
Lattice Regression

Eric Garcia
Department of Electrical Engineering

University of Washington
Seattle, WA 98195

garciaer@ee.washington.edu

Maya Gupta
Department of Electrical Engineering

University of Washington
Seattle, WA 98195

gupta@ee.washington.edu

Abstract

We present a new empirical risk minimization framework for approximating func-
tions from training samples for low-dimensional regression applications where a
lattice (look-up table) is stored and interpolated at run-time for an efficient hard-
ware implementation. Rather than evaluating a fitted function at the lattice nodes
without regard to the fact that samples will be interpolated, the proposed lattice
regression approach estimates the lattice to minimize the interpolation error on the
given training samples. Experiments show that lattice regression can reduce mean
test error by about 25% compared to Gaussian process regression for digital color
management of printers, an application for which linearly interpolating a look-up
table is standard. Simulations confirm that lattice regression performs consistently
better than the naive approach to learning the lattice, particularly when the density
of training samples is low.

1 Introduction

For high-throughput regression applications, the cost of evaluating test samples is important as well
as the accuracy of the regression. Most non-parametric regression techniques do not produce models
that have an efficient implementation, particularly in hardware. For example, kernel-based methods
such as Gaussian process regression [1] and support vector regression require kernel computations
between each test sample and a subset of training examples, and local smoothing techniques such as
weighted nearest neighbors [2] require a search for the nearest neighbors.

For functions with a known and bounded domain, a standard efficient approach to regression is to
store a regular lattice of function values spanning the domain, then linearly interpolate each test
sample from the lattice vertices surrounding it. Evaluating the lattice is independent of the size of
any original training set, but exponential in the dimension of the input space making it best-suited
to low-dimensional applications. This is inspired by digital color management where real-time
performance often requires millions of evaluations every second. The interpolated look-up table
(LUT) approach is the most popular implementation of the transformations needed to convert colors
between devices, and has been standardized by the International Color Consortium (ICC) with a file
format called an ICC profile [3].

For applications where one begins with training data and must learn the lattice, the standard approach
is to first estimate a function that fits the training data, then evaluate the estimated function at the
lattice points. However, this is suboptimal because the effect of interpolation from the lattice nodes
is not considered when estimating the function. This begs the question: can we instead learn lattice
outputs that after being interpolated accurately reproduce the training data?

Iterative post-processing solutions that update a given lattice to address this problem have been pro-
posed by researchers in geospatial analysis [4] and digital color management [5]. In this paper, we
propose a solution that we term lattice regression, that jointly estimates lattice outputs by minimiz-
ing the regularized interpolation error on the training data. Experiments with randomly-generated

1

functions, geospatial data, and two color management tasks show that lattice regression can reduce
mean error by roughly 25% over the standard approach of evaluating a fitted function at the lattice
points. More surprisingly, the proposed method can perform better than evaluating test points by
Gaussian process regression using no lattice at all.

2 Lattice Regression

The motivation behind the proposed lattice regression is to choose outputs for lattice nodes that
interpolate the training data accurately. The key to this estimation is that the linear interpolation
operation can be directly inverted to solve for the node outputs that minimize the squared error of
the training data. However, unless there is ample training data, the solution will not necessarily
be unique. Also, to lower estimation variance it may be beneficial to avoid fitting the training
data exactly. For these reasons, we add two forms of regularization to the minimization of the
interpolation error. In total, the proposed form of lattice regression trades off three terms: empirical
risk, Laplacian regularization, and a global bias. We detail these terms in the following subsections.

2.1 Empirical Risk

We assume that our data is drawn from the bounded input space D ⊂ Rd and the output space Rp;
collect the training inputs xi ∈ D in the d × n matrix X =

[
x1, . . . , xn

]
and the training outputs

yi ∈ Rp in the p × n matrix Y =
[
y1, . . . , yn

]
. Consider a lattice, spanning the domain D, that

consists of m =
∏d

j=1mj nodes, where mj is the number of nodes along dimension j = 1, . . . , d.
Each node consists of an input-output pair (ai ∈ Rd, bi ∈ Rp) and the inputs {ai} form a lattice
such that D ⊂ conv({ai}). Let A be the d × m matrix A =

[
a1, . . . , am

]
and B be the p × m

matrix B =
[
b1, . . . , bm

]
.

The purpose of the empirical risk term is to set the lattice outputs B so that the interpolation error
on the training pairs {xi, yi} is minimized. In order to specify this interpolation error, note that for
any x ∈ D, there are 2d nodes in the lattice that form a cell (hyper-rectangle) containing x from
which an output will be interpolated; denote the indices of these nodes by c1(x), . . . , c2d(x).

For our purposes, we are restricted to interpolation techniques that are a linear combination
w(x) = [w1(x), . . . , w2d(x)]T of the surrounding node outputs bc(x) = [bc1(x), . . . , bc2d (x)]T , i.e.
f̂(x) = w(x)T bc(x). There are a many interpolation methods that correspond to distinct weight-
ings w(x), for instance in three dimensions, trilinear, pyramidal, and tetrahedral interpolation [6]
are all fine choices. Additionally, one might consider a higher-order interpolation technique such
as tricubic interpolation, which expands the linear weighting to the nodes directly adjacent to this
cell. In our experiments we investigate only the case of d-linear interpolation (e.g. bilinear/trilinear
interpolation) because it is arguably the most popular variant of linear interpolation, can be imple-
mented efficiently, and has the theoretical support of being the maximum entropy solution to the
underdetermined linear interpolation equations [7].

For each xi, form the m× 1 sparse weight vector W (xi) with elements

W (xi)k =
{
wj(xi) if k = cj(xi) for j = 1, . . . , 2d

0 otherwise

and the function value at xi is interpolated as BW (xi). Concatenating these vectors, let W be the
m×n matrix W =

[
W (x1), . . . ,W (xn)

]
; the lattice outputs B∗ that minimize the total squared-`2

distortion between the lattice-interpolated training outputs BW and the given training outputs Y are

B∗ = arg min
B

tr
((
BW − Y

)(
BW − Y

)T)
. (1)

2.2 Laplacian Regularization

Alone, the empirical risk term (1) is apt to pose an underdetermined problem and overfit to the train-
ing data. As a form of regularization, we propose to penalize the average squared difference of the

2

output on adjacent lattice nodes using Laplacian regularization. A somewhat natural regularization
of a function defined on a lattice, its inclusion guarantees1 a solution to (1).

The graph Laplacian [8] of the lattice is fully defined by them×m lattice adjacency matrixE where
Eij = 1 for nodes directly adjacent to one another and 0 otherwise.

GivenE, a normalized version of the Laplacian can be defined as L = 2(diag(1TE)−E)/(1TE1),
where 1 is the m×1 all-ones vector. The average squared error between adjacent lattice outputs can
be compactly represented as

tr
(
BLBT

)
=

p∑
k=1

(
1∑

ij Eij

∑
{i,j | Eij=1}

(Bk,i −Bk,j)2
)
. (2)

Thus, inclusion of this term penalizes first-order differences of the function at the scale of the lattice.

2.3 Global Bias

Laplacian regularization alone rewards smooth transitions between adjacent lattice outputs but only
enforces regularity at the resolution of the nodes, and there is no incentive in either the empirical
risk or Laplacian regularization term to extrapolate the function encoded in the lattice nodes beyond
the boundary of the cells that contain training samples. When the training data samples do not span
all of the grid cells, the lattice node outputs that solve (??) reconstruct a clipped function. In order
to endow the algorithm with an improved ability to extrapolate and regularize towards trends in
the data, we also include a global bias term in the lattice regression optimization. The global bias
term penalizes the divergence of lattice node outputs from some global function f̃ : Rd → Rp that
approximates the training data.

Given f̃ , we bias the lattice regression nodes towards f̃ ’s predictions for the lattice nodes by mini-
mizing the average squared deviation:

1
m

tr
((
B − f̃(A)

)(
B − f̃(A))T

)
. (3)

The global bias f̃ can be learned using any regression technique. We hypothesized that the lattice
regression performance would be better if the f̃ was itself a good regression of the training data.
Surprisingly, experiments comparing an accurate f̃ , an inaccurate f̃ , and no bias at all showed little
difference in most cases (see Section 3 for details).

2.4 Lattice Regression Objective Function

Combined, the Empirical risk minimization, Laplacian regularization, and global bias from the pro-
posed lattice regression objective. In order to adapt an appropriate mixture of these terms, we
introduce the parameters α and γ that, relative to the empirical risk, trade-off the average first-order
smoothness and the average divergence from the bias function. The combined objective solves for
the lattice node outputs B∗ that minimize

arg min
B

tr
(1
n

(
BW − Y

)(
BW − Y

)T + αBLBT +
γ

m

(
B − f̃(A)

)(
B − f̃(A))T

)
,

which has the closed form solution

B∗ =
(

1
n
YWT +

γ

m
f̃(A)

)(
1
n
WWT + αL+

γ

m
I

)−1

, (4)

where I is the m×m identity matrix.

Note that this is a joint optimization over all lattice nodes simultaneously. Since the rightmost term
of (4) is positive definite and sparse (it contains no more than 3d nonzero entries per row or 3dm
total non-zero entries), (4) can be solved using sparse Cholesky factorization [9]. On a modern PC
using the Matlab command mldivide, we found that we could compute solutions for lattices that
contained on the order of 10,000 nodes (a standard size for digital color management profiling [6])
in < 20s using < 1GB of memory but could not compute solutions for lattices that contained on the
order of 100,000 nodes.

1For large enough values of the mixing parameter α.

3

3 Experiments

The effectiveness of the proposed method was analyzed with simulations on randomly-generated
functions and tested on a real-data spatial interpolation problem as well as two real-data color man-
agement tasks. For all experiments, we compared the proposed method to Gaussian process regres-
sion (GPR) applied directly to the final test points (no lattice), and to estimating test points by inter-
polating a lattice where the lattice nodes are learned by the same GPR. For the color management
task, we also compared a state-of-the art regression method used previously for this application:
local ridge regression using the enclosing k-NN neighborhood [10] as a baseline. In all experiments
we evaluated the performance of lattice regression using three different global biases: 1) An “accu-
rate” bias f̃ was learned by GPR on the training samples. 2) An “inaccurate” bias f̃ was learned by
a global d-linear interpolation. That is, we considered the very coarse m = 2d lattice formed by the
boundary vertices of the original lattice and solved (1) for this one-cell lattice, using the result to
interpolate the full set of lattice nodes. 3) The no bias case, where the γ term in (4) is fixed at zero.

To implement GPR, we used the MATLAB code provided by Rasmussen and Williams at http:
//www.GaussianProcess.org/gpml. The covariance function was set as a the sum of a
squared-exponential with an independent Gaussian noise contribution and all data was demeaned
by the mean of the training outputs before applying GPR. The hyperparameters for GPR were
set by maximizing the marginal likelihood of the training data (for details, see Rasmussen and
Williams [1]). To mitigate the problem of choosing a poor local maxima, gradient descent was
performed from 20 random starting log-hyperparameter values drawn uniformly from [−10, 10]3
and the maximal solution was chosen. The parameters for all other algorithms were set by minimiz-
ing the 10-fold cross-validation error using the Nelder-Mead simplex method, bounded to values in
the range [1e−3, 1e3]. The starting point for this search was set at the default parameter setting for
each algorithm: λ = 1 for local ridge regression2 and α = 1, γ = 1) for lattice regression.

3.1 Simulated Data

We analyzed the proposed method with simulations on randomly-generated piecewise-polynomial
functions f : Rd → R formed from splines. These functions are smooth but have features that
occur at different length-scales; two-dimensional examples are shown in Fig. 1. To construct each
function, we first drew ten iid random points si from the uniform distribution on [0, 1]d, and ten
iid random points {ti} from the uniform distribution on [0, 1]. Then for each of the d dimensions
we first fit a one-dimensional spline g̃k : R → R to the pairs {

(
si)k, ti)}, where (si)k denotes the

kth component of si. We then combined the d one-dimensional splines to form the d-dimensional
function g̃(x) =

∑d
k=1 g̃k

(
(x)k

)
, which was then scaled and shifted to have range spanning [0, 100]:

f(x) = 100
(
g̃(x)−minz∈[0,1]d g̃(z)

maxz∈[0,1]d g̃(z)

)
.

Figure 1: Example random piecewise-polynomial functions created by the sum of one-dimensional
splines fit to ten uniformly drawn points in each dimension.

For input dimensions d ∈ {2, 3}, a set of 100 functions {f1, . . . , f100} were randomly generated as
described above and a set of n ∈ {50, 1000} randomly chosen training inputs {x1, . . . , xn} were

2Note that no locality parameter is needed for this local ridge regression as the neighborhood size is auto-
matically determined by enclosing k-NN [10]

4

fit by each regression method. A set of m = 10, 000 randomly chosen test inputs {z1, . . . , zm}
were used to evaluate the accuracy of each regression method in fitting these functions. For the rth
randomly-generated function fr, denote the estimate of the jth test sample by a regression method
as (ŷj)r. For each of the 100 functions and each regression method we computed the root mean-
squared errors (RMSE) where the mean is over the m = 10, 000 test samples:

er =
(

1
m

m∑
j=1

(
fr(zj)− (ŷj)r

)2)1/2

. (5)

The mean and statistical significance (as judged by a one-sided Wilcoxon with p = .05) of {er} for
r = 1, . . . , 100 is shown in Fig. 2 for lattice resolutions of 5, 9 and 17 nodes per dimension.

Legend RGPR direct �GPR lattice �LR GPR bias �LR d-linear bias �LR no bias

Ranking by
Statistical
Significance

R
� R

�� � �
� ��� R���

Ranking by
Statistical
Significance

R R
R �� ��

��� � �
� � �

5 9 17
0

10

20

Lattice Nodes Per Dimension

E
rr

o
r

5 9 17
0

10

20

Lattice Nodes Per Dimension

E
rr

o
r

(a) d = 2, n = 50 (b) d = 2, n = 1000

Ranking by
Statistical
Significance

�
R�� �� R��
�� R�� �

Ranking by
Statistical
Significance

R R�
R � �

��� �� �
� � �

5 9 17
0

10

20

Lattice Nodes Per Dimension

E
rr

o
r

5 9 17
0

10

20

Lattice Nodes Per Dimension

E
rr

o
r

(c) d = 3, n = 50 (d) d = 3, n = 1000

Figure 2: Shown is the average RMSE of the estimates given by each regression method on the
simulated dataset. As summarized in the legend, shown is GPR applied directly to the test samples
(dotted line) and the bars are (from left to right) GPR applied to the nodes of a lattice which is then
used to interpolate the test samples, lattice regression with a GPR bias, lattice regression with a d-
linear regression bias, and lattice regression with no bias. The statistical significance corresponding
to each group is shown as a hierarchy above each plot: method A is shown as stacked above method
B if A performed statistically significantly better than B.

In interpreting the results of Fig. 2, it is important to note that the statistical significance is an
indicator of the consistency of the ordering of the average test errors achieved by the methods
across the random functions. That is, it indicates whether one method consistently outperforms
another in RMSE when fitting the randomly drawn functions.

5

Consistently across the random functions, and in all 12 experiments, lattice regression with a GPR
bias performs better than applying GPR to the nodes of the lattice. At coarser lattice resolutions, the
choice of bias function does not appear to be as important: in 7 of the 12 experiments (all at the low
end of grid resolution) lattice regression using no bias does as well or better than that using a GPR
bias.

Interestingly, in 3 of the 12 experiments, lattice regression with a GPR bias achieves consistently
lower errors (albeit by a marginal average amount) than applying GPR directly to the random func-
tions. This surprising behavior is also demonstrated on the real-world datasets in the following
sections and is likely due to clipping of large extrapolations made by GPR. In a way, interpolation
from the lattice provides added bias to the estimate that reduces the overall error in some cases.

3.2 Geospatial Interpolation

Interpolation from a lattice is common representation for storing geospatial data (measurements tied
to geographic coordinates) such as elevation, rainfall, forest cover, wind speed, etc. As a cursory
investigation of the proposed technique in this domain, we tested it on the Spatial Interpolation Com-
parison 97 (SIC97) dataset [11] from the Journal of Geographic Information and Decision Analysis.
Originally part of a competition, the dataset is composed of 467 rainfall measurements made at dis-
tinct locations across Switzerland. Of these, 100 randomly chosen sites were designated as training
to predict the rainfall at the remaining 367 sites. The RMSE of the predictions made by GPR and
variants of the proposed method are presented in Fig 3. Additionally, the statistical significance (as
judged by a one-sided Wilcoxon with p = 0.95) of the differences in squared error on the 367 test
samples was computed for each pair of techniques. In contrast to the previous section in which
significance was computed on the RMSE across 100 randomly drawn functions, significance in this
section indicates that one technique produced consistently lower squared error across the individual
test samples.

Legend RGPR direct �GPR lattice �LR GPR bias �LR d-linear bias �LR no bias

Ranking by
Statistical
Significance

R R�� �
�� � ��� � ��
�� � R R��� R��

5 9 17 33 65
0

50

100

Lattice Nodes Per Dimension

R
M

S
E

Figure 3: Shown is the RMSE of the estimates given by each method for the SIC97 test samples.
The hierarchy of statistical significance is presented as in Fig. 2.

Compared with GPR applied to a lattice, lattice regression with a GPR bias again produces a lower
RMSE in all five experiments. However, when comparing the individual squared errors on the test
set, there is no consistent performance improvement in four of the five experiments (as judged by the
statistical significance results). There is also a divergence from the previous section in comparing
the effectiveness of the bias term. Here we see that in four of five experiments, using no bias and
using the d-linear bias produce consistently lower errors than both the GPR bias and GPR applied
to a lattice.

Additionally, for finer lattice resolutions (≥ 17 nodes per dimension) lattice regression either out-
performs or is not significantly worse than GPR applied directly to the test points. Inspection of the
maximal errors confirms the behavior posited in the previous section: that interpolation from the

6

lattice imposes a helpful bias. The range of values produced by applying GPR directly lies within
[1, 552] while those produced by lattice regression (regardless of bias) lie in the range [3, 521]; the
actual values at the test samples lie in the range [0, 517].

3.3 Color Management Experiments with Printers

Digital color management allows for a consistent representation of color information among diverse
digital imaging devices such as cameras, displays, and printers; it is a necessary part of many profes-
sional imaging workflows and popular among semi-professionals as well. An important component
of any color management system is the characterization of the mapping between the native color
space of a device (RGB for many digital displays and consumer printers), and a device-independent
space such as CIE L∗a∗b∗ – abbreviated herein as Lab – in which distance approximates perceptual
notions of color dissimilarity [12].

For nonlinear devices such as printers, the color mapping is commonly estimated empirically by
printing a page of color patches for a set of input RGB values and measuring the printed colors
with a spectrophotometer. From these training pairs of (RGB, Lab) colors, one estimates the inverse
mapping f : Lab→ RGB that specifies what RGB inputs to send to the printer in order to reproduce
a desired Lab color. See Fig. 4 for an illustration of a color-managed system. Estimating f is
challenging for a number of reasons: 1) f is often highly nonlinear 2) although it can be expected
to be smooth over regions of the colorspace, it is affected by changes in the underlying printing
mechanisms [13] that can introduce discontinuities and 3) device instabilities and measurement
error introduce noise into the training data. Furthermore, millions of pixels must be processed in
approximately real-time for every image without adding undue costs for hardware, which explains
the popularity of using a lattice representation for color management in both hardware and software
imaging systems.

Learned Device
Characterization

R
G
B

1D LUT
1D LUT
1D LUT

R'
G'
B'

Printer
L̂

b̂

â

b

a

L

Figure 4: A color-managed printer system. For evaluation, errors are measured between (L, a, b)
and (L̂, â, b̂) for a given device characterization.

The proposed lattice regression was tested on an HP Photosmart D7260 ink jet printer and a Samsung
CLP-300 laser printer. As a baseline, we compared to a state-of-the-art color regression technique
used previously in this application [10]: local ridge regression (LRR) using the enclosing k-NN
neighborhood. Training samples were created by printing the Gretag MacBeth TC9.18 RGB image,
which has 918 color patches that span the RGB colorspace. We then measured the printed color
patches with an X-Rite iSis spectrophotometer using D50 illuminant at a 2◦ observer angle and UV
filter. As shown in Fig. 4 and as is standard practice for this application, the data for each printer
is first gray-balanced using 1D calibration look-up-tables (1D LUTs) for each color channel (see
[10, 13] for details). We use the same 1D LUTs for all the methods compared in the experiment and
these were learned for each printer using direct GPR on the training data.

We tested each method’s accuracy on reproducing 918 new randomly-chosen in-gamut3 test Lab
colors. The test errors for the regression methods the two printers are reported in Tables 1 and 2. As
is common in color management, we report ∆E76 error, which is the Euclidean distance between
the desired test Lab color and the Lab color that results from printing the estimated RGB output of
the regression (see Fig. 4).

For both printers, the lattice regression methods performed best in terms of mean, median and 95
%-ile error. Additionally, according to a one-sided Wilcoxon test of statistical significance with
p = .05, all of the lattice regressions (regardless of the choice of bias) were statistically significantly
better than the other methods for both printers; on the Samsung, there was no significant difference

3We drew 918 samples iid uniformly over the RGB cube and printed these, measuring the resulting Lab
values; these Lab values were as test samples. This is a standard approach to assuring that the test samples are
Lab colors that are in the achievable color gamut of the printer [10].

7

Table 1: Samsung CLP-300 laser printer
Euclidean Lab Error

Mean Median 95 %-ile Max
Local Ridge Regression (to fit lattice nodes) 4.59 4.10 9.80 14.59
GPR (direct) 4.54 4.22 9.33 17.36
GPR (to fit lattice nodes) 4.54 4.17 9.62 15.95
Lattice Regression (GPR bias) 4.31 3.95 9.08 15.11
Lattice Regression (Trilinear bias) 4.14 3.75 8.39 15.59
Lattice Regression (no bias) 4.08 3.72 8.00 17.45

Table 2: HP Photosmart D7260 inkjet printer
Euclidean Lab Error

Mean Median 95 %-ile Max
Local Ridge Regression (to fit lattice nodes) 3.34 2.84 7.70 14.77
GPR (direct) 2.79 2.45 6.36 11.08
GPR (to fit lattice nodes) 2.76 2.36 6.36 11.79
Lattice Regression (GPR bias) 2.53 2.17 5.96 10.25
Lattice Regression (Trilinear bias) 2.34 1.84 5.89 12.48
Lattice Regression (no bias) 2.07 1.75 4.89 10.51

The bold face indicates that the individual errors are statistically significantly consistent in be-
ing lower than the others as judged by a one-sided Wilcoxon significance test (p=.05). Multiple
bold lines indicate that there was no statistically significant difference in the errors.

between the choice of bias, and on the HP using the using no bias produced consistently lower
errors. This is surprising for three reasons. First, the two printers have rather different nonlinearities
because the underlying physical mechanisms differ substantially (one is a laser printer and the other
is an inkjet printer), so it is a nod towards the generality of the lattice regression that it performs
best in both cases. Second, the lattice is used for computationally efficiency, and we were surprised
to see it perform better than directly estimating the test samples using the function estimated with
GPR directly (no lattice). Third, we hypothesized that better performance would result from using
the more accurate global bias term formed by GPR than using the very coarse fit provided by the
global trilinear bias or no bias at all.

4 Conclusions

In this paper we noted that low-dimensional functions can be efficiently implemented as interpola-
tion from a regular lattice and we argued that an optimal approach to learning this structure from
data should take into account the effect of this interpolation. We showed that in fact one can di-
rectly estimate the lattice nodes to minimize the empirical interpolated training error, and added two
regularization terms to attain smoothness and extrapolation.

Real-data experiments showed that mean error on a practical digital color management problem
could be reduced by 25% using the proposed lattice regression, and that the improvement was sta-
tistically significant. Simulations also showed that lattice regression was statistically significantly
better than the standard approach of first fitting a function then evaluating it at the lattice points.

Surprisingly, although the lattice architecture is motivated by computational efficiency, both our
simulated and real-data experiments showed that the proposed lattice regression can work better
than state-of-the-art regression of test samples without a lattice.

8

References

[1] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning (Adaptive
Computation and Machine Learning), The MIT Press, 2005.

[2] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, Springer-
Verlag, New York, 2001.

[3] D. Wallner, Building ICC Profiles - the Mechanics and Engineering, chapter 4: ICC Profile
Processing Models, pp. 150–167, International Color Consortium, 2000.

[4] W. R. Tobler, “Lattice tuning,” Geographical Analysis, vol. 11, no. 1, pp. 36–44, 1979.
[5] R. Bala, “Iterative technique for refining color correction look-up tables,” United States Patent

5,649,072, 1997.
[6] R. Bala and R. V. Klassen, Digital Color Handbook, chapter 11: Efficient Color Transforma-

tion Implementation, CRC Press, 2003.
[7] M. R. Gupta, R. M. Gray, and R. A. Olshen, “Nonparametric supervised learning by linear

interpolation with maximum entropy,” IEEE Trans. on Pattern Analysis and Machine Intelli-
gence (PAMI), vol. 28, no. 5, pp. 766–781, 2006.

[8] F. Chung, Spectral Graph Theory, Number 92 in Regional Conference Series in Mathematics.
American Mathematical Society, 1997.

[9] T. A. Davis, Direct Methods for Sparse Linear Systems, SIAM, Philadelphia, September 2006.
[10] M. R. Gupta, E. K. Garcia, and E. M. Chin, “Adaptive local linear regression with application

to printer color management,” IEEE Trans. on Image Processing, vol. 17, no. 6, pp. 936–945,
2008.

[11] G. Dubois, “Spatial interpolation comparison 1997: Foreword and introduction,” Special Issue
of the Journal of Geographic Information and Descision Analysis, vol. 2, pp. 1–10, 1998.

[12] G. Sharma, Digital Color Handbook, chapter 1: Color Fundamentals for Digital Imaging, pp.
1–114, CRC Press, 2003.

[13] R. Bala, Digital Color Handbook, chapter 5: Device Characterization, pp. 269–384, CRC
Press, 2003.

9

