
On Making Stochastic 
Classifiers Deterministic

Andrew Cotter, Harikrishna Narasimhan, Maya Gupta

Google Research



Stochastic Classifiers
Why do I care about stochastic classifiers? Mostly, constrained optimization

Examples: statistical fairness problems, churn, FPR/FNR, precision/recall, ….
● All of these are non-convex



Stochastic Classifiers are Great
If we optimize the Lagrangian:

Then a pure Nash equilibrium might not exist
● So, if we use SGD, we might expect oscillation instead of convergence

○ Running SGD for a while, and taking the last iterate, seems ill-advised

● A mixed equilibrium will exist, and will give us a stochastic classifier
○ We can’t just take the expected solution, since non-convexity → no Jensen’s inequality



Stochastic Classifiers are Terrible
Using a stochastic classifier in a real system is not always possible
● They’re can be much larger (e.g. one model vs. a distribution over models)
● More difficult to debug and visualize
● Might be inherently unsuited for certain applications

For example, suppose we want a “fair” classifier
● We might want similar examples to receive similar predictions
● A stochastic classifier won’t even be consistent on the same example

Dwork, Hardy, Pitassi, Reingold, Zemel. Fairness through awareness. Innovations in Theoretical Computer 
Science, 2012



Stochastic Classifiers are Terrible
This isn’t a purely theoretical problem! In experiments, if we:
1. Have the λ and θ players run SGD for a while
2. Find the single best iterate
3. Find the best distribution supported on the sequence of iterates

We sometimes observe a significant gap between the performance of (2) and (3)

Cotter, Jiang, Wang, Narayan, You, Sridharan, Gupta. Optimization with Non-Differentiable Constraints with 
Applications to Fairness, Recall, Churn, and Other Goals. JMLR (to appear)



Stochastic to Deterministic Classifiers
● We’d prefer a stochastic classifier                        for performance reasons
● We’d prefer a deterministic classifier                         for practical reasons

Proposal: approximate a stochastic classifier with a deterministic one
1. What does this mean? What constitutes a good approximation?
2. Is there a lower bound on how well a deterministic classifier can perform?
3. How well does the usual approach (thresholding) perform?
4. Can we get closer to the lower bound?



Lower Bound
What constitutes a good approximation?
● A metric consists of a loss, a labeling, and a subset of the data distribution
● Given m metrics, the original stochastic classifier, and a deterministic classifier, 

we want every metric to have roughly the same value, for both classifiers

Lower bound: there exists a metric ℓ and labeling s.t. for every deterministic f:

In words: if there exists a large point mass on which the original stochastic classifier 
is very stochastic, then we cannot approximate well

^



Lower Bound
What constitutes a good approximation?
● A metric consists of a loss, a labeling, and a subset of the data distribution
● Given m metrics, the original stochastic classifier, and a deterministic classifier, 

we want every metric to have roughly the same value, for both classifiers

Lower bound: there exists a metric ℓ and labeling s.t. for every deterministic f:

In words: if there exists a large point mass on which the original stochastic classifier 
is very stochastic, then we cannot approximate well

^



Thresholding
Thresholding is probably the most common approach: define

Then, for any metric ℓ and labeling:

● Bound improves as the stochastic classifier becomes less stochastic
● But it does not improve as point masses shrink

Example: continuous data distribution (no point masses), and f(x) = 0.51 for all x.
● Then f(x) = 1 for all x
● The positive prediction rates (and many other metrics) will be very different

^



Hashing is based on the idea of “faking” stochasticity
● Assume we have a pairwise independent family of hash functions
● Sample a hash function, and use it to define the deterministic classifier

○ For each example x, hash its features to create a random-seeming threshold

We prove a bound that, with high probability over the hash function sample
● Is too complicated to state here
● But does go to zero as the stochasticity on large point masses goes to zero

○ It doesn’t exactly “match” the lower bound, but does have the same essential properties

Hashing



Refinements
The fact that a hashing classifier “looks” stochastic may be a disadvantage
● It can be highly non-smooth
● It makes arbitrary distinctions between otherwise-similar examples
● Visualization and debugging problems comparable to stochastic classifier

One possible solution: interpolate between thresholding and hashing
● A thresholding classifier uses the same threshold for each x
● A hashing classifier uses a different threshold for each x
● Create a similarity-preserving clustering, and separately threshold each cluster

Same bound as hashing, but point masses are measured on clusters



Experiments - Law school dataset

Constraints align ROC curves for the protected class and the overall population



Experiments - Adult dataset

Constraints match histograms of model outputs between the protected class and 
the overall population



Thank You!


