(d) the ME Wiener estimate.



Table 2. PSNR (in dB) for estimates comparing different training images, and comparing with
using two NN estimates for the images in Figs. 9 and 10. Highest PSNR in bold.

Low blur, Low noise
Blurred/Noisy Original 28.8
Wiener 29.9
NN trained with three Kodak images 29.8
ME Wiener trained with three Kodak images 30.3
ME Wiener trained with Kodak image 1 and 2 32.4
ME Wiener trained with Kodak image 1 only 32.3
ME Wiener trained with Kodak image 2 only 32.4
ME Weiner w/ two NN estimates trained 32.7
on Kodak image 1, and on Kodak image 2

NN NN ME Wiener ME Wiener
Kodak training Retina training Kodak training Retina training

Fig. 9. Comparison of NN and ME Wiener given either Kodak training images or retina training
images.

ME Wiener ME Wiener ME Wiener ME Wiener
Trained on Trained on Trained on Two NN Estimates

2 Kodak Images Kodak Image 1 Kodak Image 2 Trained on Kodak
Images 1 and 2

Fig. 10. Comparison of ME Wiener given two NN estimates.



6 CONCLUSIONS AND OPEN QUESTIONS
Theoretically, the proposed ME Weiner fusion is the optimal tradeoff (in MSE) between the
deblurring capability of the Wiener filter and the high-frequency detail offered from the NN
reconstruction method. Visually, it appears to be a reasonable tradeoff between accepting
sharpness and rejecting image artifacts of the NN reconstruction estimate. However, mini-
mizing mean-squared error should not be expected to be the optimal approach for producing
aesthetically-pleasing images. One simple fix is to use a human visual model to determine the
nearest-neighbor rather than squared error, but the results will then be dependent on viewing
distance. Minimizing mean-squared error is a reasonable metric for producing images that are
used for image analysis applications.

Here, we optimistically assumed knowledge of the required power spectrums. Although it
is helpful to analyze algorithms when their assumptions are correct, future work would consider
the impact of noisy estimates of the power spectrums.

We have demonstrated that the choice of training image(s) can result in significant changes
in the quality of NN and ME Weiner reconstructions. In part to address this issue, we have
hypothesized that using multiple NN estimates with different training sets can be useful, and
provided some preliminary evidence supporting this hypothesis. However, further evidence
and methodology would be needed, and this approach highlights the open question of how to
estimate the error power spectrum for each of the NN estimates.
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