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Stochastic Classifiers

Why do | care about stochastic classifiers? Mostly, constrained optimization

mingo (6)

S.t. g; (9) <0
Vie[m]
Examples: statistical fairness problems, churn, FPR/FNR, precision/recall, ....
e All of these are non-convex



Stochastic Glassifiers are Great

If we optimize the Lagrangian:
L(0,X) =go(0)+ Z Aigi (0)
i=1

Then a pure Nash equilibrium might not exist
e So, if we use SGD, we might expect oscillation instead of convergence
o Running SGD for a while, and taking the last iterate, seems ill-advised

e A mixed equilibrium will exist, and will give us a stochastic classifier
o  We can'’t just take the expected solution, since non-convexity = no Jensen’s inequality



Stochastic Classifiers are Terrible

Using a stochastic classifier in a real system is not always possible
e They’re can be much larger (e.g. one model vs. a distribution over models)
e More difficult to debug and visualize
e Might be inherently unsuited for certain applications

For example, suppose we want a “fair” classifier
e We might want similar examples to receive similar predictions
e A stochastic classifier won’t even be consistent on the same example

Dwork, Hardy, Pitassi, Reingold, Zemel. Fairness through awareness. Innovations in Theoretical Computer
Science, 2012



Stochastic Classifiers are Terrible

This isn’t a purely theoretical problem! In experiments, if we:
1. Have the A and 6 players run SGD for a while
2. Find the single best iterate
3. Find the best distribution supported on the sequence of iterates

We sometimes observe a significant gap between the performance of (2) and (3)

Cotter, Jiang, Wang, Narayan, You, Sridharan, Gupta. Optimization with Non-Differentiable Constraints with
Applications to Fairness, Recall, Churn, and Other Goals. JMLR (to appear)



Stochastic to Deterministic Glassifiers

We’d prefer a stochastic classifier f : X — [0, 1] for performance reasons

e We’d prefer a deterministic classifier f : X — {0, 1} for practical reasons

Proposal: approximate a stochastic classifier with a deterministic one

1.

2.
3.
4

What does this mean? What constitutes a good approximation?

Is there a lower bound on how well a deterministic classifier can perform?
How well does the usual approach (thresholding) perform?

Can we get closer to the lower bound?



Lower Bound

What constitutes a good approximation?
® A metric consists of a loss, a labeling, and a subset of the data distribution
e Given m metrics, the original stochastic classifier, and a deterministic classifier,
we want every metric to have roughly the same value, for both classifiers

Lower bound: there exists a metric £ and labeling s.t. for every deterministic f
Ex(F) = Eo(F)] = max{Prop,,, {X' = x} - min {f(x),1 = f(x)} ]
XeAy

In words: if there exists a large point mass on which the original stochastic classifier
is very stochastic, then we cannot approximate well




Lower Bound |Ee(f) — Ee(f)| > )r(ne% {PrX,NDXW {x'=x} -min{f(x),1— f(x)}}
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Thresholding |Ee(f) — Ee(f)| > )r(ne% {PrX,NDXW {x'=x} -min{f(x),1— f(x)}}

Thresholding is probably the most common approach: define f(x) = 1{f(x) > 1/2}

Then, for any metric £ and labeling:
|Eo(F) = Eo( )| < ey, [min{F(x), 1 = F()}]
e Bound improves as the stochastic classifier becomes |ess stochastic
e But it does not improve as point masses shrink

Example: continuous data distribution (no point masses), and f(x) = 0.57 for all x.
e Then lA‘(x) = 1for all x

e The positive prediction rates (and many other metrics) will be very different




Hashing

|Eu(F) — Eo(F)] 2 max {Prunp,,, (X' = x} - min {£(x). 1~ F(x)} }

Hashing is based on the idea of “faking” stochasticity
e Assume we have a pairwise independent family of hash functions

e Sample a hash function, and use it to define the deterministic classifier
o For each example x, hash its features to create a random-seeming threshold

We prove a bound that, with high probability over the hash function sample
e |stoo complicated to state here

e But does go to zero as the stochasticity on large point masses goes to zero
o It doesn’t exactly “match” the lower bound, but does have the same essential properties




Refinements -

The fact that a hashing classifier “looks” stochastic may be a disadvantage
e [t can be highly non-smooth
e [t makes arbitrary distinctions between otherwise-similar examples
e \Visualization and debugging problems comparable to stochastic classifier

One possible solution: interpolate between thresholding and hashing

e A thresholding classifier uses the same threshold for each x

e A hashing classifier uses a different threshold for each x

e Create a similarity-preserving clustering, and separately threshold each cluster
Same bound as hashing, but point masses are measured on clusters



Experiments - Law school dataset
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Experiments - Adult dataset
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Thank You!

{acotter,hnarasimhan,mayagupta}@google.com



