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Abstract
A system-optimized framework is presented for learning a

multi-dimensional look-up-table (LUT) from training samples.
The technique, termed lattice regression, solves for an entire LUT
at once by optimizing the three-fold objective of 1) low interpola-
tion error on training data, 2) smooth transitions between adja-
cent LUT outputs, and 3) a steady overall functional trend. The
proposed algorithm is tested for both smoothness and accuracy
against state-of-the-art for color management in printers.

Introduction
Controlling image appearance across diverse image displays

and capture devices requires characterizing, for each device, the
mapping between the device-dependent color space and a device-
independent color space or profile connection space (PCS). The
standard method to estimate this color mapping for devices that
have a complicated color response, such as printers, is by empiri-
cal characterization: learn the mapping from a set of training ex-
amples (e.g. obtained by measuring CIELab outputs for a number
of RGB inputs). For computational efficiency, it is standard prac-
tice to estimate the mapping only for a set of regularly-sampled
color values and store this as a multidimensional look-up-table
(LUT) in an ICC profile [12], which is interpolated at runtime
to map image colors. However, estimating the color mapping
is challenging because it can be highly nonlinear (especially for
printers), and the training examples may be noisy due to device
instabilities and/or measurement error.

Many standard regression methods have been applied to the
problem of estimating LUTs for color management. These meth-
ods generally estimate a function that fits the training samples,
and then one evaluates this function at the LUT gridpoints. How-
ever, because the effect of interpolating the LUT is not taken into
account when this function is estimated, the training samples (rep-
resenting everything known about the desired transformation) are
not guaranteed to be accurately reproduced by interpolating the
LUT. This begs the question: is it possible to learn a function
that is optimal with respect to the LUT interpolation in a robust
manner? In this paper, we propose a framework to answer this
question, termed lattice regression, that estimates LUTs by mini-
mizing the regularized interpolation error on the training data.

Next, we review some of the related work. Then we detail
the proposed lattice regression and explain why we hypothesize
it will estimate accurate and smooth color mappings. After that,
we describe experiments comparing the proposed lattice regres-
sion to the state-of-the-art local Tikhonov regression method for
an inkjet and a laser printer in terms of color management accu-
racy and subjective perceptual smoothness. Note that, although
these methods can be applied to both forward and inverse device
characterization, our experiments focus on the problem of inverse

device characterization where the placement of training examples
cannot be controlled directly. The paper concludes with a discus-
sion of the results, and some conclusions and open questions.

Related Work
Formally, the empirical estimation problem can be stated as

follows: Given a d× n matrix of inputs X =
[
x1, . . . ,xn

]
where

x j ∈ Rd and a p× n matrix of outputs Y =
[
y1, . . . ,yn

]
where

y j ∈ Rp, we are tasked with building the estimated transforma-
tion f̂ :Rd →Rp. Note that the terms input and output are used
with respect to the color transformation being estimated, not with
respect to the device. For instance, when applied to the inverse
device characterization of an RGB printer, the input space may be
CIELab while the output space may be RGB. Let A be a d×md

matrix with columns a j which are the nodes of a regular lattice
(LUT) in Rd with m nodes per dimension, spanning the achiev-
able input space; herein, A is referred to as an md lattice. Corre-
sponding to each lattice node a j, is an output b j ∈ Rp that will
be interpolated when applying the LUT; denote by B the p×md

matrix of all such outputs.
Many standard regression methods have been considered for

this estimation problem, including neural networks, spline fitting,
polynomial regression, and local linear regression [1, 2, 3]. Ex-
periments at Xerox showed that the best accuracy of these four
approaches was obtained with local linear regression [3]. For
each gridpoint in the LUT, local linear regression fits a hyper-
plane to the nearby training samples to minimize squared error,
then estimates that gridpoint’s output value by evaluating the lo-
cal hyperplane at the gridpoint. We proposed a variant of local
linear regression where the neighborhood training samples are
chosen to enclose the gridpoint, and the hyperplane fit is regular-
ized with ridge regression, which decreases the estimation vari-
ance [4]. These changes provide up to 20% improvement in ac-
curacy over the local linear regression used in the Xerox experi-
ments [4].

Recently, we showed that further reductions in error can re-
sult by changing the ridge regularization to a Tikhonov regulariza-
tion such that each local hyperplane is slanted towards the global
linear trend of the training data [7]. Here, for notational simplic-
ity, we assume all the data have been properly standard normal-
ized – see [7] for details. Let βglobal ∈ Rd be the least-squares
linear regression coefficient vector fitted to all n training sample
pairs {(xi,yi)}. Then for the lattice node g ∈ Rd , the generalized
Tikhonov model is f̂ (g) = gT βT + ȳ, where ȳ is the scalar mean
of the k neighborhood training sample output values, and

βT = arg min
β∈Rd

k

∑
j=1

(xT
j β − y j)2 +λ‖β −βglobal‖2

2.



The closed form solution is,

βT =
(

XT X +λ I
)−1(

XTY +λβglobal

)
.

Note that a βT is learned for each color plane independently.
Such methods do not, however, consider the effect of in-

terpolation or the fact that the estimated points lie in a regular
grid. Correcting for interpolation has been explored previously as
a post-processing technique to adjust an existing ICC profile via
an iterative technique [5]. A similar iterative correction technique
was proposed for the two-dimensional interpolation problem of
geospatial analysis [6]. Although the motivation here is the same,
the current approach is not an adjustment to an existing LUT. The
proposed technique arrives at a closed-form solution for lattice
outputs directly from the training data.

The related work discussed above focused on color manage-
ment accuracy. Another important issue is the smoothness of
images transformed with a LUT, and lack of such smoothness
is a noted issue with some ICC profiles [8, 9]. A standard so-
lution to increase the smoothness given an ICC profile is to av-
erage the LUT gridpoints with their neighbors. Recently, Mo-
rovic et al. suggested only averaging neighboring LUT gridpoints
along the L∗ dimension. Their subjective experiment results
showed that this increased perceived smoothness, while three-
dimensional averaging did not produce a statistically significant
increase in smoothness. Their results also showed that the pro-
posed lightness-only smoothing decreased accuracy roughly 10%.
Given an ICC profile, such post-processing smoothing methods
may be the only option, but for most devices they will entail a de-
crease in accuracy and a reduction of the gamut. In this paper, we
focus on designing smoothness into the LUT via the estimation of
the LUT gridpoints.

Lattice Regression
As foreshadowed in the introduction, the main idea behind

the proposed lattice regression is to choose output colors for LUT
gridpoints that interpolate the training data accurately. That is,
given a training sample input color (e.g. a L*a*b* value), the
output color (e.g. device RGB value) interpolated from the LUT
should be close to the known training sample output (RGB) color.
The key insight is that if a linear interpolation technique (e.g. tri-
linear, pyramidal, or tetrahedral interpolation) is used on the LUT,
the operation can be inverted to solve for the node outputs that
minimize the squared error of the training data. However, unless
the LUT is populated with ample training data, this solution will
not necessarily be unique. Furthermore, due to device and mea-
surement noise, it may be beneficial to avoid fitting the training
data exactly. For these reasons, two forms of regularization are
added. In total, the proposed form of lattice regression trades off
three terms: empirical risk, Laplacian regularization, and global
bias. These terms will be discussed and formalized in the follow-
ing subsections.

Empirical Risk
The empirical risk term solves for lattice outputs that accu-

rately interpolate the training data. That is, it solves for the p×md

matrix of lattice outputs B that minimize the squared interpolation
error on the training pairs {X ,Y}. Though conceptually simple,
a formal treatment requires a set of functions to annotate lattice

operations in order to specify the md × n interpolation matrix W
used to interpolate the training inputs X from the lattice A. These
lattice operations are presented here primarily for reference, but
the essence of this section is as follows: Given fixed node outputs
B, the result of interpolating the training data from the LUT can
be expressed as f̂ (X) = BW . Thus, the lattice outputs that mini-
mize the `2 distortion of the known training outputs Y are given
by

argmin
B

tr
((

BW −Y
)(

BW −Y
)T
)
. (1)

The remainder of this section is devoted to specifying W in detail.
Without loss of generality, assume that the domain is scaled

and translated such that the md lattice spans [0,m-1]d , placing
nodes at integer coordinates inRd .

A mapping between an index into the set of lattice nodes
and coordinates of this node will prove useful. For this purpose
define the function Nm : N→Nd that returns the d-dimensional
coordinates of the jth node in an md lattice. The kth element of
the d×1 vector Nm( j) is given by

Nm( j)k =
⌊

j−1
mk−1

⌋
mod m

for k = 1, . . . ,d.
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Figure 1. The 32 lattice with test point x = [1.8,1.4]T .

Interpolating a test point x ∈ Rd requires the ability to in-
dex the 2d nodes of the cell (hypercube) containing it. For this
purpose, define the function c j(x) that returns the index (in the
lattice) of the jth node ( j = 1, . . . ,2d) that forms a cell around x.
Formally,

c j(x) =
[
md−1, . . . ,m0](bxc+N2( j)

)
+1,

where the floor function b ·c is performed element-wise. Note that
bxc and N2( j) are vectors and hence the multiplication above is an
inner product.

The weights applied to the nodes of the cell containing x
will depend on the interpolation method chosen. On the common
three-dimensional domain of color spaces, trilinear, pyramidal,
and tetrahedral interpolation are all linear weightings [10] and any
one of these (or their d-dimensional extensions) could be applied
for lattice regression. We will restrict our attention here to the
trilinear interpolation weights.



For trilinear interpolation, ν j(x) returns the weight associ-
ated with the jth node ( j = 1, . . . ,2d) in the cell containing x.
Formally,

ν j(x) =
d

∏
k=1

λ (xk)N2( j)k
(
1−λ (xk)

)1−N2( j)k ,

where xk is the kth element of x and λ(xk) = xk−bxkc.
With these tools in hand, the operation of interpolating an

output for x from the lattice can be expressed in matrix form. Let
w(x) be the md ×1 sparse vector with kth element

w(x)k =

{
ν j(x) if k = c j(x) for j = 1, . . . ,2d

0 otherwise

and for lattice outputs B, x is interpolated as f̂ (x) = Bw(x).
Finally, given X =

[
x1, . . . ,xn

]
, W is defined as the md × n

matrix W =
[
w(x1), . . . ,w(xn)

]
.

Laplacian Regularization
The second term in the lattice regression objective is a Lapla-

cian regularization term that penalizes the squared difference of
the outputs on adjacent lattice nodes, thereby averaging out device
and measurement noise. Additionally, inclusion of this term guar-
antees a solution to (1), which is generally an underdetermined
problem due to the sparsity of training data with respect to the
lattice.

The graph Laplacian [11] of the lattice is fully defined by the
md ×md lattice adjacency matrix E with (i, j)-element

Ei j =

{
1 if ai adjacent to a j

0 otherwise.

Given E, the normalized Laplacian is defined as

L =
diag(1T E)−E

1T E1
,

where 1 is the md ×1 all-ones vector.
In quadratic form, the Laplacian measures the average

smoothness of the outputs B along adjacent nodes in the lattice:

tr
(
BLBT )=

p

∑
k=1

(
1

∑i j Ei j
∑

{i, j | Ei j=1}
(Bk,i−Bk, j)2

)
. (2)

Adding (2) as regularization to (1) yields the modified objective

argmin
B

tr
(1

n

(
BW −Y

)(
BW −Y

)T +αBLBT
)
, (3)

where the parameter α trades-off the average smoothness with the
average fidelity to the training points.

Global Bias
Laplacian regularization rewards smooth transitions between

adjacent lattice outputs but there is no incentive in (3) to extrapo-
late trends beyond the boundary of the cells. Consequently, initial
color management experiments using Equation (3) to solve for lat-
tice outputs produced high accuracy in the interior of the gamut,

but exhibited severe clipping for saturated, dark and light colors
near the edge of the gamut.

A fairly straightforward way to overcome this limitation is
the inclusion of a global bias term: a penalty for the divergence
of lattice node outputs from the overall functional trend of the
training data. Since the purpose of this term is to extrapolate be-
yond the data, this functional form should be somewhat rigid (if it
is too flexible it may extrapolate wildly). Though this is a design
choice, we propose to use a global trilinear function as a bias. Fit-
ting such a function is equivalent to solving Equation (1) for the
2d lattice formed from the corners of the original lattice. Trilinear
interpolation can then be applied to these corners to solve for out-
puts B̃ at every node in the original md lattice A. Thus, B̃ are the
lattice outputs corresponding to the global trilinear function that
best fits the data and the global bias term penalizes the average
squared divergence from these values:

1
md tr

((
B− B̃

)(
B− B̃)T

)
. (4)

Lattice Regression Objective Function
Combining the empirical risk minimization, the Laplacian

regularization, and the global bias, the proposed lattice regression
objective is given by

argmin
B

tr
(1

n

(
BW −Y

)(
BW −Y

)T +αBLBT

+
γ

md

(
B− B̃

)(
B− B̃)T

)
,

where, relative to the empirical risk, α and γ control the aver-
age smoothness and the average divergence from the global bias,
respectively.

This has the closed-form solution

B∗ =
(

1
n

YW T +
γ

md B̃
)(

1
n

WW T +αL+
γ

md I
)−1

, (5)

where I is the md ×md identity matrix.

Experiments
The proposed lattice regression (5) was tested for color man-

agement accuracy and perceptual smoothness on an HP Photos-
mart D7260 ink jet printer and a Samsung CLP-300 laser printer.
We compared lattice regression to a state-of-the-art color man-
agement regression technique: local Tikhonov regression using
the enclosing k-NN neighborhood [4, 7].

Although lattice regression has two parameters, resource re-
strictions allowed only the investigation of one of the parameters.
Preliminary visual experiments on the Samsung CLP-300 were
performed to determine which parameter has a greater impact on
smoothness. In these preliminary experiments, one parameter was
held at a baseline value (α = 1 or γ = 1) while the other was var-
ied from {.1,1,10,100}. Surprisingly, it was found that the α

parameter (which favors smooth transitions in device RGB on ad-
jacent lattice nodes) had little affect on the smoothness compared
to the γ parameter (which favors a global trilinear function). That
is, on the rather un-smooth Samsung CLP-300 printer (see Figure
2) larger values of α did not produce noticeably smoother prints
while the larger values of γ did. Therefore, γ was chosen as the
variable parameter for these experiments.



Related to our analysis of the effect of α on smoothness, Mo-
rovic et al.’s recent study [8] found a correlation between smooth
transitions in device RGB between adjacent LUT nodes in the L∗

dimension only and visual smoothness of images processed by
such LUTs. This suggests that fixing the Laplacian parameter for
the chroma dimensions but varying the Laplacian parameter in the
L∗ dimension may be a useful tool for designing in smoothness,
but this was not investigated here.

The size of the matrix that is inverted in (5) can be quite
large (md ×md). However, it is also quite sparse and can there-
fore be solved efficiently by techniques such as sparse Cholesky
factorization [15]. Experiments for this paper using 173 LUTs
were solved in under .5 seconds on an Intel 1.83GHz Core 2 Duo
compared to upwards of 60 seconds for the Tikhonov method.

Accuracy Experimental Details
Training samples were measured by printing the Gretag

MacBeth TC9.18 RGB target, which has 918 values, including
789 regularly-sampled RGB values and neutral ramps with 189
samples. The targets were measured with an X-Rite iSis spec-
trophotometer using D50 illuminant at a 2◦ observer angle and
UV filter. A stability test of five measurement rounds of a 918-
sample target with this device showed a measurement variability
of less than .1 mean and 1 maximum ∆E2000.

Given the 918 training samples, we built 1D gray-balanced
calibration LUTs for each color channel (see [3, 4] for details),
followed by a 17× 17× 17 3D LUT covering the range L∗ ∈
[0,100], a∗,b∗ ∈ [−100,100].

We built five 3D LUTs for lattice regression for regular-
ization parameters γ ∈ {.1,1,10,20,50}, and three 3D LUTs
for Tikhonov for regularization parameters λ ∈ {1,10,20}. (A
greater number of regularization parameters for lattice regression
were considered because we had no previous experiments to guide
us, unlike the regularized local linear regression). For the LUTs
using Tikhonov, the same algorithm used for construction of the
3D LUTs was used in the construction of 1D LUTs. However,
since lattice regression was not designed to estimate 1D LUTs,
the Tikhonov method with λ = 1 (the baseline parameter) was
used for constructing the 1D LUTs used with the 3D lattice re-
gression LUTs.

We tested the LUTs on 918 in-gamut CIELab values formed
by randomly sampling the RGB cube, printing those values
on each printer, then measuring the corresponding (in-gamut)
CIELab values, and using these as test values.

Perceptual Experimental Details
We tested the perceptual smoothness of a set of in-gamut gra-

dients that range over L∗ for a fixed-chroma of primary and sec-
ondary colors. The gamut of each device was determined by the
alpha-shape [13] with α = 2000 (determined by visual inspection
of the smoothness of the gamut surface) for the measured TC9.18
target. Figure 2 shows examples of the gradient test chart pro-
duced with the lattice regression (γ = 1) LUT. Although they ap-
pear slightly different after printing on the intended printer, these
images do illustrate the kinds of contours that occur in the prints.

Thirteen subjects with normal color vision judged the
smoothness of printed gradients produced by each method in a
ranking task. For each printer, eight gradients were printed (one
for each parameter-setting of the regression methods that were in-

vestigated). Separately for each printer, the subjects were asked
to order the eight targets with the least smooth on the left and the
smoothest on the right. This data was used to produce paired com-
parisons for which were scaled under a Thurstonian model [14].
The experiments were carried out with approximately D50 light-
ing produced by two 4700K Sollux lamps by Tailored Lighting.

Figure 2. Figure shows the RGB values for the gradient experiments for

the Samsung laser printer (left) and HP inkjet printer (right) estimated with

lattice regression with regularization parameter γ = 1.

Results
Complete accuracy results in terms of ∆E∗2000 are shown in

Table 1 and Table 2. One sees that the Tikhonov error rates are
robust within the chosen range of λ . For the lattice regression,
the errors vary greatly over the chosen range of γ , and in fact the
smallest considered value γ = .1 is preferable.

Figure 3 shows the smoothness versus accuracy for all of the
regression methods investigated. The relative perceptual smooth-
ness is determined by Thurstone’s law of comparative judgement
(Case V) [14] applied to the pairwise comparisons induced by
the ranking data. The scale at which differences can be consid-
ered statistically significant is indicated by the separation of tick-
marks on the vertical axis. As hypothesized, for lattice regres-
sion, this range of γ shows a rough trade-off between smoothness
and accuracy as one increases the amount of regularization. For
Tikhonov regression, the relationship between λ and smoothness
is less clear.

On the Samsung laser printer, lattice regression with a small
bias term (γ = .1) produced 23%,15%, and 27% lower me-
dian, 95th percentile, and maximum error compared to the best
Tikhonov regression, with comparable smoothness (within the
smallest significant difference). With a larger bias term (γ = 10),
lattice regression produces significantly smoother prints, but at
the cost of decreased accuracy and it’s likely that for an inter-
mediate value of γ , lattice regression would achieve comparable
errors while producing significantly smoother prints.

On the HP inkjet printer, lattice regression is not as domi-
nant. Although lattice regression with a small bias term (γ = .01)
produced at least 18% and 12% lower median and 95th percentile
error compared to the best Tikhonov regression, the maximum er-
ror is increased by 19%. Furthermore, all parameter settings of
Tikhonov regression produced smoother results, with lattice re-
gression incurring a very large penalty in accuracy for modest



gains in smoothness.
In practice, one usually does not have the ability to compare

the performance for different parameter choices. In a previous
experiment [4], we used total RGB estimation `2 error on 918
randomly sampled in-gamut test points, but this requires print-
ing and measuring 918 more samples, which is costly and time-
consuming. In this study we also considered cross-validating
based on the `2 difference between the true RGB and estimated
RGB of only 12 randomly sampled in-gamut test points. This is
practical because 12 extra samples could be added to the original
target sheet and printed at the same time as the training samples,
producing a total of 930 measured samples, of which 918 are used
to train the algorithm and 12 are used to select the best regular-
ization parameter. Cross-validating with 12 random test points
produced the cross-validated parameter choices γ = .1 for lattice
regression for both the HP and Samsung, and λ = 20 for Tikhonov
for both the HP and Samsung. In Table 3 we compare these cross-
validated parameter choices for accuracy and perceptual smooth-
ness. For comparing smoothness, the fraction of the time the algo-
rithm was ranked as smoother than the other is shown. This table
shows that cross-validating based only on accuracy leads to lower
error with the lattice regression and comparable smoothness.

Table 1. Samsung CLP-300 laser printer

∆E∗2000 Error

Median 95 %-ile Max
Lattice γ=.1 2.33 5.87 9.79
Lattice γ=1 2.77 6.48 11.74
Lattice γ=10 3.25 8.92 15.34
Lattice γ=20 3.80 9.62 17.67
Lattice γ=50 4.19 10.21 19.11
Tikhonov λ=1 3.25 7.20 14.29
Tikhonov λ=10 3.04 6.93 13.49
Tikhonov λ=20 3.14 7.05 13.48

Table 2. HP Photosmart D7260 inkjet printer

∆E∗2000 Error

Median 95 %-ile Max
Lattice γ=.1 1.03 2.56 6.19
Lattice γ=1 1.22 3.25 5.50
Lattice γ=10 2.38 5.98 10.26
Lattice γ=20 2.81 6.56 10.58
Lattice γ=50 3.26 7.13 10.88
Tikhonov λ=1 1.27 2.94 5.16
Tikhonov λ=10 1.34 3.09 5.28
Tikhonov λ=20 1.38 3.06 6.10

Conclusions and Open Questions
In this paper we proposed a new regression method opti-

mized for estimating LUTs that we term lattice regression. We
showed that lattice regression in practice achieves ∼ 20% lower
error on an inkjet and laser printer than the state-of-the-art color
management estimation method local Tikhonov linear regression

Table 3. Cross-validated Algorithm Comparison

∆E∗2000 Error Smooth-
nessMedian 95%-ile

Samsung
Lattice 2.33 5.87 9/13
Tikhonov 3.14 7.05 4/13

HP
Lattice 1.03 2.56 2/13
Tikhonov 1.38 3.06 11/13
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Figure 3. Figure shows the psychometrically scaled smoothness obtained

from the ranking experiment plotted against median ∆E2000 error for varying

algorithm parameters.

over enclosing neighborhoods. Additionally, we analyzed the per-
ceptual smoothness of printed gradients, and showed (i) that the
regularization parameter in lattice regression trades-off between
smoothness and accuracy over the examined parameter range; and
(ii) that for cross-validated parameter choices for lattice regres-
sion and the Tikhonov method the perceived smoothness is com-
parable.

A number of open questions remain. First, the cross-
validated parameter choices were at the extremes of the consid-
ered ranges for both lattice regression and Tikhonov, and a future
study should consider a wider range of parameter choices. Sec-
ond, lattice regression is designed to minimize error on the train-
ing samples after trilinear interpolation, but not all color manage-
ment systems use trilinear interpolation to interpolate the LUT.



Samsung CLP-300

HP Photosmart D7260

Figure 4. Shown are the test samples in CIELab. The size of each point

corresponds to the ∆E∗2000 produced by Lattice Regression with γ = .1 for each

printer.

We hypothesize that lattice regression will do almost as well if
tetrahedral or another linear interpolation method is used, but this
requires testing.

For the smoothness tests, we focused on in-gamut gradients
only, so as not to confound the estimation of the LUTs with gamut
mapping. However, both estimation methods considered here do
estimate LUT gridpoints outside the gamut. This raises a num-
ber of interesting open questions: Do these methods effectively
estimate points outside the gamut? Is the out-of-gamut estima-
tion similar to any popular gamut-mapping strategies? Would it
be helpful to design-in gamut mapping to the estimation of the
LUT?

Lastly, we had hoped that the smoothing terms in lattice re-
gression would lead to smooth RGB outputs, but the smoothness
results were comparable to those with Tikhonov, and so we con-
sider our effort in this respect to be unsuccessful. It is an open
question how to design in smoothness to the LUT estimation, and
how to automatically choose regression parameters to produce ap-
preciably smooth results.
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